1
|
Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in nanomedicine for retinal drug delivery: overcoming barriers and enhancing therapeutic outcomes. J Drug Target 2025; 33:587-611. [PMID: 39694681 DOI: 10.1080/1061186x.2024.2443144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Nanomedicine offers a promising avenue for improving retinal drug delivery, effectively addressing challenges associated with ocular diseases like age-related macular degeneration and diabetic retinopathy. Nanoparticles, with their submicron size and customisable surface properties, enable enhanced permeability and retention within retinal tissues, supporting sustained drug release and minimising systemic side effects. Nanostructured scaffolds further provide a supportive environment for retinal cell growth and tissue regeneration, crucial for treating degenerative conditions. Additionally, advanced nanodevices facilitate real-time monitoring and controlled drug release, marking significant progress in retinal therapy. This study reviews recent advancements in nanomedicine for retinal drug delivery, critically analysing design innovations, therapeutic benefits, and limitations of these systems. By advancing nanotechnology integration in ocular therapies, this field holds strong potential for overcoming current barriers, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Shreyashree Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Sangita Ranee Gouda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Norouz Dolatabadi E, Akbarzadeh Zaky MR, Hashim Abbas F, Eftekhari Milani A, André H, Alizadeh E. Recent advances on modeling retinal disease: Towards efficient gene/drug therapy. Exp Eye Res 2025; 256:110416. [PMID: 40320033 DOI: 10.1016/j.exer.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Advanced modeling biotechnologies are required to understand retinal diseases and develop effective treatments based on the patient's genetic background, lifestyle, and environment. In this work, recent advances in different types of study models that are used in the retinal disease area of research will be explored. The retinal models to be covered are: in vivo systems (human and animal), in vitro organisms (cell lines, primary cells, patient-derived stem cells, microfluidics, organoids, and spheroids), ex vivo models (explant cultures and retinal tissue preparations), and in silico models (computational and mathematical). Moreover, the unique comprehension of models of retinal disease, advantages, and disadvantages will be scrutinized. Finally, innovations/improvements derived from models towards gene and pharmacological therapy that display promise for treating retinal illnesses are elucidated.
Collapse
Affiliation(s)
- Elham Norouz Dolatabadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatima Hashim Abbas
- Department of Aesthetic and Laser Techniques, College of Health and Medical Techniques, Al-Mustagbal University, Babylon, Iraq
| | | | - Helder André
- Department of Clinical Neuroscience, Karolinska Institute, Karolinska, Sweden
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrin Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Amizadeh M, Fazlinezhad F, Ranjbar M, Hasanalifard M. The efficacy of methylprednisolone acetate nanogel in treating patients with sudden sensorineural hearing loss. Sci Rep 2025; 15:12342. [PMID: 40211027 PMCID: PMC11986134 DOI: 10.1038/s41598-025-97145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Intratympanic injection of methylprednisolone acetate is considered to be one of the effective drugs in the treatment of sudden sensorineural hearing loss. In this study, the efficacy of intratympanic injection of methylprednisolone acetate nanogel in patients with sudden sensorineural hearing loss was investigated. It is a double-blind randomized clinical trial in one of Iran's hospitals. 96 patients diagnosed with sudden sensorineural hearing loss were examined. The intervention group (40 patients) was treated with intratympanic nanogel form of methylprednisolone acetate (four times, one day in between) along with oral prednisolone, and the control group (56 patients) was treated with the usual ampoule form of methylprednisolone acetate along with oral prednisolone. The patients were followed up two weeks and two months after the treatment by checking the audiometric findings. 22.9% of all patients had complete response to treatment and 58.3% partial response to treatment. Complete response to treatment was more common in patients of the intervention group, and non-response to treatment was more common in the control group. The frequency of tinnitus two months after the start of treatment was significantly lower in the intervention group, but the frequency of dizziness was not significantly different between the two groups. In both groups, a significant improvement in audiometric findings was observed after treatment compared to before treatment (p < 0.0001). In both groups, a significant improvement in audiometric findings was observed after treatment compared to before treatment (p < 0.0001), and this improvement rate was slightly higher in the intervention group than in the control group. Combined treatment of systemic steroid with both nanogel and or conventional intratympanic methylprednisolone acetate can be effective in the treatment of sudden sensorineural hearing loss, but the effectiveness of the nanogel form of the drug is slightly higher. Therefore, drug transfer based on nanogels can be considered to achieve better treatment results.
Collapse
Affiliation(s)
- Maryam Amizadeh
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Fazlinezhad
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Hasanalifard
- Clinical Sciences Institute, New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Mollasadra Street, Vanak Square, Tehran, Iran.
| |
Collapse
|
4
|
Parvin N, Joo SW, Mandal TK. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics (Basel) 2025; 14:207. [PMID: 40001450 PMCID: PMC11852044 DOI: 10.3390/antibiotics14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, and provide alternative therapeutic approaches. This review explores the diverse nanomaterial-based strategies used to combat antibiotic resistance, focusing on their mechanisms of action and practical applications. Nanomaterials such as metal nanoparticles, carbon-based nanomaterials, and polymeric nanostructures exhibit antibacterial properties through various pathways, including the generation of reactive oxygen species (ROS), disruption of bacterial membranes, and enhancement of antibiotic delivery. Additionally, the ability of nanomaterials to bypass traditional resistance mechanisms, such as biofilm formation and efflux pumps, has been demonstrated in numerous studies. This review also discusses the synergistic effects observed when nanomaterials are combined with conventional antibiotics, leading to increased bacterial susceptibility and reduced required dosages. By highlighting the recent advancements and clinical applications of nanomaterial-antibiotic combinations, this paper provides a comprehensive overview of how nanomaterials are reshaping the future of antibacterial therapies. Future research directions and challenges, including toxicity and scalability, are also addressed to guide the development of safer, more effective nanomaterial-based antibacterial treatments.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Al Yabhouni SA, Mozumder MS, Hassan N, Mourad AHI, Issa Md TMA. Nanocarrier-Based, ocular drug delivery: Challenges, prospects, and the therapeutic landscape in the United Arab Emirates. Int J Pharm 2024; 667:124899. [PMID: 39521159 DOI: 10.1016/j.ijpharm.2024.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human eyes have the most complex and advanced physiological defense barriers. Due to these barriers, efficient delivery of ocular drugs is a major challenge in the treatment of eye diseases and disorders. Posterior eye diseases such as retinopathy are the leading causes of impaired vision and blindness globally. The topical and systemic administration of drugs such as eye drops, ointments, intravitreal injections, intraocular implants, contact lenses, and emulsions are the perennial approaches employed to treat ocular diseases. However, these modalities are inefficient due to the low bioavailability of the active drug and the potential for drug-related cytotoxicity to the ocular tissue. In this review, the conventional approaches in ocular drug delivery systems (DDSs) are explored and the limitations associated with each technique are elucidated. A comparison between the different DDSs is presented, showing the most effective treatment techniques available to date. In addition, this review presents recent advances in the field of nanocarriers and microcarriers used in ocular drug delivery systems such as nanoparticles, nano-suspensions, nanofibers, nanogels, nano-liposomes, nano micelles, dendrimers, contact lens, microneedle, and implants. Further, this review identifies the utility of nano-carriers in enabling the development of new-generation ocular DDSs with low toxicity, high efficiency, and high stability of targeted drug delivery systems to overcome the limitations observed with conventional ocular DDSs. In addition, this manuscript sheds light on the incidence and unique landscape of ocular diseases in the United Arab Emirates (UAE), and the potential for employing novel ocular DDSs for targeted treatment of conditions such as diabetic retinopathy in the UAE. It also discusses the putative role genetic variants of the VEGF gene may play in predisposing the local population in the UAE to developing posterior eye segment diseases such as retinopathy.
Collapse
Affiliation(s)
- Salama A Al Yabhouni
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates; General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Nurudeen Hassan
- General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Abdel-Hamid I Mourad
- Mechanical & Aerospace Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Tareq M A Issa Md
- Consultant Ophthalmologist, Ultra Medical Center, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024; 8:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
7
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Qiu S, Zhu F, Tong L. Application of targeted drug delivery by cell membrane-based biomimetic nanoparticles for inflammatory diseases and cancers. Eur J Med Res 2024; 29:523. [PMID: 39472940 PMCID: PMC11523786 DOI: 10.1186/s40001-024-02124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Drug-carrying nanoparticles can be recognized and captured by macrophages and cleared away by the immune system, resulting in reduced drug efficacy and representing the main drawbacks. Biomimetic nanoparticles, which are coated with cell membranes from natural resources, have been applied to address this problem. This type of nanoparticle maintains some specific biological activities, allowing them to carry drugs reaching designated tissues effectively and have a longer time in circulation. This review article aims to summarize recent progress on biomimetic nanoparticles based on cell membranes. In this paper, we have introduced the classification of biomimetic nanoparticles, their preparation and characterization, and their applications in inflammatory diseases and malignant tumors. We have also analyzed the shortcomings and prospects of this technology, hoping to provide some clues for basic researchers and clinicians engaged in this field.
Collapse
Affiliation(s)
- Shijie Qiu
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Feifan Zhu
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China.
| |
Collapse
|
9
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
S F, Umashankar MS, Narayanasamy D. A Comprehensive Review of Nanogel-Based Drug Delivery Systems. Cureus 2024; 16:e68633. [PMID: 39371842 PMCID: PMC11451309 DOI: 10.7759/cureus.68633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Polymers can be crosslinked chemically or physically to create three-dimensional hydrogel particles with sub-micron dimensions, known as nanogels. Their customizable size, ease of manufacture, expansion potential, bio-integration, water affinity, and reactivity to various stimuli, including temperature, pH, light, and biological agents, provide them with considerable advantages over conventional drug delivery techniques. Nanogels possess properties of both hydrogels and nanoparticles and can be categorized into nanohydrogels and nano-organogels. These systems exhibit exceptional drug-loading capability, stability, biological consistency, and environmental responsiveness. Their hallmark lies in their swelling behavior, enabling substantial water absorption while maintaining structural integrity. Preparation methods involve polymer precursors or heterogeneous polymerization of monomers. Nanogels are promising for various drug administration techniques, including local anesthetics, vaccines, and transdermal drug delivery, due to their ability to encapsulate multiple bioactive ingredients, enhancing therapeutic efficacy and stability.
Collapse
Affiliation(s)
- Ferozekhan S
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Marakanam S Umashankar
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
11
|
Castangia I, Aroffu M, Allaw M, Perra M, Baroli B, Usach I, Peris JE, Valenti D, Diez-Sales O, Sauri AR, Nacher A, Fernàndez-Busquets X, Manconi M, Manca ML. Beclomethasone loaded liposomes enriched with mucin: A suitable approach for the control of skin disorders. Biomed Pharmacother 2024; 177:116998. [PMID: 38901197 DOI: 10.1016/j.biopha.2024.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Inflammatory skin disorders are the fourth leading cause of chronic non-fatal conditions, which have a serious impact on the patient quality of life. Due to their treatment with conventional corticosteroids, which often result in poor therapeutic efficacy, relapses and systemic side effects from prolonged therapy, these diseases represent a global burden that negatively impacts the global economy. To avoid these problems and optimize corticosteroid benefits, beclomethasone was loaded into liposome formulations specifically tailored for skin delivery. These formulations were enhanced with mucin (0.1 and 0.5 % w/v) to further ensure prolonged formulation permanence at the site of application. The addition of 0.5 % w/v mucin resulted in the formation of small unilamellar vesicles and multicompartment vesicles. Liposomes and 1mucin-liposomes were smaller (∼48 and ∼61 nm, respectively) and more monodispersed (PI ∼ 0.14 and ∼ 0.17, respectively) than 5mucin-liposomes, which were larger (∼137 nm), slightly polydispersed (PI ∼ 0.23), and less stable during storage (4 months in the dark at 25 °C). Liposomes were negatively charged (∼ -79 mV) irrespective of their composition, and capable of incorporating high amount of beclomethasone (∼ 80 %). In vitro studies on skin fibroblasts and keratinocytes confirmed the high biocompatibility of all formulations (viability ≥ 95 %). However, the use of mucin-liposomes resulted in higher efficacy against nitric oxide production and free radical damage. Finally, topical applications using 12-O-tetradecanoylphorbol-13-acetate-injured skin in vivo experiments showed that only the mucin-enriched formulations could restore healthy conditions within 4 days, underscoring promise as a treatment for skin disorders.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy.
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Iris Usach
- Department. of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Burjassot 46100, Spain
| | - José Esteban Peris
- Department. of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Burjassot 46100, Spain
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Octavio Diez-Sales
- Department. of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Burjassot 46100, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, Valencia, Burjassot 46100, Spain
| | - Amparo Ruiz Sauri
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Amparo Nacher
- Department. of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Burjassot 46100, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, Valencia, Burjassot 46100, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, Barcelona ES-08036, Spain; Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona ES-08028, Spain
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, CA 09042, Italy
| |
Collapse
|
12
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
13
|
Mustafa A, Indiran MA, Ramalingam K, Perumal E, Shanmugham R, Karobari MI. Anticancer potential of thiocolchicoside and lauric acid loaded chitosan nanogel against oral cancer cell lines: a comprehensive study. Sci Rep 2024; 14:9270. [PMID: 38649421 PMCID: PMC11035588 DOI: 10.1038/s41598-024-60046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Ameena Mustafa
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Meignana Arumugham Indiran
- Department of Public Health Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Karthikeyan Ramalingam
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Elumalai Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Rajeshkumar Shanmugham
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Mohmed Isaqali Karobari
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
14
|
Gao Y, Ouyang Z, Li G, Yu Q, Dai W, Rodrigues J, Pich A, Abdul Hameed MM, Shen M, Shi X. Poly(alkylideneamine) Dendrimer Nanogels Codeliver Drug and Nucleotide To Alleviate Anticancer Drug Resistance through Immunomodulation. ACS MATERIALS LETTERS 2024; 6:517-527. [DOI: 10.1021/acsmaterialslett.3c01426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuyu Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
15
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
16
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
18
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
19
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
20
|
Wang P, Yang Y, Wen H, Li D, Zhang H, Wang Y. Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. Int J Biol Macromol 2023; 250:126143. [PMID: 37544564 DOI: 10.1016/j.ijbiomac.2023.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.
Collapse
Affiliation(s)
- Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 211816, China
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Haoyu Wen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dongqing Li
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
21
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Salathia S, Gigliobianco MR, Casadidio C, Di Martino P, Censi R. Hyaluronic Acid-Based Nanosystems for CD44 Mediated Anti-Inflammatory and Antinociceptive Activity. Int J Mol Sci 2023; 24:ijms24087286. [PMID: 37108462 PMCID: PMC10138575 DOI: 10.3390/ijms24087286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The nervous and immune systems go hand in hand in causing inflammation and pain. However, the two are not mutually exclusive. While some diseases cause inflammation, others are caused by it. Macrophages play an important role in modulating inflammation to trigger neuropathic pain. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has a well-known ability to bind with the cluster of differentiation 44 (CD44) receptor on classically activated M1 macrophages. Resolving inflammation by varying the molecular weight of HA is a debated concept. HA-based drug delivery nanosystems such as nanohydrogels and nanoemulsions, targeting macrophages can be used to relieve pain and inflammation by loading antinociceptive drugs and enhancing the effect of anti-inflammatory drugs. This review will discuss the ongoing research on HA-based drug delivery nanosystems regarding their antinociceptive and anti-inflammatory effects.
Collapse
Affiliation(s)
- Saniya Salathia
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| | | | | | - Piera Di Martino
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, 66100 Chieti, Italy
| | - Roberta Censi
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| |
Collapse
|
23
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
24
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Ling Y, Ramalingam M, Lv X, Zeng Y, Qiu Y, Si Y, Pedraz JL, Kim HW, Hu J. Recent Advances in Nanomedicine Development for Traumatic Brain Injury. Tissue Cell 2023; 82:102087. [PMID: 37060747 DOI: 10.1016/j.tice.2023.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality worldwide, and it is also a risk factor for neurodegeneration. However, there has not been perceptible progress in treating acute TBI over the last few years, mainly due to the inability of therapeutic drugs to cross the blood-brain barrier (BBB), failing to exert significant pharmacological effects on the brain parenchyma. Recently, nanomedicines are emerging as a powerful tool for the treatment of TBI where nanoscale materials (also called nanomaterials) are employed to deliver therapeutic agents. The advantages of using nanomaterials as a drug carrier include their high solubility and stability, high carrier capacity, site-specific, improved pharmacokinetics, and biodistribution. Keeping these points in consideration, this article reviews the pathophysiology, current treatment options, and emerging nanomedicine strategies for the treatment of TBI. The review will help readers to gain insight into the state-of-the-art of nanomedicine as a new tool for the treatment of TBI.
Collapse
|
26
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15031026. [PMID: 36986886 PMCID: PMC10051563 DOI: 10.3390/pharmaceutics15031026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
Affiliation(s)
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
27
|
Singh G, Majeed A, Singh R, George N, Singh G, Gupta S, Singh H, Kaur G, Singh J. CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review. RSC Adv 2023; 13:2912-2936. [PMID: 36756399 PMCID: PMC9847229 DOI: 10.1039/d2ra05592a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Copper(i) catalyzed alkyne azide cycloaddition (CuAAC), the quintessential example of 'click chemistry', provides an adaptable and adequate platform for the synthesis of nanogels for sustained drug release at targeted sites because of their better biocompatibility. The coupling of drugs, carried out via various synthetic routes including CuAAC, into long-chain polymeric forms like nanogels has exhibited considerable assurance in therapeutic advancements and intracellular drug delivery due to the progression of water solubility, evacuation of precocious drug release, and improved upthrust of the pharmacokinetics of the nanogels, thereby rendering them as better and efficient drug carriers. The inefficiency of drug transmission to the target areas due to the resistance of complex biological barriers in vivo is a major hurdle that impedes the therapeutic translation of nanogels. This review compiles the data of nanogels synthesized specifically via CuAAC 'click' methodology, as scaffolds for targeted drug delivery and their assimilation into nanomedicine. In addition, it elaborates the ability of CuAAC to graft specific moieties and conjugating biomolecules like proteins and growth factors, onto orthogonally functionalized polymer chains with various chemical groups resulting in nanogels that are not only more appealing but also more effective at delivering drugs, thereby enhancing their site-specific target approach and initiating selective therapies.
Collapse
Affiliation(s)
- Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Ather Majeed
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Nancy George
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab UniversityChandigarh 160014India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana 141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara 144411 Punjab India
| |
Collapse
|
28
|
Mishra S, Jayronia S, Tyagi LK, Kohli K. Targeted Delivery Strategies of Herbal-Based Nanogels: Advancements and Applications. Curr Drug Targets 2023; 24:1260-1270. [PMID: 37953621 DOI: 10.2174/0113894501275800231103063853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Sonali Jayronia
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Lalit Kumar Tyagi
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| |
Collapse
|
29
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
30
|
Mendez-Encinas MA, Carvajal-Millan E. Theranostic nanogels. DESIGN AND APPLICATIONS OF THERANOSTIC NANOMEDICINES 2023:27-51. [DOI: 10.1016/b978-0-323-89953-6.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Niu J, Yuan M, Liu Y, Wang L, Tang Z, Wang Y, Qi Y, Zhang Y, Ya H, Fan Y. Silk peptide-hyaluronic acid based nanogels for the enhancement of the topical administration of curcumin. Front Chem 2022; 10:1028372. [PMID: 36199664 PMCID: PMC9527322 DOI: 10.3389/fchem.2022.1028372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study focused on the development of Cur-loaded SOHA nanogels (Cur-SHNGs) to enhance the topical administration of Cur. The physiochemical properties of Cur-SHNGs were characterized. Results showed that the morphology of the Cur-SHNGs was spherical, the average size was 171.37 nm with a zeta potential of −13.23 mV. Skin permeation experiments were carried out using the diffusion cell systems. It was found that the skin retention of Cur-SHNGs was significantly improved since it showed the best retention value (0.66 ± 0.17 μg/cm2). In addition, the hematoxylin and eosin staining showed that the Cur-SHNGs improved transdermal drug delivery by altering the skin microstructure. Fluorescence imaging indicated that Cur-SHNGs could effectively deliver the drug to the deeper layers of the skin. Additionally, Cur-SHNGs showed significant analgesic and anti-inflammatory activity with no skin irritation. Taken together, Cur-SHNGs could be effectively used for the topical delivery of therapeutic drugs.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Ming Yuan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yao Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Liye Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yihan Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yueheng Qi
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | | | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yanli Fan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
32
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
33
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Nair VS, Nachimuthu R. The role of NiTi shape memory alloys in quality of life improvement through medical advancements: A comprehensive review. Proc Inst Mech Eng H 2022; 236:923-950. [PMID: 35486134 DOI: 10.1177/09544119221093460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The significance of advanced smart materials in recent technological research and advancement is apparent from its extensive use in present day devices and instruments. Of the various smart materials in use today, the fascinating category of shape memory alloys (SMAs) is equipped with the ability to return to a previously memorized shape under certain thermomechanical or magnetic stimuli. The unique property of shape memory effect and superelasticity displayed by these materials along with good biocompatibility and corrosion resistance make them ideal for biomedical applications. The various applications of SMAs in surgical instruments, surgical implants, and assistive and rehabilitative devices have significant effect on the day to day life of people in the present age. Majority of these biomedical devices belong to the orthodontic, orthopedic, or surgical fields. Other remarkable applications of SMAs such as in the production of prostheses and orthoses designed through the biomimetic approach are also highly influential in improving the quality of life. The present paper provides an overview of the various properties of shape memory alloys and their applications in the biomedical field over the years, that have had a significant impact on the realm of medical science.
Collapse
Affiliation(s)
- Viswajith S Nair
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Radhika Nachimuthu
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
35
|
Yadav K, Singh D, Singh MR, Minz S, Sahu KK, Kaurav M, Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Wang Y, Jiang G. Advances in the Novel Nanotechnology for the Targeted Tumor Therapy by the Transdermal Drug Delivery. Anticancer Agents Med Chem 2022; 22:2708-2714. [PMID: 35319394 DOI: 10.2174/1871520622666220321093000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Despite modern medicine advances greatly, cancer remains a serious challenge to world health for which effective methods of treatment have hardly been developed yet. However, throughout the recent years, the rapid-developing nanotechnology has provided a new outlook of cancer therapy by transdermal drug delivery. By disrupting the stratum corneum, drugs are delivered through the skin and navigated to the tumor site by drug delivery systems such as nanogels, microneedles, etc. The superiorities include the improvement of drug pharmacokinetics as well as reduced side effects. This paper reviews the reported novel development of transdermal drug delivery systems for targeted cancer therapy. Advanced techniques for penetrating the skin will be discussed as well.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Chi-na
| |
Collapse
|
37
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
38
|
Effect of Cationic Lipid Nanoparticle Loaded siRNA with Stearylamine against Chikungunya Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041170. [PMID: 35208958 PMCID: PMC8877324 DOI: 10.3390/molecules27041170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023]
Abstract
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.
Collapse
|
39
|
Formulation Development and Evaluation of Pravastatin-Loaded Nanogel for Hyperlipidemia Management. Gels 2022; 8:gels8020081. [PMID: 35200462 PMCID: PMC8871575 DOI: 10.3390/gels8020081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperlipidemia is a crucial risk factor for the initiation and progression of atherosclerosis, ultimately leading to cardiovascular disease. The nanogel-based nanoplatform has emerged as an extremely promising drug delivery technology. Pravastatin Sodium (PS) is a cholesterol-lowering drug used to treat hyperlipidemia. This study aimed to fabricate Pravastatin-loaded nanogel for evaluation of its effect in hyperlipidemia treatment. Pravastatin-loaded chitosan nanoparticles (PS-CS-NPs) were prepared by the ionic gelation method; then, these prepared NPs were converted to nanogel by adding a specified amount of 5% poloxamer solution. Various parameters, including drug entrapment efficacy, in vitro drug release, and hemolytic activity of the developed and optimized formulation, were evaluated. The in vitro drug release of the nanogel formulation revealed the sustained release (59.63% in 24 h) of the drug. The drug excipients compatibility studies revealed no interaction between the drug and the screened excipients. Higher drug entrapment efficacy was observed. The hemolytic activity showed lesser toxicity in nanoformulation than the pure drug solution. These findings support the prospective use of orally administered pravastatin-loaded nanogel as an effective and safe nano delivery system in hyperlipidemia treatment.
Collapse
|
40
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
41
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
42
|
|
43
|
Wang Y, Sun H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics 2021; 13:2108. [PMID: 34959388 PMCID: PMC8709338 DOI: 10.3390/pharmaceutics13122108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections have threatened the lives of human beings for thousands of years either as major diseases or complications. The elimination of bacterial infections has always occupied a pivotal position in our history. For a long period of time, people were devoted to finding natural antimicrobial agents such as antimicrobial peptides (AMPs), antibiotics and silver ions or synthetic active antimicrobial substances including antimicrobial peptoids, metal oxides and polymers to combat bacterial infections. However, with the emergence of multidrug resistance (MDR), bacterial infection has become one of the most urgent problems worldwide. The efficient delivery of antimicrobial agents to the site of infection precisely is a promising strategy for reducing bacterial resistance. Polymeric nanomaterials have been widely studied as carriers for constructing antimicrobial agent delivery systems and have shown advantages including high biocompatibility, sustained release, targeting and improved bioavailability. In this review, we will highlight recent advances in highly efficient delivery of antimicrobial agents by polymeric nanomaterials such as micelles, vesicles, dendrimers, nanogels, nanofibers and so forth. The biomedical applications of polymeric nanomaterial-based delivery systems in combating MDR bacteria, anti-biofilms, wound healing, tissue engineering and anticancer are demonstrated. Moreover, conclusions and future perspectives are also proposed.
Collapse
Affiliation(s)
- Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
44
|
In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid. Polymers (Basel) 2021; 13:polym13234071. [PMID: 34883575 PMCID: PMC8659171 DOI: 10.3390/polym13234071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM) nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology, AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive behavior. All nanogel formulations could significantly increase AA water solubility and the stability was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929 cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations. In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both in vitro and in vivo for hydrophobic AA molecules.
Collapse
|
45
|
Zoratto N, Forcina L, Matassa R, Mosca L, Familiari G, Musarò A, Mattei M, Coviello T, Di Meo C, Matricardi P. Hyaluronan-Cholesterol Nanogels for the Enhancement of the Ocular Delivery of Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13111781. [PMID: 34834195 PMCID: PMC8619261 DOI: 10.3390/pharmaceutics13111781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.
Collapse
Affiliation(s)
- Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.F.); (A.M.)
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (R.M.); (G.F.)
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy;
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (R.M.); (G.F.)
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy; (L.F.); (A.M.)
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (N.Z.); (T.C.); (C.D.M.)
- Correspondence:
| |
Collapse
|
46
|
Soliman MM, Sakr TM, Rashed HM, Hamed AA, Abd El-Rehim HA. Polyethylene oxide-polyacrylic acid-folic acid (PEO-PAAc) nanogel as a 99m Tc targeting receptor for cancer diagnostic imaging. J Labelled Comp Radiopharm 2021; 64:534-547. [PMID: 34582054 DOI: 10.1002/jlcr.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Nanoparticles are frequently used as targeting delivery systems for therapeutic and diagnostic radiopharmaceuticals. Polyethylene oxide-polyacrylic acid (PEO-PAAc) nanogel was prepared via γ-radiation-induced polymerization. Variable factors affecting nanoparticles size were investigated. The nanogel was radiolabeled with the imaging radioisotope 99m Tc and finally conjugated with folic acid to target folate receptor actively. PEO-PAAc-folic acid gel was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). Biodistribution was studied in normal mice and solid tumor-bearing mice via intravenous and intratumor injections of the radiolabeled PEO-PAAc-folic acid nanogel. Results of biodistribution showed high selective uptake of the prepared complex in tumor muscle compared with normal muscle for both intravenous and intratumor injections. The T/NT ratio was found to be 6.186 and 294.5 for intravenous and intratumor injections, respectively. Consequently, 99m Tc-PEO-PAAc-folic acid complex could be a promising agent for cancer diagnostic imaging.
Collapse
Affiliation(s)
- Moamen M Soliman
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hassan M Rashed
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
47
|
Nanogels: An overview of properties, biomedical applications, future research trends and developments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. STARCH-STARKE 2021. [DOI: 10.1002/star.202100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pelin Saracoglu
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| | - Mehmet Murat Ozmen
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
49
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
50
|
Nicu R, Ciolacu F, Ciolacu DE. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021; 13:1125. [PMID: 34452086 PMCID: PMC8399340 DOI: 10.3390/pharmaceutics13081125] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising "green" materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals-CNC, cellulose nanofibrils-CNF, and bacterial nanocellulose-BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Diana E. Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| |
Collapse
|