1
|
Hong F, Wang X, Zhong N, Zhang Z, Lin S, Zhang M, Li H, Liu Y, Wang Y, Zhao L, Yang X, Zhou H, Liang H, Chen YG. The critical role of BMP signaling in gastric epithelial cell differentiation revealed by organoids. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:18. [PMID: 40377813 DOI: 10.1186/s13619-025-00237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The efficient differentiation of adult gastric stem cells into specific epithelial cell types is crucial for gastric homeostasis. Although it is well appreciated that the niche plays a critical role in gastric epithelium cell differentiation, the relevant molecular factors and the underlying regulatory mechanisms remain poorly understood. In this study, by combining the knowledge of the niche cells obtained from single-cell RNA sequencing and manipulation of signaling pathways, we achieved effective differentiation of various gastric epithelial cell types in mouse and human gastric organoids. These in vitro differentiated cells showed a similar gene expression profile to those in gastric tissues. Specifically, BMP4 signaling stimulates pit cell and parietal cell differentiation. Furthermore, BMP4 and EGF signaling cooperate to enhance pit cell differentiation, whereas inhibition of TGF-β and BMP4 signaling promotes chief cell differentiation. We demonstrated that Zbtb7b is a novel regulator controlling pit cell differentiation. In addition, BMP4, together with the small molecule Isoxazole 9, promotes parietal and enteroendocrine cell differentiation. Our data also revealed the different requirements of parietal and chief cell differentiation between mouse and human. Together, our findings provide a mechanistic insight into gastric epithelial cell differentiation and uncover its similarities and differences between mouse and human, laying a foundation for future investigation and potential clinical use of gastric organoids.
Collapse
Affiliation(s)
- Fan Hong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nanshan Zhong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ze Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Wizenty J, Sigal M. Helicobacter pylori, microbiota and gastric cancer - principles of microorganism-driven carcinogenesis. Nat Rev Gastroenterol Hepatol 2025; 22:296-313. [PMID: 40011753 DOI: 10.1038/s41575-025-01042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The demonstration that Helicobacter pylori is a pathogenic bacterium with marked carcinogenic potential has paved the way for new preventive approaches for gastric cancer. Although decades of research have uncovered complex interactions of H. pylori with epithelial cells, current insights have refined our view on H. pylori-associated carcinogenesis. Specifically, the cell-type-specific effects on gastric stem and progenitor cells deep in gastric glands provide a new view on the ability of the bacteria to colonize long-term, manipulate host responses and promote gastric pathology. Furthermore, new, large-scale epidemiological data have shed light on factors that determine why only a subset of carriers progress to gastric cancer. Currently, technological advances have brought yet another revelation: H. pylori is far from the only microorganism able to colonize the stomach. Instead, the stomach is colonized by a diverse gastric microbiota, and there is emerging evidence for the occurrence and pathological effect of dysbiosis resulting from an aberrant interplay between H. pylori and the gastric mucosa. With the weight of this evidence mounting, here we consider how the lessons learned from H. pylori research inform and synergize with this emerging field to bring a more comprehensive understanding of the role of microbes in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy and BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
3
|
Paužuolis M, Samperio Ventayol P, Neyazi M, Bartfeld S. Organoids as a tool to study the impact of heterogeneity in gastrointestinal epithelium on host-pathogen interactions. Clin Exp Immunol 2024; 218:16-27. [PMID: 38245816 PMCID: PMC11404121 DOI: 10.1093/cei/uxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelium of the gastrointestinal (GI) tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity but also a preference or tropism for specific GI segments or even cell types-some of these preferences are so specific, that these pathogens still cannot be cultured invitro. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focussing on the GI tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for GI tract infection studies.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | | | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Si-M/‘Der Simulierte Mensch’, Technische Universität Berlin and Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Adkins-Threats M, Arimura S, Huang YZ, Divenko M, To S, Mao H, Zeng Y, Hwang JY, Burclaff JR, Jain S, Mills JC. Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells. Cell Stem Cell 2024; 31:886-903.e8. [PMID: 38733994 PMCID: PMC11162331 DOI: 10.1016/j.stem.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Division of Biomedical and Biological Sciences, Washington University, St. Louis, MO 63130, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sumimasa Arimura
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita Divenko
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah To
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heather Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenie Y Hwang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX 78249, USA
| | - Joseph R Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Shilpa Jain
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Jiang KL, Wang XX, Liu XJ, Guo LK, Chen YQ, Jia QL, Yang KM, Ling JH. Success rate of current human-derived gastric cancer organoids establishment and influencing factors: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:1626-1646. [PMID: 38660634 PMCID: PMC11037053 DOI: 10.4251/wjgo.v16.i4.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Human-derived gastric cancer organoids (GCOs) are widely used in gastric cancer research; however, the culture success rate is generally low. AIM To explore the potential influencing factors, and the literature on successful culture rates of GCOs was reviewed using meta-analysis. METHODS PubMed, Web of Science, and EMBASE were searched for studies. Two trained researchers selected the studies and extracted data. STATA 17.0 software was used for meta-analysis of the incidence of each outcome event. The adjusted Methodological Index for Non-Randomized Studies scale was used to assess the quality of the included studies. Funnel plots and Egger's test were used to detect publication bias. Subgroup analyses were conducted for sex, tissue source, histological classification, and the pathological tumor-node-metastasis (pTNM) cancer staging system. RESULTS Eight studies with a pooled success rate of 66.6% were included. GCOs derived from women and men had success rates of 67% and 46.7%, respectively. GCOs from surgery or biopsy/endoscopic submucosal dissection showed success rates of 70.9% and 53.7%, respectively. GCOs of poorly-differentiated, moderately-differentiated and signet-ring cell cancer showed success rates of 64.6%, 31%, and 32.7%, respectively. GCOs with pTNM stages I-II and III-IV showed success rates of 38.3% and 65.2%, respectively. Y-27632 and non-Y-27632 use showed success rates of 58.2% and 70%, respectively. GCOs generated with collagenase were more successful than those constructed with Liberase TH and TrypLE (72.1% vs 71%, respectively). EDTA digestion showed a 50% lower success rate than other methods (P = 0.04). CONCLUSION GCO establishment rate is low and varies by sex, tissue source, histological type, and pTNM stage. Omitting Y-27632, and using Liberase TH, TrypLE, or collagenase yields greater success than EDTA.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Yong-Qi Chen
- Department of Pathology, Shuguang Hospital, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| |
Collapse
|
7
|
Yang JC, Zhang YH, Hu B. Gastric organoids: Rise of a latecomer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:182-191. [DOI: 10.11569/wcjd.v32.i3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
8
|
McGowan KP, Delgado E, Hibdon ES, Samuelson LC. Differential sensitivity to Wnt signaling gradients in human gastric organoids derived from corpus and antrum. Am J Physiol Gastrointest Liver Physiol 2023; 325:G158-G173. [PMID: 37338119 PMCID: PMC10393332 DOI: 10.1152/ajpgi.00092.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Wnt signaling regulates gastric stem cell proliferation and differentiation. Although similar Wnt gradients exist within the corpus and antrum of the human stomach, there are striking differences in gland architecture and disease manifestation that suggest Wnt may differentially regulate progenitor cell function in each compartment. In this study, we tested sensitivities to Wnt activation in human gastric corpus and antral organoids to determine whether progenitor cells have region-specific differences in Wnt responsiveness. Human patient-matched corpus and antral organoids were grown in the presence of varying concentrations of the Wnt pathway activator CHIR99021 to assess regional sensitivity to Wnt signaling on growth and proliferation. Corpus organoids were further studied to understand how high Wnt affected cellular differentiation and progenitor cell function. A lower concentration of CHIR99021 stimulated peak growth in corpus organoids compared with patient-matched antral organoids. Supramaximal Wnt signaling levels in corpus organoids suppressed proliferation, altered morphology, reduced surface cell differentiation, and increased differentiation of deep glandular neck and chief cells. Surprisingly, corpus organoids grown in high CHIR99021 had enhanced organoid forming potential, indicating that progenitor cell function was maintained in these nonproliferative, deep glandular cell-enriched organoids. Passaging high-Wnt quiescent organoids into low Wnt rescued normal growth, morphology, and surface cell differentiation. Our findings suggest that human corpus progenitor cells have a lower threshold for optimal Wnt signaling than antral progenitor cells. We demonstrate that Wnt signaling in the corpus regulates a bimodal axis of differentiation, with high Wnt promoting deep glandular cell differentiation and suppressing proliferation while simultaneously promoting progenitor cell function.NEW & NOTEWORTHY This study demonstrates that human gastric corpus organoids have a lower Wnt signaling threshold to drive optimal growth relative to patient-matched antral organoids. Paradoxically, supramaximal Wnt levels suppress corpus organoid proliferation, yet promote differentiation toward deep glandular cell types while simultaneously enhancing progenitor cell function. These findings provide novel insights into how Wnt signaling differentially regulates homeostasis in the human gastric corpus and antrum and contextualizes patterns of Wnt activation diseases.
Collapse
Affiliation(s)
- Kevin P McGowan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Elizabeth Delgado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Elise S Hibdon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Deng G, Zhang X, Chen Y, Liang S, Liu S, Yu Z, Lü M. Single-cell transcriptome sequencing reveals heterogeneity of gastric cancer: progress and prospects. Front Oncol 2023; 13:1074268. [PMID: 37305583 PMCID: PMC10249727 DOI: 10.3389/fonc.2023.1074268] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer is one of the most serious malignant tumor and threatens the health of people worldwide. Its heterogeneity leaves many clinical problems unsolved. To treat it effectively, we need to explore its heterogeneity. Single-cell transcriptome sequencing, or single-cell RNA sequencing (scRNA-seq), reveals the complex biological composition and molecular characteristics of gastric cancer at the level of individual cells, which provides a new perspective for understanding the heterogeneity of gastric cancer. In this review, we first introduce the current procedure of scRNA-seq, and discuss the advantages and limitations of scRNA-seq. We then elaborate on the research carried out with scRNA-seq in gastric cancer in recent years, and describe how it reveals cell heterogeneity, the tumor microenvironment, oncogenesis and metastasis, as well as drug response in to gastric cancer, to facilitate early diagnosis, individualized therapy, and prognosis evaluation.
Collapse
Affiliation(s)
- Gaohua Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Akad F, Mocanu V, Peiu SN, Scripcariu V, Filip B, Timofte D, Zugun-Eloae F, Cuciureanu M, Hancianu M, Oboroceanu T, Condur L, Popa RF. Mesenchymal Stem Cell-Derived Exosomes Modulate Angiogenesis in Gastric Cancer. Biomedicines 2023; 11:biomedicines11041031. [PMID: 37189649 DOI: 10.3390/biomedicines11041031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Individualized gastric cancer (GC) treatment aims at providing targeted therapies that translate the latest research into improved management strategies. Extracellular vesicle microRNAs have been proposed as biomarkers for GC prognosis. Helicobacter pylori infection influences the therapeutic response to and the drivers of malignant changes in chronic gastritis. The successful use of transplanted mesenchymal stem cells (MSCs) for gastric ulcer healing has raised interest in studying their effects on tumor neovascularization and in potential antiangiogenic therapies that could use mesenchymal stem cell secretion into extracellular vesicles—such as exosomes—in GC cells. The use of MSCs isolated from bone marrow in order to achieve angiogenic modulation in the tumor microenvironment could exploit the inherent migration of MSCs into GC tissues. Bone marrow-derived MSCs naturally present in the stomach have been reported to carry a malignancy risk, but their effect in GC is still being researched. The pro- and antiangiogenic effects of MSCs derived from various sources complement their role in immune regulation and tissue regeneration and provide further understanding into the heterogeneous biology of GC, the aberrant morphology of tumor vasculature and the mechanisms of resistance to antiangiogenic drugs.
Collapse
|
11
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
12
|
Huebner AJ, Gorelov RA, Deviatiiarov R, Demharter S, Kull T, Walsh RM, Taylor MS, Steiger S, Mullen JT, Kharchenko PV, Hochedlinger K. Dissection of gastric homeostasis in vivo facilitates permanent capture of isthmus-like stem cells in vitro. Nat Cell Biol 2023; 25:390-403. [PMID: 36717627 DOI: 10.1038/s41556-022-01079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
The glandular stomach is composed of two regenerative compartments termed corpus and antrum, and our understanding of the transcriptional networks that maintain these tissues is incomplete. Here we show that cell types with equivalent functional roles in the corpus and antrum share similar transcriptional states including the poorly characterized stem cells of the isthmus region. To further study the isthmus, we developed a monolayer two-dimensional (2D) culture system that is continually maintained by Wnt-responsive isthmus-like cells capable of differentiating into several gastric cell types. Importantly, 2D cultures can be converted into conventional three-dimensional organoids, modelling the plasticity of gastric epithelial cells in vivo. Finally, we utilized the 2D culture system to show that Sox2 is both necessary and sufficient to generate enterochromaffin cells. Together, our data provide important insights into gastric homeostasis, establish a tractable culture system to capture isthmus cells and uncover a role for Sox2 in enterochromaffin cells.
Collapse
Affiliation(s)
- Aaron J Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rebecca A Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ruslan Deviatiiarov
- Institute of Fundamental Medicine and Biology, Kazan Feberal University, Kazan, Russia
| | - Samuel Demharter
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tobias Kull
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan M Walsh
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Marty S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Steiger
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John T Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- San Diego Institute, Altos Labs, San Diego, CA, USA.
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA.
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Wizenty J, Sigal M. Gastric Stem Cell Biology and Helicobacter pylori Infection. Curr Top Microbiol Immunol 2023; 444:1-24. [PMID: 38231213 DOI: 10.1007/978-3-031-47331-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori colonizes the human gastric mucosa and persists lifelong. An interactive network between the bacteria and host cells shapes a unique microbial niche within gastric glands that alters epithelial behavior, leading to pathologies such as chronic gastritis and eventually gastric cancer. Gland colonization by the bacterium initiates aberrant trajectories by inducing long-term inflammatory and regenerative gland responses, which involve various specialized epithelial and stromal cells. Recent studies using cell lineage tracing, organoids and scRNA-seq techniques have significantly advanced our knowledge of the molecular "identity" of epithelial and stromal cell subtypes during normal homeostasis and upon infection, and revealed the principles that underly stem cell (niche) behavior under homeostatic conditions as well as upon H. pylori infection. The activation of long-lived stem cells deep in the gastric glands has emerged as a key prerequisite of H. pylori-associated gastric site-specific pathologies such as hyperplasia in the antrum, and atrophy or metaplasia in the corpus, that are considered premalignant lesions. In addition to altering the behaviour of bona fide stem cells, injury-driven de-differentiation and trans-differentation programs, such as "paligenosis", subsequently allow highly specialized secretory cells to re-acquire stem cell functions, driving gland regeneration. This plastic regenerative capacity of gastric glands is required to maintain homeostasis and repair mucosal injuries. However, these processes are co-opted in the context of stepwise malignant transformation in chronic H. pylori infection, causing the emergence, selection and expansion of cancer-promoting stem cells.
Collapse
Affiliation(s)
- Jonas Wizenty
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Helicobacter pylori shows tropism to gastric differentiated pit cells dependent on urea chemotaxis. Nat Commun 2022; 13:5878. [PMID: 36198679 PMCID: PMC9535007 DOI: 10.1038/s41467-022-33165-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The human gastric epithelium forms highly organized gland structures with different subtypes of cells. The carcinogenic bacterium Helicobacter pylori can attach to gastric cells and subsequently translocate its virulence factor CagA, but the possible host cell tropism of H. pylori is currently unknown. Here, we report that H. pylori preferentially attaches to differentiated cells in the pit region of gastric units. Single-cell RNA-seq shows that organoid-derived monolayers recapitulate the pit region, while organoids capture the gland region of the gastric units. Using these models, we show that H. pylori preferentially attaches to highly differentiated pit cells, marked by high levels of GKN1, GKN2 and PSCA. Directed differentiation of host cells enable enrichment of the target cell population and confirm H. pylori preferential attachment and CagA translocation into these cells. Attachment is independent of MUC5AC or PSCA expression, and instead relies on bacterial TlpB-dependent chemotaxis towards host cell-released urea, which scales with host cell size. The carcinogenic bacterium Helicobacter pylori infects gastric cells. Here, the authors show that H. pylori preferentially infects differentiated cells in the pit region of gastric units, and this relies on bacterial chemotaxis towards host cell-released urea, which scales with host cell size.
Collapse
|
15
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
16
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
17
|
Wang R, Wu Y, Zhu Y, Yao S, Zhu Y. ANKRD22 is a novel therapeutic target for gastric mucosal injury. Pharmacotherapy 2022; 147:112649. [PMID: 35051858 DOI: 10.1016/j.biopha.2022.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
18
|
Wölffling S, Daddi AA, Imai-Matsushima A, Fritsche K, Goosmann C, Traulsen J, Lisle R, Schmid M, Reines-Benassar MDM, Pfannkuch L, Brinkmann V, Bornschein J, Malfertheiner P, Ordemann J, Link A, Meyer TF, Boccellato F. EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology 2021; 161:623-636.e16. [PMID: 33957136 DOI: 10.1053/j.gastro.2021.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/β-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.
Collapse
MESH Headings
- Body Patterning/drug effects
- Bone Morphogenetic Protein 4/pharmacology
- Carrier Proteins/pharmacology
- Cell Differentiation/drug effects
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Chief Cells, Gastric/drug effects
- Chief Cells, Gastric/metabolism
- Chief Cells, Gastric/ultrastructure
- Epidermal Growth Factor/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/ultrastructure
- Gastritis, Atrophic/metabolism
- Gastritis, Atrophic/pathology
- Gene Expression Regulation, Developmental
- Humans
- Organoids
- Parietal Cells, Gastric/drug effects
- Parietal Cells, Gastric/metabolism
- Parietal Cells, Gastric/ultrastructure
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Sarah Wölffling
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alice Anna Daddi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Preemptive Medicine and Lifestyle-Related Diseases Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christian Goosmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Lennart Pfannkuch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Bornschein
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals, Oxford, United Kingdom; Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Jürgen Ordemann
- Department of Bariatric and Metabolic Surgery, Helios Klinikum, Berlin, Germany; Center for Bariatric and Metabolic Surgery, Vivantes Klinikum Spandau, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
19
|
Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med (Berl) 2021; 99:517-530. [PMID: 33538854 PMCID: PMC8026474 DOI: 10.1007/s00109-021-02043-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.
Collapse
Affiliation(s)
- Özge Kayisoglu
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Oberduerrbacher Strasse 6, Wuerzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
20
|
Seidlitz T, Koo BK, Stange DE. Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ 2021; 28:68-83. [PMID: 33223522 PMCID: PMC7852679 DOI: 10.1038/s41418-020-00662-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer ranks as the fifth most common human malignancy and the third leading cause of cancer related deaths. Depending on tumor stage, endoscopic or surgical resection supported by perioperative chemotherapy is the only curative option for patients. Due to late clinical manifestation and missing reliable biomarkers, early detection is challenging and overall survival remains poor. Organoids are cell aggregates cultured in three-dimensions that grow with similar characteristics as their tissue-of-origin. Due to their self-renewal and proliferative capacity, organoids can be maintained long term in culture and expanded in many cases in an unlimited fashion. Patient-derived organoid (PDO) libraries function as living biobanks, allowing the in depth analysis of tissue specific function, development and disease. The recent successful establishment of gastric cancer PDOs opens up new perspectives for multiple translational clinical applications. Here, we review different adult stem cell derived gastric organoid model systems and focus on their establishment, phenotypic and genotypic characterizations as well as their use in predicting therapy response.
Collapse
Affiliation(s)
- Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
21
|
Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2020; 10:346-356. [PMID: 33112056 PMCID: PMC7900586 DOI: 10.1002/sctm.20-0284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oropeza
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
22
|
Xiao S, Zhou L. Gastric Stem Cells: Physiological and Pathological Perspectives. Front Cell Dev Biol 2020; 8:571536. [PMID: 33043003 PMCID: PMC7527738 DOI: 10.3389/fcell.2020.571536] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric epithelium operates in a hazardous environment that curtails the lifespan of the constituent cells, imposing a requirement for continuous epithelial renewal. Stem cells that reside in the stomach are thus essential for regulating physiological tissue renewal and injury repair because of their self-renewal, high proliferation capacity and multiple differentiation potentials. Recent investigations using lineage tracing models have identified diverse populations of gastric stem cells and even fully differentiated cells that can regain stem cell capacity, so enriching our understanding on the identity and plasticity of gastric stem cells. These cell populations include the Villin promotor, Lgr5+, CCKR2+, Axin2+ and AQP5+ stem cells in the antrum, TFF2 mRNA, Mist1+ cells and Troy+ mature chief cells in the corpus, as well as Sox2, eR1, Lrig1, Bmi1-marked cell in both the antrum and the corpus. Establishment of gastric organoids derived from primary gastric tissues and pluripotent stem cells or embryonic stem cells characterizes niche factors required by the gastric stem cell populations, and further provides new insights into stomach development, host-Helicobacter pylori interactions and malignant transformation. Furthermore, focus on the gastric stem cells and their niches uncovers the initiation of stomach precancerous lesions and origin of gastric cancer, providing options for cancer prevention and intervention. In summary, with the development of stem cell research, gastric stem cells give us more opportunities to prevent and treat stomach diseases.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Feng XM, Liu H, Zhang L. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12:266-276. [PMID: 32399135 PMCID: PMC7202923 DOI: 10.4252/wjsc.v12.i4.266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yan Li
- Department of Oncology, The Affiliated Cancer Hospital, School of Medicine, UESTC, Chengdu 610000, Sichuan Province, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
24
|
Wizenty J, Tacke F, Sigal M. Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:568. [PMID: 32775369 PMCID: PMC7347775 DOI: 10.21037/atm.2020.02.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori (H. pylori) are gram-negative bacteria that are able to colonize and persist in the stomach. Gastric cancer is tightly linked to chronic infection with this bacterium. Research over the last decades has illuminated the molecular interactions between H. pylori and host cells. It is now well established that H. pylori have multiple sophisticated means to adhere to epithelial cells and to manipulate their behavior. This interaction with the epithelium can lead to altered cell signaling, DNA damage and aberrant epithelial immunity. H. pylori are known to colonize the mucus layer of the stomach and surface epithelial cells. In addition, it has recently become clear that they can also penetrate the glands and directly interact with specialized epithelial cells deep in the glands. Understanding the biogeography of infection is important because gastric epithelial glands are composed of various types of short-lived differentiated cells that are constantly regenerated by a limited pool of long-lived stem cells located in base of gastric glands. Recent advances in gastric stem cell research not only led to identification of stem cell populations using specific markers but has also uncovered specific regulatory pathways and principles that govern gastric stem cell behavior and regeneration. Particularly, the stem cell state is largely dependent on signals from the niche cells that surround the stem cell compartment. The subpopulation of H. pylori that colonizes in the stem cell compartment triggers specific inflammatory responses and drives epithelial pathology. Colonization of gastric glands induces responses of the stem cell niche, simultaneously enhancing the cell turnover kinetics and driving the formation of antimicrobial cells in the gland base. These data reveal the high plasticity of the epithelium and its ability to adapt to the environment, which is necessary to regenerate and counterbalance infection, but simultaneously lays the grounds for development of gastric pathology and carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
25
|
Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun 2020; 11:334. [PMID: 31953387 PMCID: PMC6969052 DOI: 10.1038/s41467-019-14058-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stomach and intestinal stem cells are located in discrete niches called the isthmus and crypt, respectively. Recent studies have demonstrated a surprisingly conserved role for Wnt signaling in gastrointestinal development. Although intestinal stromal cells secrete Wnt ligands to promote stem cell renewal, the source of stomach Wnt ligands is still unclear. Here, by performing single cell analysis, we identify gastrointestinal stromal cell populations with transcriptome signatures that are conserved between the stomach and intestine. In close proximity to epithelial cells, these perictye-like cells highly express telocyte and pericyte markers as well as Wnt ligands, and they are enriched for Hh signaling. By analyzing mice activated for Hh signaling, we show a conserved mechanism of GLI2 activation of Wnt ligands. Moreover, genetic inhibition of Wnt secretion in perictye-like stromal cells or stromal cells more broadly demonstrates their essential roles in gastrointestinal regeneration and development, respectively, highlighting a redundancy in gastrointestinal stem cell niches.
Collapse
|
26
|
Han S, Fink J, Jörg DJ, Lee E, Yum MK, Chatzeli L, Merker SR, Josserand M, Trendafilova T, Andersson-Rolf A, Dabrowska C, Kim H, Naumann R, Lee JH, Sasaki N, Mort RL, Basak O, Clevers H, Stange DE, Philpott A, Kim JK, Simons BD, Koo BK. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell 2019; 25:342-356.e7. [PMID: 31422913 PMCID: PMC6739486 DOI: 10.1016/j.stem.2019.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/11/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.
Collapse
Affiliation(s)
- Seungmin Han
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Juergen Fink
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Min Kyu Yum
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Lemonia Chatzeli
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sebastian R Merker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Manon Josserand
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Teodora Trendafilova
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Amanda Andersson-Rolf
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Catherine Dabrowska
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Hyunki Kim
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Ronald Naumann
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nobuo Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Richard Lester Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness Building, Lancaster University, Bailrigg, Lancaster LA1 4YG, UK
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anna Philpott
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
27
|
Abstract
Adult endogenous stem cells are crucial to maintain organ homeostasis due to their particular capacity to originate more specialized cell populations in a coordinated manner based on the body necessity. Extensive studies in a variety of tissues have highlighted the importance of stem cells for the functioning of our organism, including the skin, intestine, stomach, skeletal muscle, bone marrow, and others. Although significant progress has been made in our understanding of stem cell biology, our knowledge about these cells still remains limited due to their complexity and their dynamics. The advancement of our knowledge on these essential cells will have substantial implications in our understanding of tissue homeostasis and disease. Importantly, not all stem cells are alike even within the same tissue. They differ in their cell cycle status, surface marker expression, response to various extrinsic molecules, and distinct lineage outputs after transplant. The expanding literature which backs heterogeneity within stem cells is presently of great interest and brings questions as how stem cell subpopulations are generated, why they exist, and whether stem cells heterogeneity influences disease progression or therapy options. In more recent years, the combination of fluorescent and confocal microscopy with genetic state-of-art techniques, such as fate lineage tracking and single-cell RNA sequencing, enabled remarkable advance in the discovery of multiple novel essential functions for stem cell subpopulations in health and disease, before unexpected. This book provides an overview on our knowledge of stem cell subtypes in different organs under physiological and pathological conditions and discusses the possible origins and consequences of stem cells heterogeneity. This book's initial title was Stem Cells Heterogeneity. However, due to the current great interest in this topic, we were able to assemble more chapters than would fit in one book, covering stem cell biology under distinct circumstances. Therefore, the book was subdivided into three volumes entitled: Stem Cells Heterogeneity-Novel Concepts, Stem Cells Heterogeneity in Different Organs, and Stem Cells Heterogeneity in Cancer. Here, we offer a selected compilation of comprehensive chapters on what we know so far about heterogeneity within stem cells. More than 30 chapters written by scientists in the field outline our present knowledge on stem cells heterogeneity.
Collapse
|
28
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
29
|
Blum W, Henzi T, Schwaller B, Pecze L. Biological noise and positional effects influence cell stemness. J Biol Chem 2018; 293:5247-5258. [PMID: 29440274 DOI: 10.1074/jbc.ra117.001643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Biological (or cellular) noise is the random quantitative variability of proteins and other molecules in individual, genetically identical cells. As the result of biological noise in the levels of some transcription factors that determine a cell's differentiation status, differentiated cells may dedifferentiate to a stem cell state given a sufficiently long time period. Here, to provide direct evidence supporting this hypothesis, we used a live-cell monitoring system based on enhanced green fluorescent protein (eGFP) expression to continuously assess the "stemness" of individual human and murine malignant mesothelioma cells over a period of up to 3 months. Re-expression of the transcription factors, the top hierarchical stemness markers Sox2 (SRY-box 2) and Oct4 (octamer-binding transcription factor), monitored as cell eGFP expression was observed in a subpopulation of differentiated eGFP(-) malignant mesothelioma cells. However, we found that this transition was extremely rare. Of note, when it did occur, neighboring cells that were not direct descendants of a newly emerged eGFP(+) stem cell were more likely than non-neighboring cells to also become an eGFP(+) stem cell. This observation suggested a positional effect and led to a clustered "mosaic" reappearance of eGFP(+) stem cells. Moreover, stem cells reappeared even in cell cultures derived from one single differentiated eGFP(-) cell. On the basis of our experimental in vitro and in vivo findings, we developed a tumor growth model to predict the clustered localization of cancer stem cells within a tumor mass.
Collapse
Affiliation(s)
- Walter Blum
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas Henzi
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Beat Schwaller
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - László Pecze
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
30
|
Quezada-Ramírez M, Castañeda-Arellano R, Pérez-Sánchez G, Hernández-Soto J, Segovia J. The Growth arrest specific 1 ( Gas1 ) gene is transcriptionally regulated by NeuroD1 via two distal E-boxes. Exp Cell Res 2018; 363:332-341. [DOI: 10.1016/j.yexcr.2018.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
31
|
Pompaiah M, Bartfeld S. Gastric Organoids: An Emerging Model System to Study Helicobacter pylori Pathogenesis. Curr Top Microbiol Immunol 2017; 400:149-168. [PMID: 28124153 DOI: 10.1007/978-3-319-50520-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter research classically uses fixed human tissue, animal models or cancer cell lines. Each of these study objects has its advantages and has brought central insights into the infection process. Nevertheless, in model systems for basic and medical research, there is a gap between two-dimensional and most often transformed cell cultures and three-dimensional, highly organized tissues. In recent years, stem cell research has provided the means to fill this gap. The identification of the niche factors that support growth, expansion and differentiation of stem cells in vitro has allowed the development of three-dimensional culture systems called organoids. Gastric organoids are grown from gastric stem cells and are organized epithelial structures that comprise all the differentiated cell types of the stomach. They can be expanded without apparent limitation and are amenable to a wide range of standard laboratory techniques. Here, we review different stem cell-derived organoid model systems useful for Helicobacter pylori research and outline their advantages for infection studies.
Collapse
Affiliation(s)
- Malvika Pompaiah
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
32
|
Birbrair A. Stem Cell Microenvironments and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:1-3. [PMID: 29204825 DOI: 10.1007/978-3-319-69194-7_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endogenous stem cells are indispensable to keep tissue homeostasis due to their unique ability to generate more specialized cell types in an organized way depending on the body needs. Precise control over stem cell differentiation is essential for organogenesis and tissue homeostasis. Stem cells reside in specialized microenvironments, also called niches, which maintain them in an undifferentiated and self-renewing state. The cellular and molecular mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to several disorders when altered during adulthood. Extensive studies in a various tissues have shown the importance of the niche in modulating stem cell behavior, including bone marrow, skin, intestine, skeletal muscle, vocal cord, brain, spinal cord, stomach, esophagus, and others. In recent past, extraordinary advancement has been made in the identification and characterization of stem cell niches using modern state-of-art techniques. This progress lead to the definition of the main cellular components in the microenvironment where stem cells reside and the identification of molecular mechanisms by which stem cell behavior is controlled, revealing key niche signals involved in stem cell regulation. Similar to the ecological niche of an organism, a stem cell niche is exclusive to the specific type of stem cell and guides its dynamics. This book describes the major cellular and molecular components of various stem cells microenvironments in different organs and at distinct pathophysiological conditions, such as cell-cell interactions, extra-cellular matrix proteins, soluble factors, and physical forces. Although several advances have been made in our understanding of the signals that promote stem cell activation or quiescence, several components of the stem cells microenvironment remain unknown due to the complexity of niche composition and its dynamics. Further insights into these cellular and molecular mechanisms will have important implications for our understanding of organ homeostasis and disease. In this book, we present a selected collection of detailed chapters on what we know so far about the stem cell niches in various tissues and under distinct pathophysiological conditions. Twelve chapters written by experts in the field summarize the present knowledge about the physiological function and pathophysiological role of the stem cell regulation by the microenvironment.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|