1
|
Tran LN, Shinde A, Schuster KH, Sabaawy A, Dale E, Welch MJ, Isner TJ, Nunez SA, García-Moreno F, Sagerström CG, Appel BH, Franco SJ. Epigenetic priming of neural progenitors by Notch enhances Sonic hedgehog signaling and establishes gliogenic competence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633996. [PMID: 39896669 PMCID: PMC11785114 DOI: 10.1101/2025.01.20.633996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The remarkable cell diversity of multicellular organisms relies on the ability of multipotent progenitor cells to generate distinct cell types at the right times and locations during embryogenesis. A key question is how progenitors establish competence to respond to the different environmental signals required to produce specific cell types at critical developmental timepoints. We addressed this in the mouse developing forebrain, where neural progenitor cells must switch from producing neurons to making oligodendrocytes in response to increased Sonic Hedgehog (SHH) signaling during late embryogenesis. We show that progenitor responses to SHH are regulated by Notch signaling, thus permitting proper timing of the neuron-oligodendrocyte switch. Notch activity epigenetically primes genes associated with the oligodendrocyte lineage and SHH pathway, enabling amplified transcriptional responses to endogenous SHH and robust oligodendrogenesis. These results reveal a critical role for Notch in facilitating progenitor competence states and influencing cell fate transitions at the epigenetic level.
Collapse
Affiliation(s)
- Luuli N. Tran
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashwini Shinde
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen H. Schuster
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aiman Sabaawy
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dale
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madalynn J. Welch
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trevor J. Isner
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sylvia A. Nunez
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Edificio Sede del Parque Científico de la UPV/EHU, Leioa, Spain
| | - Charles G. Sagerström
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce H. Appel
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santos J. Franco
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Pediatric Stem Cell Biology, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Lead contact
| |
Collapse
|
2
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. Linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse neural tube development. Development 2024; 151:dev202705. [PMID: 39369306 PMCID: PMC11463954 DOI: 10.1242/dev.202705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize β-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
4
|
Wang Y, Yao H, Zhang Y, Mu N, Lu T, Du Z, Wu Y, Li X, Su M, Shao M, Sun X, Su L, Liu X. TMEM216 promotes primary ciliogenesis and Hedgehog signaling through the SUFU-GLI2/GLI3 axis. Sci Signal 2024; 17:eabo0465. [PMID: 38261656 DOI: 10.1126/scisignal.abo0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Primary cilia are enriched in signaling receptors, and defects in their formation or function can induce conditions such as polycystic kidney disease, postaxial hexadactyly, and microphthalmia. Mammalian Hedgehog (Hh) signaling is important in the development of primary cilia, and TMEM216, a transmembrane protein that localizes to the base of cilia, is also implicated in ciliogenesis in zebrafish. Here, we found that Tmem216-deficient mice had impaired Hh signaling and displayed typical ciliopathic phenotypes. These phenomena were also observed in cells deficient in TMEM216. Furthermore, TMEM216 interacted with core Hh signaling proteins, including SUFU, a negative regulator of Hh, and GLI2/GLI3, transcription factors downstream of Hh. The competition between TMEM216 and SUFU for binding to GLI2/GLI3 inhibited the cleavage of GLI2/GLI3 into their repressor forms, which resulted in the nuclear accumulation of full-length GLI2 and the decreased nuclear localization of cleaved GLI3, ultimately leading to the activation of Hh signaling. Together, these data suggest that the TMEM216-SUFU-GLI2/GLI3 axis plays a role in TMEM216 deficiency-induced ciliopathies and Hh signaling abnormalities.
Collapse
Affiliation(s)
- Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Huili Yao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ning Mu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhiyuan Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yingdi Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaopeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Min Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaoyang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
5
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. The novel linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575263. [PMID: 38260275 PMCID: PMC10802560 DOI: 10.1101/2024.01.11.575263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing primary cilia, the cell antenna acting as a signaling hub. Fuz, an effector of planar cell polarity (PCP) signaling, involves Shh signaling via cilia formation, while the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of these two genes is similar; however, their functional relations have not been previously explored. This study identified the genetic and biochemical link between Fuz and Gpr161 in mouse embryonic development. Fuz was genetically epistatic to Gpr161 via Shh signaling during mouse embryonic development. The FUZ biochemically interacted with GPR161, and Fuz regulated Gpr161 ciliary trafficking via β-arrestin2. Our study suggested the novel Gpr161-Fuz axis that regulates Shh signaling during mouse embryonic development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX, 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX, 78723, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
7
|
Cai Q, Luo M, Tang Y, Yu M, Yuan F, Gasser GN, Liu X, Engelhardt JF. Sonic Hedgehog Signaling Is Essential for Pulmonary Ionocyte Specification in Human and Ferret Airway Epithelia. Am J Respir Cell Mol Biol 2023; 69:295-309. [PMID: 37141531 PMCID: PMC10503308 DOI: 10.1165/rcmb.2022-0280oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that is critical for hydration of the airways and mucociliary clearance. However, the cellular mechanisms that govern ionocyte specification and function remain unclear. We observed that increased abundance of ionocytes in cystic fibrosis (CF) airway epithelium was associated with enhanced expression of Sonic Hedgehog (SHH) effectors. In this study, we evaluated whether the SHH pathway directly impacts ionocyte differentiation and CFTR function in airway epithelia. Pharmacological HPI1-mediated inhibition of SHH signaling component GLI1 significantly impaired human basal cell specification of ionocytes and ciliated cells but significantly enhanced specification of secretory cells. By contrast, activation of the SHH pathway effector smoothened (SMO) with the chemical agonist SAG significantly enhanced ionocyte specification. The abundance of CFTR+ BSND+ ionocytes under these conditions had a direct relationship with CFTR-mediated currents in differentiated air-liquid interface (ALI) airway cultures. These findings were corroborated in ferret ALI airway cultures generated from basal cells in which the genes encoding the SHH receptor PTCH1 or its intracellular effector SMO were genetically ablated using CRISPR-Cas9, causing aberrant activation or suppression of SHH signaling, respectively. These findings demonstrate that SHH signaling is directly involved in airway basal cell specification of CFTR-expressing pulmonary ionocytes and is likely responsible for enhanced ionocyte abundance in the CF proximal airways. Pharmacologic approaches to enhance ionocyte and reduce secretory cell specification after CFTR gene editing of basal cells may have utility in the treatment of CF.
Collapse
Affiliation(s)
- Qian Cai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Meihui Luo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Miao Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
8
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
9
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
11
|
Smit MJ, Martini TEI, Armandari I, Bočkaj I, Zomerman WW, de Camargo Magalhães ES, Siragna Z, Meeuwsen TGJ, Scherpen FJG, Schoots MH, Ritsema M, den Dunnen WFA, Hoving EW, Paridaen JTML, de Haan G, Guryev V, Bruggeman SWM. The developmental stage of the medulloblastoma cell-of-origin restricts Hedgehog pathway usage and drug sensitivity. J Cell Sci 2022; 135:275628. [PMID: 35535520 PMCID: PMC9234672 DOI: 10.1242/jcs.258608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients. Summary: There is a relationship between the age of the medulloblastoma patient and the developmental age of the tumor cell-of-origin, and this influences the SHH pathway signaling route used by the tumor.
Collapse
Affiliation(s)
- Marlinde J Smit
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tosca E I Martini
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Inna Armandari
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Irena Bočkaj
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Walderik W Zomerman
- Department of Pediatrics/Pediatric Oncology and Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Eduardo S de Camargo Magalhães
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Zillah Siragna
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tiny G J Meeuwsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Frank J G Scherpen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Mirthe H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Martha Ritsema
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Present address: Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, the Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Sophia W M Bruggeman
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
12
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|
13
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
14
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
15
|
Akhshi T, Trimble WS. A non-canonical Hedgehog pathway initiates ciliogenesis and autophagy. J Cell Biol 2021; 220:211568. [PMID: 33258871 PMCID: PMC7714386 DOI: 10.1083/jcb.202004179] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.
Collapse
Affiliation(s)
- Tara Akhshi
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Klein JA, Li Z, Rampam S, Cardini J, Ayoub A, Shaw P, Rachubinski AL, Espinosa JM, Zeldich E, Haydar TF. Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21. Front Cell Neurosci 2021; 15:794675. [PMID: 35058753 PMCID: PMC8763807 DOI: 10.3389/fncel.2021.794675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| | - Zhen Li
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jack Cardini
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Amara Ayoub
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Patricia Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmocology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| | - Tarik F. Haydar
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| |
Collapse
|
17
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
18
|
Moreau N, Boucher Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int J Mol Sci 2020; 21:ijms21239115. [PMID: 33266112 PMCID: PMC7731127 DOI: 10.3390/ijms21239115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
The peripheral nervous system has important regenerative capacities that regulate and restore peripheral nerve homeostasis. Following peripheral nerve injury, the nerve undergoes a highly regulated degeneration and regeneration process called Wallerian degeneration, where numerous cell populations interact to allow proper nerve healing. Recent studies have evidenced the prominent role of morphogenetic Hedgehog signaling pathway and its main effectors, Sonic Hedgehog (SHH) and Desert Hedgehog (DHH) in the regenerative drive following nerve injury. Furthermore, dysfunctional regeneration and/or dysfunctional Hedgehog signaling participate in the development of chronic neuropathic pain that sometimes accompanies nerve healing in the clinical context. Understanding the implications of this key signaling pathway could provide exciting new perspectives for future research on peripheral nerve healing.
Collapse
Affiliation(s)
- Nathan Moreau
- Department of Oral Medicine and Oral Surgery, Bretonneau Hospital (AP-HP), 75018 Paris, France;
- Faculty of Dental Medicine-Montrouge, University of Paris, 92120 Montrouge, France
| | - Yves Boucher
- Department of Dental Medicine, Pitié-Salpêtrière Hospital (AP-HP), 75013 Paris, France
- Faculty of Dental Medicine-Garancière, University of Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
19
|
Alvarez S, Varadarajan SG, Butler SJ. Dorsal commissural axon guidance in the developing spinal cord. Curr Top Dev Biol 2020; 142:197-231. [PMID: 33706918 DOI: 10.1016/bs.ctdb.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Commissural axons have been a key model system for identifying axon guidance signals in vertebrates. This review summarizes the current thinking about the molecular and cellular mechanisms that establish a specific commissural neural circuit: the dI1 neurons in the developing spinal cord. We assess the contribution of long- and short-range signaling while sequentially following the developmental timeline from the birth of dI1 neurons, to the extension of commissural axons first circumferentially and then contralaterally into the ventral funiculus.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States
| | | | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Zhang YW, Qu HB, Long N, Leng XY, Liu YQ, Yang Y. A rare mutant of OFD1 gene responsible for Joubert syndrome with significant phenotype variation. Mol Genet Genomics 2020; 296:33-40. [PMID: 32944789 DOI: 10.1007/s00438-020-01726-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023]
Abstract
Joubert syndrome (JBTS), a rare genetic disorder resulted from primary cilium defects or basal-body dysfunction, is characterized by agenesis of cerebellar vermis and abnormal brain stem. Both genotypes and phenotypes of JBTS are highly heterogeneous. The identification of pathogenic gene variation is essential for making a definite diagnosis on JBTS. Here, we found that hypoplasia of cerebellar vermis occurred in three male members in a Chinese family. Then, we performed whole exome sequencing to identify a novel missense mutation c.599T > C (p. L200P) in the OFD1 gene which is the candidate gene of X-linked JBTS (JBST10). The following analysis showed that the variant was absent in the 1000 Genomes, ExAC and the 200 female controls; the position 200 Leucine residue was highly conserved across species; the missense variant was predicted to be deleterious using PolyPhen-2, PROVEAN, SIFT and Mutation Taster. The OFD1 expression was heavily lower in the proband and an induced male fetus compared with a healthy male with a wild-type OFD1 gene. The in vitro expression analysis of transiently transfecting c.599T or c.599C plasmids into HEK-293T cells confirmed that the missense mutation caused OFD1 reduction at the protein level. And further the mutated OFD1 decreased the level of Gli1 protein, a read-out of Sonic hedgehog (SHH) signaling essential for development of central neural system. A known pathogenic variant c.515T > C (p. L172P) showed the similar results. All of these observations suggested that the missense mutation causes the loss function of OFD1, resulting in SHH signaling impairs and brain development abnormality. In addition, the three patients have Dandy-Walker malformation, macrogyria and tetralogy of Fallot, respectively, the latter two of which are firstly found in JBTS10 patients. In conclusion, our findings expand the context of genotype and phenotype in the JBTS10 patients.
Collapse
Affiliation(s)
- Yang-Wei Zhang
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.,Department of Neurology, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hai-Bo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Radiology, Ministry of Education, West China Second University Hospital, Chengdu, 610041, China
| | - Ning Long
- Department of Obstetrics and Gynecology, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Xiang-You Leng
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yun-Qiang Liu
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yuan Yang
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
21
|
Legué E, Liem KF. Mutations in Ciliary Trafficking Genes affect Sonic Hedgehog-dependent Neural Tube Patterning Differentially along the Anterior-Posterior Axis. Neuroscience 2020; 450:3-14. [PMID: 32682825 DOI: 10.1016/j.neuroscience.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Cell specification in the ventral spinal cord is a well-studied model system to understand how tissue pattern develops in response to a morphogen gradient. Ventral cell types including motor neurons (MNs) are induced in the neural tube in response to graded Sonic Hedgehog (Shh) signaling. We performed a forward genetic screen in the mouse that incorporated a GFP-expressing transgene to visualize MNs to identify genes regulating ventral patterning. Here we contrast the neural patterning phenotypes of two mouse lines carrying induced mutations in ciliary trafficking genes. We show that a hypomorphic mutation in the gene Tubby-like protein 3 (Tulp3) resulted in a dorsal expansion of MNs consistent with an up-regulation of Shh signaling. Interestingly, patterning defects in Tulp3 mutants were restricted to posterior regions of the spinal cord as patterning was similar to WT in the anterior spinal cord. In contrast, a mutation in the ciliary trafficking gene cytoplasmic dynein 2 heavy chain 1 (Dync2h1), led to a complete loss of MNs in anterior regions of the spinal cord, indicating a strong down-regulation of Shh signaling. However, this severe phenotype was restricted to the cervical region as MNs developed posteriorly. Mutations in cilia trafficking genes affect Shh-dependent signaling in the neural tube differentially along the anterior-posterior (A-P) axis in a process that is not understood.
Collapse
Affiliation(s)
- Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Karel F Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
22
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
24
|
Yatsuzuka A, Hori A, Kadoya M, Matsuo-Takasaki M, Kondo T, Sasai N. GPR17 is an essential regulator for the temporal adaptation of sonic hedgehog signalling in neural tube development. Development 2019; 146:dev.176784. [PMID: 31444216 DOI: 10.1242/dev.176784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023]
Abstract
Dorsal-ventral pattern formation of the neural tube is regulated by temporal and spatial activities of extracellular signalling molecules. Sonic hedgehog (Shh) assigns ventral neural subtypes via activation of the Gli transcription factors. Shh activity in the neural progenitor cells changes dynamically during differentiation, but the mechanisms regulating this dynamicity are not fully understood. Here, we show that temporal change of intracellular cAMP levels confers the temporal Shh signal, and the purinergic G-protein-coupled receptor GPR17 plays an essential role in this regulation. GPR17 is highly expressed in the ventral progenitor regions of the neural tube and acts as a negative regulator of the Shh signal in chick embryos. Although the activation of the GPR17-related signal inhibits ventral identity, perturbation of Gpr17 expression leads to aberrant expansion of ventral neural domains. Notably, perturbation of Gpr17 expression partially inhibits the negative feedback of Gli activity. Moreover, GPR17 increases cAMP activity, suggesting that it exerts its function by inhibiting the processing of Gli3 protein. GPR17 also negatively regulates Shh signalling in neural cells differentiated from mouse embryonic stem cells, suggesting that GPR17 function is conserved among different organisms. Our results demonstrate that GPR17 is a novel negative regulator of Shh signalling in a wide range of cellular contexts.
Collapse
Affiliation(s)
- Atsuki Yatsuzuka
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Akiko Hori
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Mami Matsuo-Takasaki
- Department of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
25
|
Adachi C, Kakinuma N, Jo SH, Ishii T, Arai Y, Arai S, Kitaguchi T, Takeda S, Inoue T. Sonic hedgehog enhances calcium oscillations in hippocampal astrocytes. J Biol Chem 2019; 294:16034-16048. [PMID: 31506300 DOI: 10.1074/jbc.ra119.007883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (SHH) is important for organogenesis during development. Recent studies have indicated that SHH is also involved in the proliferation and transformation of astrocytes to the reactive phenotype. However, the mechanisms underlying these are unknown. Involvement of SHH signaling in calcium (Ca) signaling has not been extensively studied. Here, we report that SHH and Smoothened agonist (SAG), an activator of the signaling receptor Smoothened (SMO) in the SHH pathway, activate Ca oscillations in cultured murine hippocampal astrocytes. The response was rapid, on a minute time scale, indicating a noncanonical pathway activity. Pertussis toxin blocked the SAG effect, indicating an involvement of a Gi coupled to SMO. Depletion of extracellular ATP by apyrase, an ATP-degrading enzyme, inhibited the SAG-mediated activation of Ca oscillations. These results indicate that SAG increases extracellular ATP levels by activating ATP release from astrocytes, resulting in Ca oscillation activation. We hypothesize that SHH activates SMO-coupled Gi in astrocytes, causing ATP release and activation of Gq/11-coupled P2 receptors on the same cell or surrounding astrocytes. Transcription factor activities are often modulated by Ca patterns; therefore, SHH signaling may trigger changes in astrocytes by activating Ca oscillations. This enhancement of Ca oscillations by SHH signaling may occur in astrocytes in the brain in vivo because we also observed it in hippocampal brain slices. In summary, SHH and SAG enhance Ca oscillations in hippocampal astrocytes, Gi mediates SAG-induced Ca oscillations downstream of SMO, and ATP-permeable channels may promote the ATP release that activates Ca oscillations in astrocytes.
Collapse
Affiliation(s)
- Chihiro Adachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Soo Hyun Jo
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Takayuki Ishii
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Yusuke Arai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Satoshi Arai
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Research Institute for Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 2268503, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| |
Collapse
|
26
|
Fujita A, Higashijima T, Shirozu H, Masuda H, Sonoda M, Tohyama J, Kato M, Nakashima M, Tsurusaki Y, Mitsuhashi S, Mizuguchi T, Takata A, Miyatake S, Miyake N, Fukuda M, Kameyama S, Saitsu H, Matsumoto N. Pathogenic variants of DYNC2H1, KIAA0556, and PTPN11 associated with hypothalamic hamartoma. Neurology 2019; 93:e237-e251. [PMID: 31197031 DOI: 10.1212/wnl.0000000000007774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intensive genetic analysis was performed to reveal comprehensive molecular insights into hypothalamic hamartoma (HH). METHODS Thirty-eight individuals with HH were investigated by whole exome sequencing, target capture-based deep sequencing, or single nucleotide polymorphism (SNP) array using DNA extracted from blood leukocytes or HH samples. RESULTS We identified a germline variant of KIAA0556, which encodes a ciliary protein, and 2 somatic variants of PTPN11, which forms part of the RAS/mitogen-activated protein kinase (MAPK) pathway, as well as variants in known genes associated with HH. An SNP array identified (among 3 patients) one germline copy-neutral loss of heterozygosity (cnLOH) at 6p22.3-p21.31 and 2 somatic cnLOH; one at 11q12.2-q25 that included DYNC2H1, which encodes a ciliary motor protein, and the other at 17p13.3-p11.2. A germline heterozygous variant and an identical somatic variant of DYNC2H1 arising from cnLOH at 11q12.2-q25 were confirmed in one patient (whose HH tissue, therefore, contains biallelic variants of DYNC2H1). Furthermore, a combination of a germline and a somatic DYNC2H1 variant was detected in another patient. CONCLUSIONS Overall, our cohort identified germline/somatic alterations in 34% (13/38) of patients with HH. Disruption of the Shh signaling pathway associated with cilia or the RAS/MAPK pathway may lead to the development of HH.
Collapse
Affiliation(s)
- Atsushi Fujita
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takefumi Higashijima
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Shirozu
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Masuda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masaki Sonoda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun Tohyama
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mitsuhiro Kato
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mitsuko Nakashima
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satomi Mitsuhashi
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takeshi Mizuguchi
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Takata
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satoko Miyatake
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Miyake
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masafumi Fukuda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shigeki Kameyama
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hirotomo Saitsu
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naomichi Matsumoto
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
27
|
Park SM, Jang HJ, Lee JH. Roles of Primary Cilia in the Developing Brain. Front Cell Neurosci 2019; 13:218. [PMID: 31139054 PMCID: PMC6527876 DOI: 10.3389/fncel.2019.00218] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Essential to development, primary cilia are microtubule-based cellular organelles that protrude from the surface of cells. Acting as cellular antenna, primary cilia play central roles in transducing or regulating several signaling pathways, including Sonic hedgehog (Shh) and Wnt signaling. Defects in primary cilia contribute to a group of syndromic disorders known as “ciliopathies” and can adversely affect development of the brain and other essential organs, including the kidneys, eyes, and liver. The molecular mechanisms of how defective primary cilia contribute to neurological defects, however, remain poorly understood. In this mini review, we summarize recent advances in understanding of the interactions between primary cilia and signaling pathways essential to cellular homeostasis and brain development.
Collapse
Affiliation(s)
- Sang Min Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hee Jin Jang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
28
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
29
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|
30
|
Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells. Cell Rep 2019; 22:189-205. [PMID: 29298421 PMCID: PMC6166245 DOI: 10.1016/j.celrep.2017.12.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications. May-Simera et al. show that primary cilia regulate the maturation and polarization of human iPSC-RPE, mouse RPE, and human iPSC-lung epithelium through canonical WNT suppression and PKCδ activation. RPE cells derived from ciliopathy patients exhibit defective structure and function. These results provide insights into ciliopathy-induced retinal degeneration.
Collapse
|
31
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
32
|
Tanaka Y, Yamada S, Connop SL, Hashii N, Sawada H, Shih Y, Nishida H. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Dev Biol 2019; 449:52-61. [PMID: 30710513 DOI: 10.1016/j.ydbio.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
Stereotyped left-right asymmetry both in external and internal organization is found in various animals. Left-right symmetry is broken by the neurula rotation in the ascidian, Halocynthia roretzi. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and the rotation stops when the left side of the embryo is oriented downwards, resulting in contact of the left-side epidermis with the vitelline membrane at the bottom of perivitelline space. Then, such contact induces the expression of nodal and its downstream Pitx2 gene in the left-side epidermis. Vitelline membrane is required for the promotion of nodal expression. Here, we showed that a chemical signal from the vitelline membrane promotes nodal gene expression, but mechanical stimulus at the point of contact is unnecessary since the treatment of devitellinated neurulae with an extract of the vitelline membrane promoted nodal expression on both sides. The signal molecules are already present in the vitelline membranes of unfertilized eggs. These signal molecules are proteins but not sugars. Specific fractions in gel filtration chromatography had the nodal promoting activity. By mass spectrometry, we selected 48 candidate proteins. Proteins that contain both a zona pellucida (ZP) domain and epidermal growth factor (EGF) repeats were enriched in the candidates of the nodal inducing molecules. Six of the ZP proteins had multiple EGF repeats that are only found in ascidian ZP proteins. These were considered to be the most viable candidates of the nodal-inducing molecules. Signal molecules are anchored to the entire vitelline membrane, and contact sites of signal-receiving cells are spatially and mechanically controlled by the neurula rotation. In this context, ascidians are unusual with respect to mechanisms for specification of the left-right axis. By suppressing formation of epidermis monocilia, we also showed that epidermal cilia drive the neurula rotation but are dispensable for sensing the signal from the vitelline membrane.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Samantha L Connop
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | - Yu Shih
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
33
|
Yabut OR, Pleasure SJ. Sonic Hedgehog Signaling Rises to the Surface: Emerging Roles in Neocortical Development. Brain Plast 2018; 3:119-128. [PMID: 30151337 PMCID: PMC6091060 DOI: 10.3233/bpl-180064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian neocortex is composed of a diverse population of neuronal and glial cells that are crucial for cognition and consciousness. Orchestration of molecular events that lead to the production of distinct cell lineages is now a major research focus. Recent studies in mammalian animal models reveal that Sonic Hedgehog (Shh) signaling plays crucial roles in this process. In this review, we will evaluate these studies and provide insights on how Shh signaling specifically influence cortical development, beyond its established roles in telencephalic patterning, by specifically focusing on its impact on cells derived from the cortical radial glial (RG) cells. We will also assess how these findings further advance our knowledge of neurological diseases and discuss potential roles of targeting Shh signaling in therapies.
Collapse
Affiliation(s)
- Odessa R Yabut
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Programs in Neuroscience and Developmental Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, CA, USA
| |
Collapse
|
34
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
35
|
Kawano R, Ohta K, Lupo G. Cadherin-7 enhances Sonic Hedgehog signalling by preventing Gli3 repressor formation during neural tube patterning. Open Biol 2018; 7:rsob.170225. [PMID: 29263249 PMCID: PMC5746549 DOI: 10.1098/rsob.170225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Sonic Hedgehog (Shh) is a ventrally enriched morphogen controlling dorsoventral patterning of the neural tube. In the dorsal spinal cord, Gli3 protein bound to suppressor-of-fused (Sufu) is converted into Gli3 repressor (Gli3R), which inhibits Shh-target genes. Activation of Shh signalling prevents Gli3R formation, promoting neural tube ventralization. We show that cadherin-7 (Cdh7) expression in the intermediate spinal cord region is required to delimit the boundary between the ventral and the dorsal spinal cord. We demonstrate that Cdh7 functions as a receptor for Shh and enhances Shh signalling. Binding of Shh to Cdh7 promotes its aggregation on the cell membrane and association of Cdh7 with Gli3 and Sufu. These interactions prevent Gli3R formation and cause Gli3 protein degradation. We propose that Shh can act through Cdh7 to limit intracellular movement of Gli3 protein and production of Gli3R, thus eliciting more efficient activation of Gli-dependent signalling.
Collapse
Affiliation(s)
- Rie Kawano
- Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, Oita, Japan .,Global COE 'Cell Fate Regulation Research and Education Unit', Kumamoto University, Kumamoto, Japan.,Division of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kunimasa Ohta
- Division of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
37
|
Chalakur-Ramireddy NKR, Pakala SB. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci Rep 2018; 38:BSR20171357. [PMID: 29298879 PMCID: PMC5789156 DOI: 10.1042/bsr20171357] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 01/01/2018] [Indexed: 12/19/2022] Open
Abstract
TNBC (Triple Negative Breast Cancer) is a subtype of breast cancer with an aggressive phenotype which shows high metastatic capability and poor prognosis. Owing to its intrinsic properties like heterogeneity, lack of hormonal receptors and aggressive phenotype leave chemotherapy as a mainstay for the treatment of TNBC. Various studies have demonstrated that chemotherapy alone or therapeutic drugs targeting TNBC pathways, epigenetic mechanisms and immunotherapy alone have not shown significant improvement in TNBC patients. On the other hand, a combination of therapeutic drugs or addition of chemotherapy with therapeutic drugs has shown substantial improvement in results and proven to be an effective strategy for TNBC treatment. This review sheds light on effective combinational drug strategies and current clinical trial status of various combinatorial drugs for the treatment of TNBC.
Collapse
Affiliation(s)
| | - Suresh B Pakala
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| |
Collapse
|
38
|
Wiegering A, Rüther U, Gerhardt C. The Role of Hedgehog Signalling in the Formation of the Ventricular Septum. J Dev Biol 2017; 5:E17. [PMID: 29615572 PMCID: PMC5831794 DOI: 10.3390/jdb5040017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022] Open
Abstract
An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
39
|
Cardozo MJ, Mysiak KS, Becker T, Becker CG. Reduce, reuse, recycle – Developmental signals in spinal cord regeneration. Dev Biol 2017; 432:53-62. [DOI: 10.1016/j.ydbio.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
|
40
|
Deol GSJ, Cuthbert TN, Gatie MI, Spice DM, Hilton LR, Kelly GM. Wnt and Hedgehog Signaling Regulate the Differentiation of F9 Cells into Extraembryonic Endoderm. Front Cell Dev Biol 2017; 5:93. [PMID: 29119099 PMCID: PMC5660979 DOI: 10.3389/fcell.2017.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE) when treated with retinoic acid (RA), and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental processes, requires input from one or more additional pathways. We found both RA and Gata6 overexpression, can induce the expression of Indian Hedgehog (Ihh) and a subset of its target genes through Gli activation during PrE induction. Chemical activation of the Hh pathway using a Smoothened agonist (SAG) also increased Gli reporter activity, and as expected, when Hh signaling was blocked with a Smoothened antagonist, cyclopamine, this RA-induced reporter activity was reduced. Interestingly, SAG alone failed to induce markers of PrE differentiation, and had no effect on Wnt/β-catenin-dependent TCF-LEF reporter activity. The expected increase in Wnt/β-catenin-dependent TCF-LEF reporter activity and PrE markers induced by RA was, however, blocked by cyclopamine. Finally, inhibiting GSK3 activity with BIO increased both TCF-LEF and Gli reporter activities. Together, we demonstrate the involvement of Hh signaling in the RA-induced differentiation of F9 cells into PrE, and while the activation of the Hh pathway itself is not sufficient, it as well as active Wnt/β-catenin are necessary for F9 cell differentiation.
Collapse
Affiliation(s)
- Gurjoth S J Deol
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tina N Cuthbert
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Mohamed I Gatie
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Danielle M Spice
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lindsay R Hilton
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON, Canada.,Child Health Research Institute, London, ON, Canada.,Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
| |
Collapse
|
41
|
Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther 2017; 8:203. [PMID: 28962669 PMCID: PMC5622478 DOI: 10.1186/s13287-017-0653-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSC) show remarkable therapeutic potential to repair tissue upon injury via paracrine signaling by secreting diverse trophic factors that promote angiogenesis. However, the mechanisms and signaling pathways that regulate the induction of these specific factors are still mostly unknown. Emerging evidence suggests that Sonic hedgehog (SHH) plays a central role in angiogenesis and tissue maintenance. However, its contribution to the angiogenic potential of MSC has not been fully addressed. The aim of this work was to characterize the expression of the SHH pathway components in WJ-MSC primary cultures and to evaluate their angiogenic responsiveness to SHH signaling. Methods Primary cell cultures obtained from human umbilical cords were treated with pharmacological modulators of the SHH pathway. We evaluated the modulation of diverse trophic factors in cell lysates, conditioned medium, and functional in vitro assays. In addition, we determined the angiogenic potential of the SHH pathway in the chicken chorioallantoic membrane, an in vivo model. Results Our results show that WJ-MSC express components of the canonical SHH pathway and are activated by its signaling. In fact, we provide evidence of basal autocrine/paracrine SHH signaling in WJ-MSC. SHH pathway stimulation promotes the secretion of angiogenic factors such as activin A, angiogenin, angiopoietin 1, granulocyte-macrophage colony-stimulating factor, matrix metallometallopeptidase -9, and urokinase-type plasminogen activator, enhancing the pro-angiogenic capabilities of WJ-MSC both in vitro and in vivo. Conclusion WJ-MSC are a cell population responsive to SHH pathway stimulation. Basal SHH signaling is in part responsible for the angiogenic inductive properties of WJ-MSC. Overall, exogenous activation of the SHH pathway enhances the angiogenic properties of WJ-MSC, making this cell population an ideal target for treating tissue injury. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0653-8) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
43
|
Palander O, El-Zeiry M, Trimble WS. Uncovering the Roles of Septins in Cilia. Front Cell Dev Biol 2017; 5:36. [PMID: 28428954 PMCID: PMC5382219 DOI: 10.3389/fcell.2017.00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are a family of GTP-binding proteins that associate with cellular membranes and the cytoskeleton. Their ability to polymerize into filamentous structures permits them to serve as diffusion barriers for membrane proteins and as multi-molecular scaffolds that recruit components of signaling pathways. At the cellular level, septins contribute to the regulation of numerous processes, including cytokinesis, cell polarity, cell migration, and many others. In this review, we discuss emerging evidence for roles of mammalian septins in the biogenesis and function of flagella and cilia, and how this may impact human diseases such as ciliopathies.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Maha El-Zeiry
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
44
|
Schock EN, Struve JN, Chang CF, Williams TJ, Snedeker J, Attia AC, Stottmann RW, Brugmann SA. A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS One 2017; 12:e0174206. [PMID: 28346501 PMCID: PMC5367710 DOI: 10.1371/journal.pone.0174206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/06/2017] [Indexed: 01/13/2023] Open
Abstract
Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jaime N. Struve
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado, United States of America
| | - John Snedeker
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Aria C. Attia
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rolf W. Stottmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
45
|
Millington G, Elliott KH, Chang YT, Chang CF, Dlugosz A, Brugmann SA. Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev Biol 2017; 424:124-137. [PMID: 28286175 DOI: 10.1016/j.ydbio.2017.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
Abstract
Ciliopathies are a class of diseases caused by the loss of a ubiquitous, microtubule-based organelle called a primary cilium. Ciliopathies commonly result in defective development of the craniofacial complex, causing midfacial defects, craniosynostosis, micrognathia and aglossia. Herein, we explored how the conditional loss of primary cilia on neural crest cells (Kif3af/f;Wnt1-Cre) generated aglossia. On a cellular level, our data revealed that aglossia in Kif3af/f;Wnt1-Cre embryos was due to a loss of mesoderm-derived muscle precursors migrating into and surviving in the tongue anlage. To determine the molecular basis for this phenotype, we performed RNA-seq, in situ hybridization, qPCR and Western blot analyses. We found that transduction of the Sonic hedgehog (Shh) pathway, rather than other pathways previously implicated in tongue development, was aberrant in Kif3af/f;Wnt1-Cre embryos. Despite increased production of full-length GLI2 and GLI3 isoforms, previously identified GLI targets important for mandibular and glossal development (Foxf1, Foxf2, Foxd1 and Foxd2) were transcriptionally downregulated in Kif3af/f;Wnt1-Cre embryos. Genetic removal of GLI activator (GLIA) isoforms in neural crest cells recapitulated the aglossia phenotype and downregulated Fox gene expression. Genetic addition of GLIA isoforms in neural crest cells partially rescued the aglossia phenotype and Fox gene expression in Kif3af/f;Wnt1-Cre embryos. Together, our data suggested that glossal development requires primary cilia-dependent GLIA activity in neural crest cells. Furthermore, these data, in conjunction with our previous work, suggested prominence specific roles for GLI isoforms; with development of the frontonasal prominence relying heavily on the repressor isoform and the development of the mandibular prominence/tongue relying heavily on the activator isoform.
Collapse
Affiliation(s)
- Grethel Millington
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Andrzej Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.
| |
Collapse
|
46
|
Chang CF, Chang YT, Millington G, Brugmann SA. Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 2016; 12:e1006351. [PMID: 27802276 PMCID: PMC5089743 DOI: 10.1371/journal.pgen.1006351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development. Primary cilia are ubiquitous organelles that serve to transduce molecular signals within a cell. Loss of functional primary cilia results in a disease class called ciliopathies. Ciliopathies have a broad range of phenotypes; however, severe facial anomalies are commonly associated with this disease class. The facial midline is particularly sensitive to loss of primary cilia, frequently undergoing a significant widening. This phenotype is similar to that which occurs when there are gain-of-function defects in the Sonic Hedgehog pathway. This manuscript addresses the molecular basis for midfacial widening in ciliopathies. Importantly, we determine mechanisms to both rescue and phenocopy the ciliopathic midfacial phenotype. In sum, this work provides novel insight into the molecular mechanisms of midfacial patterning and the extent to which loss of cilia impact that process.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
- * E-mail:
| |
Collapse
|
47
|
Lepanto P, Badano JL, Zolessi FR. Neuron's little helper: The role of primary cilia in neurogenesis. NEUROGENESIS 2016; 3:e1253363. [PMID: 28090545 DOI: 10.1080/23262133.2016.1253363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/27/2023]
Abstract
The generation of new neurons involves a great variety of cell-extrinsic and cell-intrinsic signals. The primary cilium, long regarded as an "evolutionary vestige," has emerged as an essential signaling hub in many cells, including neural progenitors and differentiating neurons. Most progenitors harbor an apically-localized primary cilium, which is assembled and disassembled following the cell cycle, while the presence, position and length of this organelle appears to be even more variable in differentiating neurons. One of the main extracellular cues acting through the cilium is Sonic Hedgehog, which modulates spatial patterning, the progression of the cell cycle and the timing of neurogenesis. Other extracellular signals appear to bind to cilia-localized receptors and affect processes such as dendritogenesis. All the observed dynamics, as well as the many signaling pathways depending on cilia, indicate this organelle as an important structure involved in neurogenesis.
Collapse
Affiliation(s)
- Paola Lepanto
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Flavio R Zolessi
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
48
|
Gazea M, Tasouri E, Heigl T, Bosch V, Tucker KL, Blaess S. Definition of a critical spatiotemporal window within which primary cilia control midbrain dopaminergic neurogenesis. NEUROGENESIS 2016; 3:e1248206. [PMID: 28090543 DOI: 10.1080/23262133.2016.1248206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Midbrain dopaminergic (mDA) neurons are generated in the ventral midbrain floor plate depending on Sonic Hedgehog (SHH) signaling for induction. Primary cilia transduce canonical SHH signals. Loss of intraflagellar transport protein IFT88, essential for ciliary function, disrupts SHH signaling in the ventral midbrain and results in the reduction in mDA progenitors and neurons. We investigate whether conditional inactivation of the kinesin motor protein KIF3A recapitulates phenotypes observed in conditional Ift88 mutants. Conditional Kif3a inactivation reduced the mDA progenitor domain size, but did not result in mDA neuron reduction, most likely because of a delayed loss of cilia and delayed inactivation of SHH signaling. We thereby define a precise spatiotemporal window within which primary cilia-dependent SHH signaling determines mDA fate.
Collapse
Affiliation(s)
- Mary Gazea
- Institute of Reconstructive Neurobiology, University of Bonn , Bonn, Germany
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Tobias Heigl
- Institute of Reconstructive Neurobiology, University of Bonn , Bonn, Germany
| | - Viktoria Bosch
- Institute of Reconstructive Neurobiology, University of Bonn , Bonn, Germany
| | - Kerry L Tucker
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany; University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME, USA
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn , Bonn, Germany
| |
Collapse
|
49
|
Duran I, Taylor SP, Zhang W, Martin J, Forlenza KN, Spiro RP, Nickerson DA, Bamshad M, Cohn DH, Krakow D. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 2016; 6:34232. [PMID: 27666822 PMCID: PMC5035930 DOI: 10.1038/srep34232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), University of Malaga, Malaga, 29071, Spain
| | - S Paige Taylor
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Wenjuan Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Jorge Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Rhonda P Spiro
- Children's Healthcare of Atlanta, Atlanta, GA, 30342, USA
| | - Deborah A Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
50
|
Habib JG, O'Shaughnessy JA. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016; 5:2989-3006. [PMID: 27539549 PMCID: PMC5083752 DOI: 10.1002/cam4.833] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to the underlying heterogeneity of this disease coupled with the lack of predictive biomarkers and effective targeted therapies. Intratumoral heterogeneity, particularly enrichment for breast cancer stem cell‐like subpopulations, has emerged as a leading hypothesis for systemic therapy resistance and clinically aggressive course of poor prognosis TNBC. A growing body of literature supports the role of the stem cell renewal Hedgehog (Hh) pathway in breast cancer. Emerging preclinical data also implicate Hh signaling in TNBC pathogenesis. Herein, we review the evidence for a pathophysiologic role of Hh signaling in TNBC and explore mechanisms of crosstalk between the Hh pathway and other key signaling networks as well as their potential implications for Hh‐targeted interventions in TNBC.
Collapse
Affiliation(s)
- Joyce G Habib
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas
| | - Joyce A O'Shaughnessy
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas.
- Texas Oncology, Dallas, Texas.
| |
Collapse
|