1
|
Maksimovic N, Damnjanovic T, Jekic B, Novakovic I, Djuric-Zdravkovic A, Dusanovic-Pjevic M, Grk M, Pesic M, Uklein AD, Rasic M, Stojanovski N, Perovic D. New evidence supporting female protective effect in patients with congenital anomalies and neurodevelopmental disorders. Early Hum Dev 2025; 205:106269. [PMID: 40306074 DOI: 10.1016/j.earlhumdev.2025.106269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
The influence of chromosomal sex on human diseases is recognized but underresearched, particularly in diseases with early developmental origins. Copy number variations (CNVs) from sex chromosomes or autosomes, which cause different gene expressions, may influence the disease preferences in females and males. Chromosomal microarray is a standard method for detecting CNVs, with a diagnostic yield of approximately 15 % among patients with congenital anomalies and neurodevelopmental disorders, the primary indications for the analysis. Here, we explore sex disparities in phenotype prevalence and CNV detection rates in patients referred for chromosomal microarray to identify sex-biased traits and CNVs. Our cohort comprises 1412 patients, with a male-to-female ratio of 1.6 to 1. Despite being outnumbered, females are significantly more likely to receive a genetic diagnosis through this type of molecular karyotyping. Most of the patients have neurodevelopmental disorders with other comorbidities. Females have a higher frequency of comorbidities, but the difference in diagnostic yield is significant only in the groups with simpler phenotypes (≤2 comorbidities). Higher diagnostic yield is revealed for congenital heart disease, urogenital anomalies, and the autism spectrum group. All three categories show populational preponderance in males, supporting a higher threshold liability model in females.
Collapse
Affiliation(s)
- Nela Maksimovic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Tatjana Damnjanovic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Biljana Jekic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Ivana Novakovic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | | | | | - Milka Grk
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Milica Pesic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Ana Djuranovic Uklein
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Milica Rasic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Natasa Stojanovski
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Dijana Perovic
- Institute of Human Genetics, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
2
|
Koprulu M, Wheeler E, Kerrison ND, Denaxas S, Carrasco-Zanini J, Orkin CM, Hemingway H, Wareham NJ, Pietzner M, Langenberg C. Sex differences in the genetic regulation of the human plasma proteome. Nat Commun 2025; 16:4001. [PMID: 40360480 PMCID: PMC12075630 DOI: 10.1038/s41467-025-59034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Mechanisms underlying sex differences in the development and prognosis of many diseases remain largely elusive. Here, we systematically investigated sex differences in the genetic regulation of plasma proteome (>5800 protein targets) across two cohorts (30,307 females; 26,058 males). Plasma levels of two-thirds of protein targets differ significantly by sex. In contrast, genetic effects on protein targets are remarkably similar across sexes, with only 103 sex-differential protein quantitative loci (sd-pQTLs; for 2.9% and 0.3% of protein targets from antibody- and aptamer-based platforms, respectively). A third of those show evidence of sexual discordance, i.e., effects observed in one sex only (n = 30) or opposite effect directions (n = 1 for CDH15). Phenome-wide analyses of 365 outcomes in UK Biobank did not provide evidence that the identified sd-pQTLs accounted for sex-differential disease risk. Our results demonstrate similarities in the genetic regulation of protein levels by sex with important implications for genetically-guided drug target discovery and validation.
Collapse
Grants
- MC_UU_00006/1 RCUK | Medical Research Council (MRC)
- MC_PC_13046 RCUK | Medical Research Council (MRC)
- MC_UU_00006/1 RCUK | Medical Research Council (MRC)
- SP/19/3/34678 British Heart Foundation (BHF)
- The Fenland Study (DOI 10.22025/2017.10.101.00001) is funded by the Medical Research Council (MC_UU_12015/1). We further acknowledge support for genomics from the Medical Research Council (MC_PC_13046). This work is supported by the Medical Research Council (MC_UU_00006/1 - Etiology and Mechanisms) (C.L., E.W., M.P., N.K., and N.J.W.). M.K. is supported by Gates Cambridge Trust. H.H. is supported by Health Data Research UK and the NIHR University College London Hospitals Biomedical Research Centre. S.D. is supported by a) the BHF Data Science Centre led by HDR UK (grant SP/19/3/34678), b) BigData@Heart Consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant agreement 116074, c) the NIHR Biomedical Research Centre at University College London Hospital NHS Trust (UCLH BRC), d) a BHF Accelerator Award (AA/18/6/24223), e) the CVD-COVID-UK/COVID-IMPACT consortium and f) the Multimorbidity Mechanism and Therapeutic Research Collaborative (MMTRC, grant number MR/V033867/1). J.C.Z. was supported by a 4-year Wellcome Trust PhD Studentship and the Cambridge Trust.
Collapse
Affiliation(s)
- Mine Koprulu
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Julia Carrasco-Zanini
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Chloe M Orkin
- Blizard Institute and SHARE Collaborative, Queen Mary University of London, London, UK
- Department of Infection and Immunity, Barts Health NHS Trust, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maik Pietzner
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Gujar VV, Daiwile AP, Palande V, Cadet JL. RNA sequencing analysis identifies sex differences in transcriptional signatures in the dorsal striatum of female and male rats after withdrawal from methamphetamine self-administration. Neurochem Int 2025; 187:105980. [PMID: 40280491 DOI: 10.1016/j.neuint.2025.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Significant methamphetamine (METH)-induced behavioral differences exist between the two sexes of humans and other animals. These dissimilarities may be related to sexual dimorphism in baseline molecular and biochemical mechanisms in brain reward neuroanatomical pathways. As a first step towards identifying sex-based differences in methamphetamine-induced transcriptional signatures, we used RNA sequencing analysis to measure genome-wide changes in gene expression in the dorsal striatum of rats that had self-administered METH. We trained rats to self-administer METH (0.1 mg/kg/infusion, i.v.) using two 3-hr daily sessions (with 30 min time out between sessions) for 20 days. Control rats self-administered saline under similar conditions. This was followed by drug seeking tests on withdrawal days 3 (WD3) and 30 (WD30). Behavioral results show that male rats took more METH than female rats. In both male and female rats, some animals escalated (high-takers) whereas others did not escalate (low-takers) their METH intake during the behavioral experiment. Rats were euthanized 24 h after the second drug seeking test. RNA was extracted from the dorsal striatum (dSTR) and used in RNA sequencing analysis. The data identified substantial baseline differences in gene expression between female and male control rats. In addition, METH use and withdrawal were associated with significant sex-related differences in changes in striatal gene expression, with minimal overlaps of altered mRNAs. Thus, the present results provide further supporting evidence for sexually dimorphic responses to METH exposure. These observations support the notion of sex-specific approaches to the treatment of patients who suffer from METH use disorder.
Collapse
Affiliation(s)
- Vaibhav V Gujar
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Vikrant Palande
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Chen J, Richardson PR, Kirby C, Eddy SR, Hoekstra HE. Cellular evolution of the hypothalamic preoptic area of behaviorally divergent deer mice. eLife 2025; 13:RP103109. [PMID: 40191998 PMCID: PMC11975375 DOI: 10.7554/elife.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.
Collapse
Affiliation(s)
- Jenny Chen
- Department of Molecular & Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Phoebe R Richardson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Christopher Kirby
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Sean R Eddy
- Department of Molecular & Cellular Biology, Harvard UniversityCambridgeUnited States
- Howard Hughes Medical Institute, Harvard UniversityCambridgeUnited States
| | - Hopi E Hoekstra
- Department of Molecular & Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
5
|
Farina R, Simonelli A, Tomasi C, Ioannidou E, Trombelli L. Sexual dimorphism in periodontal inflammation: A cross-sectional study. J Periodontol 2025; 96:346-354. [PMID: 39903662 PMCID: PMC12062729 DOI: 10.1002/jper.24-0466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The purpose of the present study was to evaluate the role of sexual dimorphism (SD) in the clinical manifestation of plaque-induced periodontal inflammation by analyzing the association between patient-related factors and the full-mouth prevalence of bleeding on probing (BOP%) within 2 cohorts of male and female individuals. METHODS Data on BOP (dichotomously recorded as present/absent after the assessment of probing depth [PD]) were retrospectively obtained from the files of adult patients undergoing a first periodontal visit at a University center. Two multiple regression models (1 for males, 1 for females) were built with BOP% as the dependent variable and patient-related factors (i.e., age; smoking status; daily cigarette consumption; history of diabetes diagnosis; number of teeth present; proportion of sites with PD ≥ 5 mm around teeth) as independent variables. RESULTS In males (n = 212), BOP% was 5.9% lower in smokers compared to non-smokers (p = 0.021). In females (n = 389), BOP% increased by 1.6% for each 10-year increase in age (p = 0.046). The proportion of sites with PD ≥ 5 mm showed a strongly significant, positive association with BOP% irrespective of biological sex (p < 0.001). CONCLUSION SD manifested as a sex-dependent diversity in the association between patient-related factors and periodontal inflammation expressed as BOP%. While smoking determined a lower BOP% only in males, aging was associated with increased BOP% only in females. PLAIN LANGUAGE SUMMARY Gingival bleeding upon mechanical stimulation of the bottom of the gingival sulcus/pocket with a periodontal probe (bleeding on probing [BOP]) is suggestive of the presence of an inflammatory infiltrate induced by dental plaque within the gingival tissue. The prevalence of BOP within the dentition (BOP%) has a diagnostic relevance, being one of the main parameters to discriminate between periodontal health and disease. Also, BOP% informs the probability for a patient to either develop destructive form of periodontal disease (i.e., periodontitis) or manifest periodontitis progression. Based on the documented influence of biological sex on the incidence, traits, and/or progression rate of several diseases, which goes under the name of sexual dimorphism (SD), the effect of SD was investigated in relation to the factors that were previously associated with BOP% in a cohort of patients with heterogeneous periodontal conditions undergoing their first periodontal visit. Interestingly, SD manifested as a sex-dependent diversity in the association between patient-related factors and periodontal inflammation expressed by BOP%. While smoking determined a lower BOP% only in males, aging was associated with increased BOP% only in females. The present findings may find potential applications in personalized periodontal medicine and inspire future studies in this field.
Collapse
Affiliation(s)
- Roberto Farina
- Research Center for the Study of Periodontal and Peri‐Implant DiseasesUniversity of FerraraFerraraItaly
- Operative Unit of DentistryUniversity‐Hospital of FerraraFerraraItaly
| | - Anna Simonelli
- Research Center for the Study of Periodontal and Peri‐Implant DiseasesUniversity of FerraraFerraraItaly
- Operative Unit of DentistryUniversity‐Hospital of FerraraFerraraItaly
| | - Cristiano Tomasi
- Department of PeriodontologyInstitute of OdontologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Effie Ioannidou
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Leonardo Trombelli
- Research Center for the Study of Periodontal and Peri‐Implant DiseasesUniversity of FerraraFerraraItaly
- Operative Unit of DentistryUniversity‐Hospital of FerraraFerraraItaly
| |
Collapse
|
6
|
Hernández-Vivanco A, de la Vega-Ruiz R, Montes-Mellado A, Azcoitia Í, Méndez P. Activational and organizational effects of sex hormones on hippocampal inhibitory neurons. J Neurosci 2025; 45:e1764242025. [PMID: 40097180 PMCID: PMC12044036 DOI: 10.1523/jneurosci.1764-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025] Open
Abstract
Peripheral and brain-produced sex hormones exert sex-specific regulation of hippocampal cognitive function. Estrogens produced by neuronal aromatase regulate inhibitory neurons (INs) and hippocampal-dependent memory in adult female mice, but not in males. How and when this sex effect is established and how peripheral and brain sources of estrogens interact in the control of hippocampal INs is currently unknown. Using ex-vivo electrophysiology, fiber photometry, molecular analysis, estrous cycle monitoring and neonatal hormonal manipulations, we unveil estrous cycle dependent and independent features of CA1 Parvalbumin (PV) INs and hippocampal inhibition in adult female mice. Before puberty, aromatase is expressed in PV INs and regulates synaptic inhibition in female but not in male mice. Neonatal testosterone administration altered prepubertal female mouse hippocampus-dependent memory, PV IN function and estrogenic regulation of adult female synaptic inhibition and PV IN perineuronal nets. Our results suggest that sex differences in brain-derived estrogen regulation of CA1 inhibition are established by organizational effects of neonatal gonadal hormones and highlight the role of INs as mediators of the sexual differentiation of the hippocampus.Significance statement The actions of sex hormones on the hippocampus, a brain region involved in memory, differ between males and females but how and when these differences are established is not known. Our work identifies a population of hippocampal inhibitory neurons (INs) that are sensitive to hormonal fluctuations associated with the female estrous cycle. INs may produce estrogen, the main female sex hormone, before the onset of adult gonadal production (puberty). Brain-produced estrogen regulates female, but not male, juvenile INs, an effect that is abolished by a neonatal surge of testosterone that typically occurs in males around birth. Thus, early in life, sex hormones impact IN function suggesting a role for this neuronal population in the sexual differentiation of the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Íñigo Azcoitia
- Department of Cell Biology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | |
Collapse
|
7
|
Kaplan HS, Logeman BL, Zhang K, Yawitz TA, Santiago C, Sohail N, Talay M, Seo C, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory input, sex and function shape hypothalamic cell type development. Nature 2025:10.1038/s41586-025-08603-0. [PMID: 40044853 DOI: 10.1038/s41586-025-08603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/12/2024] [Indexed: 03/12/2025]
Abstract
Mammalian behaviour and physiology undergo major changes in early life. Young animals rely on conspecifics to meet their needs and start showing nutritional independence and sex-specific social interactions at weaning and puberty, respectively. How neuronal populations regulating homeostatic functions and social behaviours develop during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioural control have been identified1-6. These data show a marked diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioural or physiological function of the corresponding cell types. We identify key stages of preoptic development, including early diversification, perinatal emergence of sex differences, postnatal maturation and refinement of signalling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide new insights into the development of neurons controlling homeostatic functions and social behaviours and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tate A Yawitz
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Mustafa Talay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Changwoo Seo
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Peña CJ. Early-life stress sensitizes response to future stress: Evidence and mechanisms. Neurobiol Stress 2025; 35:100716. [PMID: 40134543 PMCID: PMC11932861 DOI: 10.1016/j.ynstr.2025.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Early-life stress sensitizes individuals to additional stressors and increases lifetime risk for mood and anxiety disorders. Research in both human populations and rodent models of early-life stress have sought to determine how different types of stressors contribute to vulnerability, and whether there are developmental sensitive periods for such effects. Although differences in the type and timing of rodent early-life stress paradigms have led to differences in specific behavioral outcomes, this complexity is present among humans as well. Robust rodent research now shows how early-life stress increases sensitivity to future stressors at behavioral, neural circuit, and molecular levels. These recent discoveries are laying the foundation for translation to more effective interventions relevant for those who experienced childhood stress and trauma.
Collapse
Affiliation(s)
- Catherine Jensen Peña
- Princeton Neuroscience Institute, Princeton University, 40 Woodlands Way, Princeton, NJ, 08544, USA
| |
Collapse
|
9
|
Zelco A, Joshi A. Single-Cell Analysis of Sex and Gender Differences in the Human Brain During Development and Disease. Cell Mol Neurobiol 2025; 45:20. [PMID: 40016536 PMCID: PMC11868228 DOI: 10.1007/s10571-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Sex and gender (SG) differences in the human brain are of interest to society and science as numerous processes are impacted by them, including brain development, behavior, and diseases. By collecting publicly available single-cell data from the in-utero to elderly age in healthy, Alzheimer's disease and multiple sclerosis samples, we identified and characterized SG-biased genes in ten brain cell types across 9 age and disease groups. Sex and gender differences in the transcriptome were present throughout the lifespan and across all cell types. Although there was limited overlap among SG-biased genes across different age and disease groups, we observed significant functional overlap. Female-biased genes are consistently enriched for brain-related processes, while male-biased genes are enriched for metabolic pathways. Additionally, mitochondrial genes showed a consistent female bias across cell types. We also found that androgen response elements (not estrogen) were significantly enriched in both male- and female-biased genes, and thymosin hormone targets being consistently enriched only in male-biased genes. We systematically characterised SG differences in brain development and brain-related disorders at a single-cell level, by analysing a total of publicly available 419,885 single nuclei from 161 human brain samples (72 females, 89 males). The significant enrichment of androgen (not estrogen) response elements in both male- and female-biased genes suggests that androgens are important regulators likely establishing these SG differences. Finally, we provide full characterization of SG-biased genes at different thresholds for the scientific community as a web resource.
Collapse
Affiliation(s)
- Aura Zelco
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
| | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| |
Collapse
|
10
|
Hashikawa K, Hashikawa Y, Briones B, Ishii K, Liu Y, Rossi MA, Basiri ML, Chen JY, Ahmad OR, Mukundan RV, Johnston NL, Simon RC, Soetedjo JC, Siputro JR, McHenry JA, Palmiter RD, Rubinow DR, Zweifel LS, Stuber GD. Esr1-Dependent Signaling and Transcriptional Maturation in the Medial Preoptic Area of the Hypothalamus Shapes the Development of Mating Behavior during Adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640339. [PMID: 40060480 PMCID: PMC11888408 DOI: 10.1101/2025.02.26.640339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Mating and other behaviors emerge during adolescence through the coordinated actions of steroid hormone signaling throughout the nervous system and periphery. In this study, we investigated the transcriptional dynamics of the medial preoptic area (MPOA), a critical region for reproductive behavior, using single-cell RNA sequencing (scRNAseq) and in situ hybridization techniques in male and female mice throughout adolescence development. Our findings reveal that estrogen receptor 1 (Esr1) plays a pivotal role in the transcriptional maturation of GABAergic neurons within the MPOA during adolescence. Deletion of the estrogen receptor gene, Esr1, in GABAergic neurons (Vgat+) disrupted the developmental progression of mating behaviors in both sexes, while its deletion in glutamatergic neurons (Vglut2+) had no observable effect. In males and females, these neurons displayed distinct transcriptional trajectories, with hormone-dependent gene expression patterns emerging throughout adolescence and regulated by Esr1. Esr1 deletion in MPOA GABAergic neurons, prior to adolescence, arrested adolescent transcriptional progression of these cells and uncovered sex-specific gene-regulatory networks associated with Esr1 signaling. Our results underscore the critical role of Esr1 in orchestrating sex-specific transcriptional dynamics during adolescence, revealing gene regulatory networks implicated in the development of hypothalamic controlled reproductive behaviors.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yoshiko Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Brandy Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Kentaro Ishii
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yuejia Liu
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Mark A. Rossi
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Marcus L. Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
- University of North Carolina, Chapel Hill, NC 27599
| | - Jane Y. Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Omar R. Ahmad
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rishi V. Mukundan
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Nathan L. Johnston
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - James C. Soetedjo
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jason R. Siputro
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jenna A. McHenry
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708
| | - Richard D. Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|
11
|
Jiang Z, Sullivan PF, Li T, Zhao B, Wang X, Luo T, Huang S, Guan PY, Chen J, Yang Y, Stein JL, Li Y, Liu D, Sun L, Zhu H. The X chromosome's influences on the human brain. SCIENCE ADVANCES 2025; 11:eadq5360. [PMID: 39854466 PMCID: PMC11759047 DOI: 10.1126/sciadv.adq5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank. We unveiled potential autosome-X chromosome interactions while proposing an atlas outlining dosage compensation for brain imaging traits. Through extensive association studies, we identified 72 genome-wide significant trait-locus pairs (including 29 new associations) that share genetic architectures with brain-related disorders, notably schizophrenia. Furthermore, we found unique sex-specific associations and assessed variations in genetic effects between sexes. Our research offers critical insights into the X chromosome's role in the human brain, underscoring its contribution to the differences observed in brain structure and functionality between sexes.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Y. Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dajiang Liu
- Department of Public Health Sciences, Penn State University, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State University, Hershey, PA 17033, USA
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Chen J, Richardson PR, Kirby C, Eddy SR, Hoekstra HE. Cellular evolution of the hypothalamic preoptic area of behaviorally divergent deer mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.22.608850. [PMID: 39253506 PMCID: PMC11383002 DOI: 10.1101/2024.08.22.608850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.
Collapse
Affiliation(s)
- Jenny Chen
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Phoebe R Richardson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Christopher Kirby
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Sean R Eddy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Hopi E Hoekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. SCIENCE ADVANCES 2024; 10:eadq9183. [PMID: 39536115 PMCID: PMC11559607 DOI: 10.1126/sciadv.adq9183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult Caenorhabditis elegans nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo/CELSR. During postembryonic development, FMI-1 promotes and maintains synaptic connectivity of PHB to a command interneuron, AVA, in both sexes, but a serotonin-dependent transcriptional regulatory cassette antagonizes FMI-1 expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node is the CREB-target LIN-29, a Zn finger transcription factor that integrates four layers of information: sexual specificity, past experience, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | | | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
14
|
Hemminger Z, Sanchez-Tam G, Ocampo HD, Wang A, Underwood T, Xie F, Zhao Q, Song D, Li JJ, Dong H, Wollman R. Spatial Single-Cell Mapping of Transcriptional Differences Across Genetic Backgrounds in Mouse Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617260. [PMID: 39416191 PMCID: PMC11483037 DOI: 10.1101/2024.10.08.617260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Genetic variation can alter brain structure and, consequently, function. Comparative statistical analysis of mouse brains across genetic backgrounds requires spatial, single-cell, atlas-scale data, in replicates-a challenge for current technologies. We introduce Atlas-scale Transcriptome Localization using Aggregate Signatures (ATLAS), a scalable tissue mapping method. ATLAS learns transcriptional signatures from scRNAseq data, encodes them in situ with tens of thousands of oligonucleotide probes, and decodes them to infer cell types and imputed transcriptomes. We validated ATLAS by comparing its cell type inferences with direct MERFISH measurements of marker genes and quantitative comparisons to four other technologies. Using ATLAS, we mapped the central brains of five male and five female C57BL/6J (B6) mice and five male BTBR T+ tf/J (BTBR) mice, an idiopathic model of autism, collectively profiling over 40 million cells across over 400 coronal sections. Our analysis revealed over 40 significant differences in cell type distributions and identified 16 regional composition changes across male-female and B6-BTBR comparisons. ATLAS thus enables systematic comparative studies, facilitating organ-level structure-function analysis of disease models.
Collapse
Affiliation(s)
| | | | | | - Aihui Wang
- Department of Chemistry and Biochemistry, UCLA
| | | | - Fangming Xie
- Department of Chemical Biology, David Geffen School of Medicine at UCLA
| | - Qiuying Zhao
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | | | - Jingyi Jessica Li
- Department of Statistics and Data Science, UCLA
- Institute of Quantitative Biosciences, UCLA
| | - Hongwei Dong
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, UCLA
- Institute of Quantitative Biosciences, UCLA
- Department of Integrative Biology and Physiology, UCLA
| |
Collapse
|
15
|
Kissel LT, Pochareddy S, An JY, Sestan N, Sanders SJ, Wang X, Werling DM. Sex-Differential Gene Expression in Developing Human Cortex and Its Intersection With Autism Risk Pathways. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100321. [PMID: 38957312 PMCID: PMC11217612 DOI: 10.1016/j.bpsgos.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.
Collapse
Affiliation(s)
- Lee T. Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
16
|
Jiang Z, Sullivan PF, Li T, Zhao B, Wang X, Luo T, Huang S, Guan PY, Chen J, Yang Y, Stein JL, Li Y, Liu D, Sun L, Zhu H. The pivotal role of the X-chromosome in the genetic architecture of the human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.30.23294848. [PMID: 37693466 PMCID: PMC10491353 DOI: 10.1101/2023.08.30.23294848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Genes on the X-chromosome are extensively expressed in the human brain. However, little is known for the X-chromosome's impact on the brain anatomy, microstructure, and functional network. We examined 1,045 complex brain imaging traits from 38,529 participants in the UK Biobank. We unveiled potential autosome-X-chromosome interactions, while proposing an atlas outlining dosage compensation (DC) for brain imaging traits. Through extensive association studies, we identified 72 genome-wide significant trait-locus pairs (including 29 new associations) that share genetic architectures with brain-related disorders, notably schizophrenia. Furthermore, we discovered unique sex-specific associations and assessed variations in genetic effects between sexes. Our research offers critical insights into the X-chromosome's role in the human brain, underscoring its contribution to the differences observed in brain structure and functionality between sexes.
Collapse
|
17
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593207. [PMID: 38766005 PMCID: PMC11100761 DOI: 10.1101/2024.05.08.593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We describe here the molecular mechanisms by which juvenile experience defines patterns of sexually dimorphic synaptic connectivity in the adult nervous system of the nematode C. elegans. We show that starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo. During postembryonic development, FMI-1/Flamingo has the capacity to promote and maintain synaptic connectivity of the PHB nociceptive sensory to a command interneuron, AVA, in both sexes, but the serotonin transcriptional regulatory cassette antagonizes FMI-1/Flamingo expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node in this process is the CREB-target LIN-29, a Zn finger transcription factor which integrates four different layers of information - sexual specificity, past feeding status, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| | - Maryam Majeed
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
- Present address: Allen Institute for Brain Science, Seattle,
USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
18
|
Pottmeier P, Nikolantonaki D, Lanner F, Peuckert C, Jazin E. Sex-biased gene expression during neural differentiation of human embryonic stem cells. Front Cell Dev Biol 2024; 12:1341373. [PMID: 38764741 PMCID: PMC11101176 DOI: 10.3389/fcell.2024.1341373] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Danai Nikolantonaki
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Inui K, Takeuchi N, Borgil B, Shingaki M, Sugiyama S, Taniguchi T, Nishihara M, Watanabe T, Suzuki D, Motomura E, Kida T. Age and sex effects on paired-pulse suppression and prepulse inhibition of auditory evoked potentials. Front Neurosci 2024; 18:1378619. [PMID: 38655109 PMCID: PMC11035799 DOI: 10.3389/fnins.2024.1378619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Responses to a sensory stimulus are inhibited by a preceding stimulus; if the two stimuli are identical, paired-pulse suppression (PPS) occurs; if the preceding stimulus is too weak to reliably elicit the target response, prepulse inhibition (PPI) occurs. PPS and PPI represent excitability changes in neural circuits induced by the first stimulus, but involve different mechanisms and are impaired in different diseases, e.g., impaired PPS in schizophrenia and Alzheimer's disease and impaired PPI in schizophrenia and movement disorders. Therefore, these measures provide information on several inhibitory mechanisms that may have roles in clinical conditions. In the present study, PPS and PPI of the auditory change-related cortical response were examined to establish normative data on healthy subjects (35 females and 32 males, aged 19-70 years). We also investigated the effects of age and sex on PPS and PPI to clarify whether these variables need to be considered as biases. The test response was elicited by an abrupt increase in sound pressure in a continuous sound and was recorded by electroencephalography. In the PPS experiment, the two change stimuli to elicit the cortical response were a 15-dB increase from the background of 65 dB separated by 600 ms. In the PPI experiment, the prepulse and test stimuli were 2- and 10-dB increases, respectively, with an interval of 50 ms. The results obtained showed that sex exerted similar effects on the two measures, with females having stronger test responses and weaker inhibition. On the other hand, age exerted different effects: aging correlated with stronger test responses and weaker inhibition in the PPS experiment, but had no effects in the PPI experiment. The present results suggest age and sex biases in addition to normative data on PPS and PPI of auditory change-related potentials. PPS and PPI, as well as other similar paradigms, such as P50 gating, may have different and common mechanisms. Collectively, they may provide insights into the pathophysiologies of diseases with impaired inhibitory function.
Collapse
Affiliation(s)
- Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Bayasgalan Borgil
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Megumi Shingaki
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takayasu Watanabe
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Dai Suzuki
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
20
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
23
|
Zhvania M, Japaridze N, Tizabi Y, Lomidze N, Pochkhidze N, Rzayev F, Gasimov E. Differential effects of aging on hippocampal ultrastructure in male vs. female rats. Biogerontology 2023; 24:925-935. [PMID: 37515624 DOI: 10.1007/s10522-023-10052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.
Collapse
Affiliation(s)
- Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia.
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
- New Vision University, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162, Tbilisi, Georgia
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
24
|
Salzberg Y, Haque R, Oren-Suissa M. The synaptic basis for sexual dimorphism in the invertebrate nervous system. Curr Opin Neurobiol 2023; 82:102757. [PMID: 37572555 PMCID: PMC10506627 DOI: 10.1016/j.conb.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Many animal behaviors are manifested differently in the two sexes of a given species, but how such sexual dimorphism is imprinted in the nervous system is not always clear. One mechanism involved is synaptic dimorphism, by which the same neurons exist in the two sexes, but form synapses that differ in features such as anatomy, molecular content or fate. While some evidence for synaptic dimorphism exists in humans and mammals, identifying these mechanisms in invertebrates has proven simpler, due to their smaller nervous systems and absence of external regulation by sex hormones. This review aims to present the current status of the field in invertebrates, the available toolkit for the study of synaptic dimorphism, and the standing questions that still remain incompletely answered.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
25
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Wapeesittipan P, Joshi A. Integrated analysis of robust sex-biased gene signatures in human brain. Biol Sex Differ 2023; 14:36. [PMID: 37221602 DOI: 10.1186/s13293-023-00515-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Sexual dimorphism is highly prominent in mammals with many physiological and behavioral differences between male and female form of the species. Accordingly, the fundamental social and cultural stratification factors for humans is sex. The sex differences are thought to emerge from a combination of genetic and environmental factors. It distinguishes individuals most prominently on the reproductive traits, but also affects many of the other related traits and manifest in different disease susceptibilities and treatment responses across sexes. Sex differences in brain have raised a lot of controversy due to small and sometimes contradictory sex-specific effects. Many studies have been published to identify sex-biased genes in one or several brain regions, but the assessment of the robustness of these studies is missing. We therefore collected huge amount of publicly available transcriptomic data to first estimate whether consistent sex differences exist and further explore their likely origin and functional significance. RESULTS AND CONCLUSION In order to systematically characterise sex-specific differences across human brain regions, we collected transcription profiles for more than 16,000 samples from 46 datasets across 11 brain regions. By systematic integration of the data from multiple studies, we identified robust transcription level differences in human brain across to identify male-biased and female-biased genes in each brain region. Firstly, both male and female-biased genes were highly conserved across primates and showed a high overlap with sex-biased genes in other species. Female-biased genes were enriched for neuron-associated processes while male-biased genes were enriched for membranes and nuclear structures. Male-biased genes were enriched on the Y chromosome while female-biased genes were enriched on the X chromosome, which included X chromosome inactivation escapees explaining the origins of some sex differences. Male-biased genes were enriched for mitotic processes while female-biased genes were enriched for synaptic membrane and lumen. Finally, sex-biased genes were enriched for drug-targets and more female-biased genes were affected by adverse drug reactions than male-biased genes. In summary, by building a comprehensive resource of sex differences across human brain regions at gene expression level, we explored their likely origin and functional significance. We have also developed a web resource to make the entire analysis available for the scientific community for further exploration, available at https://joshiapps.cbu.uib.no/SRB_app/.
Collapse
Affiliation(s)
- Pattama Wapeesittipan
- Department of Clinical Sciences, Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Anagha Joshi
- Department of Clinical Sciences, Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
27
|
Chehimi SN, Crist RC, Reiner BC. Unraveling Psychiatric Disorders through Neural Single-Cell Transcriptomics Approaches. Genes (Basel) 2023; 14:771. [PMID: 36981041 PMCID: PMC10047992 DOI: 10.3390/genes14030771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.
Collapse
Affiliation(s)
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
Romero-Garcia R, Mandal AS, Bethlehem RAI, Crespo-Facorro B, Hart MG, Suckling J. Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain 2023; 146:1200-1211. [PMID: 36256589 PMCID: PMC9976966 DOI: 10.1093/brain/awac378] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
Unravelling the complex events driving grade-specific spatial distribution of brain tumour occurrence requires rich datasets from both healthy individuals and patients. Here, we combined open-access data from The Cancer Genome Atlas, the UK Biobank and the Allen Brain Human Atlas to disentangle how the different spatial occurrences of glioblastoma multiforme and low-grade gliomas are linked to brain network features and the normative transcriptional profiles of brain regions. From MRI of brain tumour patients, we first constructed a grade-related frequency map of the regional occurrence of low-grade gliomas and the more aggressive glioblastoma multiforme. Using associated mRNA transcription data, we derived a set of differential gene expressions from glioblastoma multiforme and low-grade gliomas tissues of the same patients. By combining the resulting values with normative gene expressions from post-mortem brain tissue, we constructed a grade-related expression map indicating which brain regions express genes dysregulated in aggressive gliomas. Additionally, we derived an expression map of genes previously associated with tumour subtypes in a genome-wide association study (tumour-related genes). There were significant associations between grade-related frequency, grade-related expression and tumour-related expression maps, as well as functional brain network features (specifically, nodal strength and participation coefficient) that are implicated in neurological and psychiatric disorders. These findings identify brain network dynamics and transcriptomic signatures as key factors in regional vulnerability for glioblastoma multiforme and low-grade glioma occurrence, placing primary brain tumours within a well established framework of neurological and psychiatric cortical alterations.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ayan S Mandal
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Benedicto Crespo-Facorro
- Department of Psychiatry, Universidad de Sevilla, Hospital Universitario Virgen del Rocio/IBiS-CSIC/CIBERSAM, ISCIII, Sevilla, Spain
| | - Michael G Hart
- St George’s, University of London and St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences Neurosciences Research Centre, London, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
29
|
Marchioretti C, Zanetti G, Pirazzini M, Gherardi G, Nogara L, Andreotti R, Martini P, Marcucci L, Canato M, Nath SR, Zuccaro E, Chivet M, Mammucari C, Pacifici M, Raffaello A, Rizzuto R, Mattarei A, Desbats MA, Salviati L, Megighian A, Sorarù G, Pegoraro E, Belluzzi E, Pozzuoli A, Biz C, Ruggieri P, Romualdi C, Lieberman AP, Babu GJ, Sandri M, Blaauw B, Basso M, Pennuto M. Defective excitation-contraction coupling and mitochondrial respiration precede mitochondrial Ca 2+ accumulation in spinobulbar muscular atrophy skeletal muscle. Nat Commun 2023; 14:602. [PMID: 36746942 PMCID: PMC9902403 DOI: 10.1038/s41467-023-36185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giulia Zanetti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Mathilde Chivet
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Marco Pacifici
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Maria A Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131, Padova, Italy
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center (PNC), Padova, 35100, Italy
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elena Pegoraro
- Department of Neuroscience (DNS), University of Padova, 35128, Padova, Italy
| | - Elisa Belluzzi
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Assunta Pozzuoli
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Carlo Biz
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology, and Gastroenterology DiSCOG, University-Hospital of Padova, 35128, Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Padova, 35100, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, 35100, Italy.
- Padova Neuroscience Center (PNC), Padova, 35100, Italy.
- Dulbecco Telethon Institute (DTI) at the Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
30
|
Petry F, Oltramari AR, Kuhn KZ, Schneider SE, Mazon SC, Garbinato CLL, Aguiar GPS, Kreutz LC, Oliveira JV, Siebel AM, Müller LG. Fluoxetine and Curcumin Prevent the Alterations in Locomotor and Exploratory Activities and Social Interaction Elicited by Immunoinflammatory Activation in Zebrafish: Involvement of BDNF and Proinflammatory Cytokines. ACS Chem Neurosci 2023; 14:389-399. [PMID: 36634245 DOI: 10.1021/acschemneuro.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The increase in proinflammatory cytokine expression causes behavioral changes consistent with sickness behavior, and this led to the suggestion that depression might be a psychoneuroimmunological phenomenon. Here, we evaluated the effects of the pretreatment with fluoxetine (10 mg/kg, i.p.) and curcumin (0.5 mg/kg, i.p.) on the immune response elicited by the inoculation of an Aeromonas hydrophila bacterin in zebrafish. Non-pretreated but A. hydrophila-inoculated and sham-inoculated groups of fish served as controls. The social preference, locomotor, exploratory activities, and cerebral expression of il1b, il6, tnfa, and bdnf mRNA were compared among the groups. Behavioral changes characteristic of sickness behavior and a significant increase in the expression of il1b and il6 cytokines were found in fish from the immunostimulated group. The behavioral alterations caused by the inflammatory process were different between males and females, which was coincident with the increased expression of cerebral BDNF. Fluoxetine and curcumin prevented the sickness behavior induced by A. hydrophila and the increased expression of proinflammatory cytokines. Our results point to the potential of zebrafish as a translational model in studies related to neuroinflammation and demonstrate for the first time the effects of fluoxetine and curcumin on zebrafish sickness behavior.
Collapse
Affiliation(s)
- Fernanda Petry
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Amanda R Oltramari
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Ketelin Z Kuhn
- School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Sabrina E Schneider
- School of Agriculture and Environment, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Samara C Mazon
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Cristiane L L Garbinato
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Gean P S Aguiar
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| | - Luiz C Kreutz
- Laboratory of Advanced Microbiology and Immunology, Graduate Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, Rio Grande do Sul99052-900, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis, Santa Catarina88040-900, Brazil
| | - Anna M Siebel
- Institute of Biological Sciences, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande, Rio Grande do Sul96203-900, Brazil
| | - Liz G Müller
- Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil.,School of Health Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295 D, Chapecó, Santa Catarina89809-900, Brazil
| |
Collapse
|
31
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Abstract
Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
33
|
Westrick SE, Moss JB, Fischer EK. Who cares? An integrative approach to understanding the evolution of behavioural plasticity in parental care. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
The long-term impact of elevated C-reactive protein levels during pregnancy on brain morphology in late childhood. Brain Behav Immun 2022; 103:63-72. [PMID: 35378231 PMCID: PMC9149104 DOI: 10.1016/j.bbi.2022.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Animal studies show that Maternal Immune Activation (MIA) may have detrimental effects on fetal brain development. Clinical studies provide evidence for structural brain abnormalities in human neonates following MIA, but no study has investigated the long-term effects of MIA (as measured with biomarkers) on human brain morphology ten years after the exposure. OBJECTIVE Our aim was to evaluate the long-term impact of MIA on brain morphology in 10-year-old children, including the possible mediating role of gestational age at birth. DESIGN We leveraged data from Generation R, a large-scale prospective pregnancy cohort study. Pregnant women were included between 2002 and 2006, and their children were invited to participate in the MRI study between 2013 and 2015. To be included, mother-child dyads had to have data on maternal C-reactive protein levels during gestation and a good quality MRI-scan of the child's brain at age 10 years. Of the 3,992 children scanned, a total of 2,053 10-year-old children were included in this study. EXPOSURE Maternal C-reactive protein was measured in the first 18 weeks of gestation. For the analyses we used both a continuous approach as well as a categorical approach based on clinical cut-offs to determine if there was a dose-response relationship. MAIN OUTCOMES AND MEASURES High-resolution MRI brain morphology measures were used as the primary outcome. Gestational age at birth, established using ultrasound, was included as a mediator using a causal mediation analysis. Corrections were made for relevant confounders and multiple comparisons. Biological sex was investigated as moderator. RESULTS We found a direct association between continuous MIA and lower cerebellar volume. In girls, we demonstrated a negative indirect association between continuous MIA and total brain volume, through the mediator gestational age at birth. We observed no associations with categorical MIA after multiple testing correction. CONCLUSION AND RELEVANCE Our results suggest sex-specific long-term effects in brain morphology after MIA. Categorical analyses suggest that this association might be driven by acute infections or other sources of severe inflammation, which is of clinical relevance given that the COVID-19 pandemic is currently affecting millions of pregnant women worldwide.
Collapse
|
35
|
Gegenhuber B, Wu MV, Bronstein R, Tollkuhn J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature 2022; 606:153-159. [PMID: 35508660 PMCID: PMC9159952 DOI: 10.1038/s41586-022-04686-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Oestradiol establishes neural sex differences in many vertebrates1-3 and modulates mood, behaviour and energy balance in adulthood4-8. In the canonical pathway, oestradiol exerts its effects through the transcription factor oestrogen receptor-α (ERα)9. Although ERα has been extensively characterized in breast cancer, the neuronal targets of ERα, and their involvement in brain sex differences, remain largely unknown. Here we generate a comprehensive map of genomic ERα-binding sites in a sexually dimorphic neural circuit that mediates social behaviours. We conclude that ERα orchestrates sexual differentiation of the mouse brain through two mechanisms: establishing two male-biased neuron types and activating a sustained male-biased gene expression program. Collectively, our findings reveal that sex differences in gene expression are defined by hormonal activation of neuronal steroid receptors. The molecular targets we identify may underlie the effects of oestradiol on brain development, behaviour and disease.
Collapse
Affiliation(s)
- B Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, NY, USA
| | - M V Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - R Bronstein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
36
|
Lee CW, Hsu LF, Wu IL, Wang YL, Chen WC, Liu YJ, Yang LT, Tan CL, Luo YH, Wang CC, Chiu HW, Yang TCK, Lin YY, Chang HA, Chiang YC, Chen CH, Lee MH, Peng KT, Huang CCY. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128431. [PMID: 35150991 DOI: 10.1016/j.jhazmat.2022.128431] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution has become a serious environmental issue worldwide, but its potential effects on health remain unknown. The administration of polystyrene MPs (PS-MPs) to mice for eight weeks impaired learning and memory behavior. PS-MPs were detected in the brain especially in the hippocampus of these mice. Concurrently, the hippocampus had decreased levels of immediate-early genes, aberrantly enhanced synaptic glutamate AMPA receptors, and elevated neuroinflammation, all of which are critical for synaptic plasticity and memory. Interestingly, ablation of the vagus nerve, a modulator of the gut-brain axis, improved the memory function of PS-MPs mice. These results indicate that exposure to PS-MPs in mice alters the expression of neuronal activity-dependent genes and synaptic proteins, and increases neuroinflammation in the hippocampus, subsequently causing behavioral changes through the vagus nerve-dependent pathway. Our findings shed light on the adverse impacts of PS-MPs on the brain and hippocampal learning and memory.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan; Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - I-Lin Wu
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chen Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yan-Jun Liu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Lu-Tang Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chong-Lun Tan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | | | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City 33303, Taiwan
| | | |
Collapse
|
37
|
Catale C, Lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB, Viscomi MT, Palacios D, Carola V. Early Life Social Stress Causes Sex- and Region-Dependent Dopaminergic Changes that Are Prevented by Minocycline. Mol Neurobiol 2022; 59:3913-3932. [PMID: 35435618 PMCID: PMC9148283 DOI: 10.1007/s12035-022-02830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 02/03/2023]
Abstract
Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Constantin Heil
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Motor Science and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola Biagio Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Università Degli Studi Di Roma Tor Vergata, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, Università Cattolica Del S. Cuore, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniela Palacios
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Life Science and Public Health, Section of Biology, Università Cattolica Del S. Cuore, Rome, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy.
| |
Collapse
|
38
|
Parel ST, Peña CJ. Genome-wide Signatures of Early-Life Stress: Influence of Sex. Biol Psychiatry 2022; 91:36-42. [PMID: 33602500 PMCID: PMC8791071 DOI: 10.1016/j.biopsych.2020.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
Both history of early-life stress (ELS) and female sex are associated with increased risk for depression. The complexity of how ELS interacts with brain development and sex to impart risk for multifaceted neuropsychiatric disorders is also unlikely to be understood by examining changes in single genes. Here, we review an emerging literature on genome-wide transcriptional and epigenetic signatures of ELS and the potential moderating influence of sex. We discuss evidence both that there are latent sex differences revealed by ELS and that ELS itself produces latent transcriptomic changes revealed by adult stress. In instances where there are broad similarities in global signatures of ELS among females and males, genes that contribute to these patterns are largely distinct based on sex. As this area of investigation grows, an effort should be made to better understand the sex-specific impact of ELS within the human brain, specific contributions of chromosomal versus hormonal sex, how ELS alters the time course of normal transcriptional development, and the cell-type specificity of transcriptomic and epigenomic changes in the brain. A better understanding of how ELS interacts with sex to alter transcriptomic and epigenomic signatures in the brain will inform individualized therapeutic strategies to prevent or ameliorate depression and other psychiatric disorders in this vulnerable population.
Collapse
Affiliation(s)
- Sero Toriano Parel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | | |
Collapse
|
39
|
Rainville JR, Lipuma T, Hodes GE. Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited. Biol Psychiatry 2022; 91:25-35. [PMID: 33865609 PMCID: PMC10197090 DOI: 10.1016/j.biopsych.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Timothy Lipuma
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia.
| |
Collapse
|
40
|
Neural Transcriptomic Analysis of Sex Differences in Autism Spectrum Disorder: Current Insights and Future Directions. Biol Psychiatry 2022; 91:53-60. [PMID: 33551190 DOI: 10.1016/j.biopsych.2020.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is consistently diagnosed 3 to 5 times more frequently in males than females, a dramatically sex-biased prevalence that suggests the involvement of sex-differential biological factors in modulating risk. The genomic scale of transcriptomic analyses of human brain tissue can provide an unbiased approach for identifying genes and associated functional processes at the intersection of sex-differential and ASD-impacted neurobiology. Several studies characterizing gene expression changes in the ASD brain have been published in recent years with increasing sample size and cellular resolution. These studies report several convergent patterns across data sets and genetically heterogeneous samples in the ASD brain, including elevated expression of gene sets associated with glial and immune function, and reduced expression of gene sets associated with neuronal and synaptic functions. Assessment of neurotypical cortex tissue has reported parallel patterns by sex, with male-elevated expression of overlapping sets of glial/immune-related genes and female-biased expression of neuron-associated genes, suggesting potential roles for these cell types in sex-differential ASD risk mechanisms. However, validating and further exploring these mechanisms is challenged by the available data, as existing studies of ASD brain include a limited number of female ASD donors and focus predominantly on cortex regions not known to show pronounced sex-differential morphology or function. With this review, we summarize convergent findings from several landmark studies of the transcriptome in ASD brain and their relationship to sex-differential gene expression, and we discuss limitations and remaining questions regarding transcriptomic analysis of sex differences in ASD.
Collapse
|
41
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
42
|
Lutz CT, Livas L, Presnell SR, Sexton M, Wang P. Gender Differences in Urothelial Bladder Cancer: Effects of Natural Killer Lymphocyte Immunity. J Clin Med 2021; 10:5163. [PMID: 34768683 PMCID: PMC8584838 DOI: 10.3390/jcm10215163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in the role of natural killer (NK) cells in anti-cancer immunity.
Collapse
Affiliation(s)
- Charles T. Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Lydia Livas
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Steven R. Presnell
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Morgan Sexton
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Peng Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
43
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
44
|
Herrero MJ, Wang L, Hernandez-Pineda D, Banerjee P, Matos HY, Goodrich M, Panigrahi A, Smith NA, Corbin JG. Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2 +/- Mutant Mice. Front Behav Neurosci 2021; 15:706079. [PMID: 34421555 PMCID: PMC8374433 DOI: 10.3389/fnbeh.2021.706079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In humans, mutations in the transcription factor encoding gene, FOXP2, are associated with language and Autism Spectrum Disorders (ASD), the latter characterized by deficits in social interactions. However, little is known regarding the function of Foxp2 in male or female social behavior. Our previous studies in mice revealed high expression of Foxp2 within the medial subnucleus of the amygdala (MeA), a limbic brain region highly implicated in innate social behaviors such as mating, aggression, and parental care. Here, using a comprehensive panel of behavioral tests in male and female Foxp2 +/- heterozygous mice, we investigated the role Foxp2 plays in MeA-linked innate social behaviors. We reveal significant deficits in olfactory processing, social interaction, mating, aggressive, and parental behaviors. Interestingly, some of these deficits are displayed in a sex-specific manner. To examine the consequences of Foxp2 loss of function specifically in the MeA, we conducted a proteomic analysis of microdissected MeA tissue. This analyses revealed putative sex differences expression of a host of proteins implicated in neuronal communication, connectivity, and dopamine signaling. Consistent with this, we discovered that MeA Foxp2-lineage cells were responsive to dopamine with differences between males and females. Thus, our findings reveal a central and sex-specific role for Foxp2 in social behavior and MeA function.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Li Wang
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Payal Banerjee
- Center for Genomic Medicine, Children’s National Hospital, Washington, DC, United States
| | - Heidi Y. Matos
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Aswini Panigrahi
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States
| | - Nathan Anthony Smith
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
45
|
Ponomareva OY, Ressler KJ. Genomic factors underlying sex differences in trauma-related disorders. Neurobiol Stress 2021; 14:100330. [PMID: 33997155 PMCID: PMC8102626 DOI: 10.1016/j.ynstr.2021.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating illness with treatment that is effective in only approximately half of the population. This limited rate of response highlights the necessity for research into underlying individual biological mechanisms that mediate development and progression of this disease, allowing for identification of patient-specific treatments. PTSD has clear sex differences in both risk and symptom patterns. Thus, one approach is to characterize trauma-related changes between men and women who exhibit differences in treatment efficacy and response to trauma. Recent technological advances in sequencing have identified several genomic loci and transcriptional changes that are associated with post-trauma symptomatology. However, although the diagnosis of PTSD is more prevalent in women, the genetic factors underlying sex differences remain poorly understood. Here, we review recent work that highlights current understanding and limitations in the field of sex differences in PTSD and related symptomatology.
Collapse
Affiliation(s)
- Olga Y Ponomareva
- Neuropsychiatry Translational Research Fellowship Program, Boston VA Healthcare System, Boston, MA, USA.,McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
46
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
47
|
Abstract
Recent progress in the identification of genes and genomic regions contributing to autism spectrum disorder (ASD) has had a broad impact on our understanding of the nature of genetic risk for a range of psychiatric disorders, on our understanding of ASD biology, and on defining the key challenges now facing the field in efforts to translate gene discovery into an actionable understanding of pathology. While these advances have not yet had a transformative impact on clinical practice, there is nonetheless cause for real optimism: reliable lists of risk genes are large and growing rapidly; the identified encoded proteins have already begun to point to a relatively small number of areas of biology, where parallel advances in neuroscience and functional genomics are yielding profound insights; there is strong evidence pointing to mid-fetal prefrontal cortical development as one nexus of vulnerability for some of the largest-effect ASD risk genes; and there are multiple plausible paths forward toward rational therapeutics development that, while admittedly challenging, constitute fundamental departures from what was possible prior to the era of successful gene discovery.
Collapse
Affiliation(s)
- Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
48
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
49
|
Frantsiyants EM, Bandovkina VA, Kaplieva IV, Cheryarina ND, Surikova EI, Neskubina IV, Kotieva IM, Shalashnaya EV, Trepitaki LK. [Influence of malignant growth and chronic neurogenic pain on neurosteroid levels in rat brain]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:151-155. [PMID: 32420896 DOI: 10.18097/pbmc20206602151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to determine the level of sex steroid hormones in white matter of the brain of rats with tumors combined with chronic neurogenic pain (CNP), which was modeled by bilateral sciatic nerve ligation. The study included albino male rats (n=74). In the main group, M1 sarcoma was transplanted subcutaneously (n=11) or into the subclavian vein (n=11) 45 days after CNP modeling. Two comparison groups (n=13 each) included sham operated animals (without CNP) with M1 sarcoma transplanted subcutaneously and intravenously. Control groups included animals with CNP and sham operated animals. Rats were euthanized on day 21 of the carcinogenesis. Levels of total and free testosterone (T), estrone (E1), estradiol (E2), estriol (E3) and progesterone (P4) in the brain white matter were measured using ELISA kits ("Cusabio", China). CNP caused a decrease in the total and free T by 1.5 times (p<0.05), E2 and P4 by 1.9 and 3 times, respectively, E3 by 1.6 times (p<0.05), as well as an increase in E1 by 1.4 times (p<0.05) as compared to the corresponding levels in the brain white matter of rats without CNP. CNP stimulated M1 sarcoma growth in both subcutaneous and intravenous transplantation. Regardless of the tumor site, the dynamics of total T, E2 and E3 in the brain had similar features, but the dynamics of free T, P4 and E1 differed. Thus, changes in the level of neurosteroids in the white matter of rat brain with CNP and tumor growth alone or associated with CNP are a reaction to stress.
Collapse
Affiliation(s)
- E M Frantsiyants
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - V A Bandovkina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I V Kaplieva
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - N D Cheryarina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - E I Surikova
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I V Neskubina
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - I M Kotieva
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - E V Shalashnaya
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| | - L K Trepitaki
- National Medical Research Centre for Oncology, Rostov-on-Don, Russia
| |
Collapse
|
50
|
Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. eNeuro 2020; 7:ENEURO.0035-20.2020. [PMID: 32493755 PMCID: PMC7333980 DOI: 10.1523/eneuro.0035-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.
Collapse
|