1
|
Wang W, Wang Y, Huang X, Wu P, Li L, Zhang Y, Chen Y, Chen Z, Li C, Zhou Y, Zhang J. Pathophysiology-Directed Engineering of a Combination Nanoanalgesic for Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405483. [PMID: 39716944 PMCID: PMC11848598 DOI: 10.1002/advs.202405483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics. Recognizing the role of neuroinflammation, an inflammation-resolving amphiphilic conjugate PPT is designed and synthesized by simultaneously conjugating polyethylene glycol, phenylboronic acid pinacol ester, and Tempol onto a cyclic scaffold. PPT can self-assemble into nanomicelles (termed PPTN). Following intravenous injection, PPTN preferentially accumulates in the injured nerve, ameliorates the neuroinflammatory milieu, and promotes nerve regeneration, thereby shortening neuropathic pain duration in rats. Moreover, the Ca2+ channel α2δ1 subunit is identified as a therapeutic target by RNA-sequencing analysis of the injured nerve. Based on this target, a mimicking peptide (AD peptide) is screened as an analgesic. By packaging AD peptide into PPTN, a combination nano-analgesic APTN is developed. Besides potentiated anti-hyperalgesic effects due to site-specific delivery and on-demand release of AD peptide at target sites, APTN simultaneously inhibits neuroinflammation and promotes nerve regeneration by reprogramming macrophages via regulating MAPK/NF-kB signaling pathways and NLRP3 inflammasome activation, thus affording synergistic efficacies in treating nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Wenkai Wang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsGeneral Hospital of PLA Xizang Military Area CommandLhasa850007P. R. China
| | - Yan Wang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- War Trauma Medical CenterState key Laboratory of TraumaBurns and Combined injuryArmy Medical CenterDaping HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Xinle Huang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
- Department of OrthopedicsThe Second Naval Hospital of Southern Theater CommandSanya572000P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- School of PharmacyHanzhong Vocational and Technical CollegeHanzhong723002P. R. China
| | - Lanlan Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Yang Zhang
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yihui Chen
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Zhiyu Chen
- Department of OrthopedicsThe First Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Changqing Li
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Yue Zhou
- Department of OrthopedicsXinqiao HospitalThird Military Medical University (Army Medical University)Chongqing400037P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, Jiulongpo DistrictChongqing400039P. R. China
| |
Collapse
|
2
|
Zhang J, Chen S, Zhang R, Zheng X, Liu C, Zhang J, Zhang L, Yang Z, Wang L. Rapamycin ameliorates inflammatory pain via recovery of autophagy flux mediated by mammalian target of rapamycin (mTOR) signaling pathway in the rat spinal cord. Int J Immunopathol Pharmacol 2025; 39:3946320251317284. [PMID: 39895094 PMCID: PMC11789103 DOI: 10.1177/03946320251317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of rapamycin on inflammatory pain in rats. INTRODUCTION Inflammatory pain is a kind of pathological pain caused by inflammatory mediators or factors such as TNF-α (Tumor Necrosis Factor-α), IL-1β (Interleukin-1β), and IL-6 (Interleukin-6). NSAIDs and opioid analgesics are commonly used for relieving inflammatory pain, but the side effects limit their clinical application. New drugs based on new mechanisms for inflammatory pain are urgently needed. Autophagy is an evolutionarily conserved homeostatic process for lysosomal degradation of intracellular components. Recent reports indicate the involvement of autophagy in the development and maintenance of neuropathic pain, but the role of autophagy in inflammatory pain still needs to be explored. METHODS The pain-related behaviors of rats were studied by paw withdrawal threshold and paw withdrawal latency. The autophagy level of the rat spinal cord was detected by western blots. The concentrations of TNF-α, IL-1β, and IL-6 were detected by ELISA. RESULTS We found that the paw withdrawal threshold and paw withdrawal latency were both significantly decreased after CFA (Complete Freund's Adjuvant) injection, accompanied by the activation of mTOR signaling pathway and the inhibited autophagy flux in the spinal cord. And inflammatory cytokines were increased in the spinal cord after CFA injection. Then, we studied the effect of rapamycin on CFA-induced inflammatory pain in rats, and found that rapamycin restored the autophagy flux and significantly reduced mechanical allodynia and thermal hyperalgesia. In addition, rapamycin significantly decreased the levels of TNF-α, IL-1β, and IL-6 after CFA injection in the spinal cord. CONCLUSION Our results suggested that rapamycin might be a promising candidate for the treatment of inflammatory pain by restoring the autophagy flux in the spinal cord.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Shi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Rongyi Zhang
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoting Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Likui Wang
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Salem R, Eldehna WM, Abdel-Aziz HA. Spiro-fused indoline-quinazoline hybrids as smart bombs against TNF-α-mediated inflammation. Int J Biol Macromol 2024; 283:137554. [PMID: 39549799 DOI: 10.1016/j.ijbiomac.2024.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Inflammation is central to numerous diseases, highlighting the need for new anti-inflammatory agents. This study explores the potential of novel spirofused indoline-quinazoline hybrids (4a-p) as anti-inflammatory compounds, inspired by a spiroisatin analogue (VI) that showed modest TNF-α inhibition. We aimed to enhance activity by modifying the isatin scaffold: first, introducing N-alkylation (propyl, butyl, or isobutyl) to improve hydrophobic interactions within the TNF-α dimer active site; second, adding halogens (F, Cl, Br) at the 5-position to increase lipophilicity. Anti-inflammatory activity against TNF-α was confirmed in-vivo for all synthesized analogues, with 4b, 4e, 4k, and 4n emerging as the top candidates. Further studies on these four compounds assessed their analgesic effects, as well as their impact on PGE2, NF-κB, paw thickness, and paw weight. In-vitro analyses revealed nanomolar TNFR2-TNF-α binding inhibition for the four leads. Safety evaluations included histopathology, ulcerogenic potential, kidney and liver functions, and acute hemotoxicity. In-silico studies examined drug-likeness, pharmacokinetics, and TNF-α dimer interactions. These results suggest that the four lead compounds possess promising profiles compared to standard therapies.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
4
|
Lubschinski TL, Pollo LAE, de Oliveira PGF, Nardino LA, Mohr ETB, da Silva Buss Z, Sandjo LP, Biavatti MW, Daltoé FP, Dalmarco EM. Preclinical evidence of the anti-inflammatory effect and toxicological safety of aryl-cyclohexanone in vivo. Fundam Clin Pharmacol 2024; 38:1103-1115. [PMID: 39155123 DOI: 10.1111/fcp.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Respiratory distress syndrome is a complex inflammatory condition defined by the presence of acute hypoxemia and cellular infiltration with diffuse alveolar injury following a tissue injury, such as acute lung injury. The inflammatory process involved in this pathology is a defense mechanism of the body against infectious agents and/or tissue injuries. However, when the condition is not reversed, it becomes a significant cause of tissue damage, sometimes leading to loss of function of the affected organ. Therefore, it is essential to understand the mechanisms underlying inflammation, as well as the development of new therapeutic agents that reduce inflammatory damage in these cases. Aryl-cyclohexanone derivatives have previously shown significant anti-inflammatory activity linked to an immunomodulatory capacity in vitro and may be good candidates for therapies in which inflammation plays a central role. METHODS Was evaluated the anti-inflammatory capacity of a synthesized molecule aryl-cyclohexanone in the murine model of lipopolysaccharide (LPS)-induced acute lung injury. The assessment of acute oral toxicity follows the Organization for Economic Co-operation and Development (OECD) guideline 423. RESULTS The results demonstrated that the studied molecule protects against LPS-induced inflammation. We observed a decrease in the migration of total and differential leukocytes to the bronchoalveolar lavage fluid (BALF), in addition to a reduction in exudation, myeloperoxidase (MPO) activity, nitric oxide metabolites, and the secretion of pro-inflammatory cytokines (alpha tumor necrosis factors [TNF-α], interleukin-6 [IL-6], interferon-gamma [IFN-γ], and monocyte chemoattractant protein-1 [MCP-1]). Finally, aryl cyclohexanone did not show signs of acute oral toxicity (OECD 423). CONCLUSIONS The results prove our hypothesis that aryl-cyclohexanone is a promising molecule for developing a new, safe anti-inflammatory drug.
Collapse
Affiliation(s)
- Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luiz Antonio Escorteganha Pollo
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luigi Arruda Nardino
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Felipe Perozzo Daltoé
- Department of Pathology, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Zuo CY, Gou CY, Zhang CS, Zhou X, Lv P, Zhang HX, Fan ZP, Tian FW, Wang ZX. Role of SIRT5 in the analgesic effectiveness of moxibustion at ST36 in mice with inflammatory pain. Heliyon 2023; 9:e17765. [PMID: 37455963 PMCID: PMC10345340 DOI: 10.1016/j.heliyon.2023.e17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Sirtuine5 (SIRT5) is an important molecule involved in the pathology of inflammatory diseases. To investigate the impact of SIRT5 on the analgesic effectiveness of moxibustion, we established a complete Freund's adjuvant- (CFA-) induced inflammatory pain in mice model. Moxibustion was applied at the Zusanli (ST36) acupoint in mice with inflammatory pain. The analgesic effectiveness was evaluated by thermal hyperalgesia and mechanical allodynia tests in the right paws after CFA injection. The expression of inflammatory cytokines, including the pro-inflammatory factors IL-1β and TNF-α, and the anti-inflammatory factors IL-4 and TGF-β expressions, was evaluated using by ELISA. Furthermore, SIRT5 was evaluated by immunofluorescence and western blotting. The results showed that, compared with the CFA group, both thermal and mechanical pain thresholds increased with moxibustion and the SIRT5 inhibitor MC3482 intervention at ST36. Additionally, compared to the CFA-induced group, the inflammatory mediators, including IL-1β and TNF-α, decreased, while the anti-inflammatory cytokines IL-4 and TGF-β increased with moxibustion and MC3482 ST36 acupoint injection. Western blot results showed a decreased expression of SIRT5 at the ST36 site with moxibustion and MC3482 injection, compared to the CFA-induced group. SIRT5 expression in the right paw of mice injected with moxibustion and MC3482 was higher than that in the CFA-induced group. This study revealed that SIRT5 expression is involved in moxibustion analgesia and may be a potential mediator in the regulation of analgesia.
Collapse
Affiliation(s)
- Chuan-yi Zuo
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| | - Chun-yan Gou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| | - Cheng-shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Xi Zhou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| | - Peng Lv
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan, China
| | - Han-xiao Zhang
- Faculty of Medicine, Université Paris-Saclay, Villejuif, 94800, France
| | - Zheng-peng Fan
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| | - Feng-wei Tian
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| | - Zhu-xing Wang
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, Chongqing, China
| |
Collapse
|
6
|
Börzsei R, Borbély É, Kántás B, Hudhud L, Horváth Á, Szőke É, Hetényi C, Helyes Z, Pintér E. The heptapeptide somatostatin analogue TT-232 exerts analgesic and anti-inflammatory actions via SST 4 receptor activation: In silico, in vitro and in vivo evidence in mice. Biochem Pharmacol 2023; 209:115419. [PMID: 36693436 DOI: 10.1016/j.bcp.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, vascular, immune and neuronal functions, cell proliferation through 5 Gi protein-coupled receptors (SST1-SST5). SS released from the capsaicin-sensitive peptidergic sensory nerves mediates anti-inflammatory and antinociceptive effects without endocrine actions via SST4. The therapeutic use of the native SS is limited by its diverse biological actions and short plasma elimination half-life. Therefore, SST4 selective SS analogues could be promising analgesic and anti-inflammatory drug candidates with new mode of action. TT-232 is a cyclic heptapeptide showing great affinity to SST4 and SST1. Here, we report the in silico SST4 receptor binding mechanism, in vitro binding (competition assay) and cAMP- decreasing effect of TT-232 in SST4-expressing CHO cells, as well as its analgesic and anti-inflammatory actions in chronic neuropathic pain and arthritis models using wildtype and SST4-deficient mice. TT-232 binds to SST4 with similar interaction energy (-11.03 kcal/mol) to the superagonist J-2156, displaces somatostatin from SST4 binding (10 nM to 30 µM) and inhibits forskolin-stimulated cAMP accumulation (EC50: 371.6 ± 58.03 nmol; Emax: 78.63 ± 2.636 %). Its i.p. injection (100, 200 µg/kg) results in significant, 35.7 % and 50.4 %, analgesic effects upon single administration in chronic neuropathic pain and repeated injection in arthritis models in wildtype, but not in SST4-deficient mice. These results provide evidence that the analgesic effect of TT-232 is mediated by SST4 activation, which might open novel drug developmental potentials. Chemical compounds Chemical compounds studied in this article TT-232 (PubChem CID: 74053735).
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Lina Hudhud
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary.
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624 Pécs, Hungary.
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi str. 10, H-7629 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary; PharmInVivo Ltd., Szondi str. 10, H-7629 Pécs, Hungary; Algonist Biotechnologies GmbH, Karl-Farkas-Gasse str. 22, A-1030 Vienna, Austria; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary.
| |
Collapse
|
7
|
Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. Int J Mol Sci 2022; 23:ijms23105478. [PMID: 35628290 PMCID: PMC9141227 DOI: 10.3390/ijms23105478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory responses by the innate and adaptive immune systems protect against infections and are essential to health and survival. Many diseases including atherosclerosis, osteoarthritis, rheumatoid arthritis, psoriasis, and obesity involve persistent chronic inflammation. Currently available anti-inflammatory agents, including non-steroidal anti-inflammatory drugs, steroids, and biologics, are often unsafe for chronic use due to adverse effects. The development of effective non-toxic anti-inflammatory agents for chronic use remains an important research arena. We previously reported that oral administration of Oxy210, a semi-synthetic oxysterol, ameliorates non-alcoholic steatohepatitis (NASH) induced by a high-fat diet in APOE*3-Leiden.CETP humanized mouse model of NASH and inhibits expression of hepatic and circulating levels of inflammatory cytokines. Here, we show that Oxy210 also inhibits diet-induced white adipose tissue inflammation in APOE*3-Leiden.CETP mice, evidenced by the inhibition of adipose tissue expression of IL-6, MCP-1, and CD68 macrophage marker. Oxy210 and related analogs exhibit anti-inflammatory effects in macrophages treated with lipopolysaccharide in vitro, mediated through inhibition of toll-like receptor 4 (TLR4), TLR2, and AP-1 signaling, independent of cyclooxygenase enzymes or steroid receptors. The anti-inflammatory effects of Oxy210 are correlated with the inhibition of macrophage polarization. We propose that Oxy210 and its structural analogs may be attractive candidates for future therapeutic development for targeting inflammatory diseases.
Collapse
|
8
|
Human Somatostatin SST 4 Receptor Transgenic Mice: Construction and Brain Expression Pattern Characterization. Int J Mol Sci 2021; 22:ijms22073758. [PMID: 33916620 PMCID: PMC8038480 DOI: 10.3390/ijms22073758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Somatostatin receptor subtype 4 (SST4) has been shown to mediate analgesic, antidepressant and anti-inflammatory functions without endocrine actions; therefore, it is proposed to be a novel target for drug development. To overcome the species differences of SST4 receptor expression and function between humans and mice, we generated an SST4 humanized mouse line to serve as a translational animal model for preclinical research. A transposon vector containing the hSSTR4 and reporter gene construct driven by the hSSTR4 regulatory elements were created. The vector was randomly inserted in Sstr4-deficient mice. hSSTR4 expression was detected by bioluminescent in vivo imaging of the luciferase reporter predominantly in the brain. RT-qPCR confirmed the expression of the human gene in the brain and various peripheral tissues consistent with the in vivo imaging. RNAscope in situ hybridization revealed the presence of hSSTR4 transcripts in glutamatergic excitatory neurons in the CA1 and CA2 regions of the hippocampus; in the GABAergic interneurons in the granular layer of the olfactory bulb and in both types of neurons in the primary somatosensory cortex, piriform cortex, prelimbic cortex and amygdala. This novel SST4 humanized mouse line might enable us to investigate the differences of human and mouse SST4 receptor expression and function and assess the effects of SST4 receptor agonist drug candidates.
Collapse
|
9
|
Borbély É, Hunyady Á, Pohóczky K, Payrits M, Botz B, Mócsai A, Berger A, Szőke É, Helyes Z. Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Front Pharmacol 2021; 11:594479. [PMID: 33519457 PMCID: PMC7839295 DOI: 10.3389/fphar.2020.594479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Éva Borbély
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Hunyady
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Éva Szőke
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
10
|
Rosanortriterpenes A-B, Two Promising Agents from Rosa laevigata var. leiocapus, Alleviate Inflammatory Responses and Liver Fibrosis in In Vitro Cell Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8872945. [PMID: 33224259 PMCID: PMC7673933 DOI: 10.1155/2020/8872945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 11/18/2022]
Abstract
Rosanortriterpenes A–B (RTA and RTB), two nortriterpenoids, are characteristic constituents in the fruits of Rosa laevigata var. leiocapus. However, pharmacological studies on these compounds are still scarce. In the present study, we aim to investigate the anti-inflammatory mechanisms associated with the effects of RTA–B in RAW264.7 macrophages and LO2 cells by detecting cell viabilities, nitric oxide (NO) production, tumour necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) production. Simultaneously, the anti-inflammatory action mechanisms of these two compounds were illustrated through western blot assay. Besides, the antihepatic fibrosis activities of these compounds have also been explored. The results demonstrated that RTA and RTB inhibited the production of NO, TNF-α, and IL-6 and suppressed liver fibrosis. RTA and RTB treatment also greatly inhibited the activation of NF-kappaB (NF-κB) pathway. Our study confirmed the promising anti-inflammatory and anti-liver fibrosis actions of RTA–B, suggesting that they might be developed as alternative and promising drugs for the treatment of hepatic inflammatory and fibrotic diseases.
Collapse
|
11
|
Kadambar AK, Kalluraya B, Singh S, Agarwal V, Revanasiddappa BC. One‐pot three‐component azide‐alkyne
cycloaddition: Synthesis of new pyrazole, 1,2,
3‐triazole
, and oxadiazole tethered and their
anti‐inflammatory
, quantitative structure‐activity relationship, and docking studies. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Shalini Singh
- QSAR & Cheminformatics Laboratory, Department of Chemistry Bareilly College Bareilly India
| | | | | |
Collapse
|
12
|
Kecskés A, Pohóczky K, Kecskés M, Varga ZV, Kormos V, Szőke É, Henn-Mike N, Fehér M, Kun J, Gyenesei A, Renner É, Palkovits M, Ferdinandy P, Ábrahám IM, Gaszner B, Helyes Z. Characterization of Neurons Expressing the Novel Analgesic Drug Target Somatostatin Receptor 4 in Mouse and Human Brains. Int J Mol Sci 2020; 21:E7788. [PMID: 33096776 PMCID: PMC7589422 DOI: 10.3390/ijms21207788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Somatostatin is an important mood and pain-regulating neuropeptide, which exerts analgesic, anti-inflammatory, and antidepressant effects via its Gi protein-coupled receptor subtype 4 (SST4) without endocrine actions. SST4 is suggested to be a unique novel drug target for chronic neuropathic pain, and depression, as a common comorbidity. However, its neuronal expression and cellular mechanism are poorly understood. Therefore, our goals were (i) to elucidate the expression pattern of Sstr4/SSTR4 mRNA, (ii) to characterize neurochemically, and (iii) electrophysiologically the Sstr4/SSTR4-expressing neuronal populations in the mouse and human brains. Here, we describe SST4 expression pattern in the nuclei of the mouse nociceptive and anti-nociceptive pathways as well as in human brain regions, and provide neurochemical and electrophysiological characterization of the SST4-expressing neurons. Intense or moderate SST4 expression was demonstrated predominantly in glutamatergic neurons in the major components of the pain matrix mostly also involved in mood regulation. The SST4 agonist J-2156 significantly decreased the firing rate of layer V pyramidal neurons by augmenting the depolarization-activated, non-inactivating K+ current (M-current) leading to remarkable inhibition. These are the first translational results explaining the mechanisms of action of SST4 agonists as novel analgesic and antidepressant candidates.
Collapse
Affiliation(s)
- Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Kecskés
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Institute of Physiology, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (Z.V.V.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- ALGONIST Biotechnologies GmbH, A-1030 Wien, Austria
| | - Nóra Henn-Mike
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Institute of Physiology, Medical School & Szentágothai Research Centre, PTE-NAP Molecular Neuroendocrinology Research Group, University of Pécs, H-7624 Pécs, Hungary
| | - Máté Fehér
- Department of Neurosurgery, Kaposi Mór Teaching Hospital, H-7400 Kaposvár, Hungary;
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre University of Pécs, H-7624 Pécs, Hungary;
| | - Attila Gyenesei
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre University of Pécs, H-7624 Pécs, Hungary;
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, H-1089 Budapest, Hungary; (É.R.); (M.P.)
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, H-1089 Budapest, Hungary; (É.R.); (M.P.)
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (Z.V.V.); (P.F.)
- Pharmahungary Group, H-6720 Szeged, Hungary
| | - István M. Ábrahám
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Institute of Physiology, Medical School & Szentágothai Research Centre, PTE-NAP Molecular Neuroendocrinology Research Group, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- Department of Anatomy, Medical School, Research Group for Mood Disorders, University of Pécs, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, H-7624 Pécs, Hungary; (A.K.); (K.P.); (V.K.); (É.S.); (J.K.)
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; (M.K.); (N.H.-M.); (I.M.Á.)
- ALGONIST Biotechnologies GmbH, A-1030 Wien, Austria
- PharmInVivo Ltd., H-7629 Pécs, Hungary
| |
Collapse
|
13
|
Horváth Á, Biró-Sütő T, Kántás B, Payrits M, Skoda-Földes R, Szánti-Pintér E, Helyes Z, Szőke É. Antinociceptive Effects of Lipid Raft Disruptors, a Novel Carboxamido-Steroid and Methyl β-Cyclodextrin, in Mice by Inhibiting Transient Receptor Potential Vanilloid 1 and Ankyrin 1 Channel Activation. Front Physiol 2020; 11:559109. [PMID: 33071817 PMCID: PMC7539994 DOI: 10.3389/fphys.2020.559109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and play an integrative role in pain processing and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin, and gangliosides. We earlier proved that lipid raft disintegration by cholesterol depletion using a novel carboxamido-steroid compound (C1) and methyl β-cyclodextrin (MCD) significantly and concentration-dependently inhibit TRPV1 and TRPA1 activation in primary sensory neurons and receptor-expressing cell lines. Here we investigated the effects of C1 compared to MCD in mouse pain models of different mechanisms. Both C1 and MCD significantly decreased the number of the TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements in the first hour by 45% and 32%, respectively, and C1 also in the second hour by 26%. Furthermore, C1 significantly decreased the TRPV1 stimulation (resiniferatoxin)-evoked mechanical hyperalgesia involving central sensitization processes, while its inhibitory effect on thermal allodynia was not statistically significant. In contrast, MCD did not affect these resiniferatoxin-evoked nocifensive responses. Both C1 and MCD had inhibitory action on TRPA1 activation (formalin)-induced acute nocifensive reactions (paw liftings, lickings, holdings, and shakings) in the second, neurogenic inflammatory phase by 36% and 51%, respectively. These are the first in vivo data showing that our novel lipid raft disruptor carboxamido-steroid compound exerts antinociceptive and antihyperalgesic effects by inhibiting TRPV1 and TRPA1 ion channel activation similarly to MCD, but in 150-fold lower concentrations. It is concluded that C1 is a useful experimental tool to investigate the effects of cholesterol depletion in animal models, and it also might open novel analgesic drug developmental perspectives.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tünde Biró-Sütő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Veszprém, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Veszprém, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
14
|
Palikov VA, Palikova YA, Borozdina NA, Nesmeyanova EN, Rudenko PA, Kazakov VA, Kalabina EA, Bukatin MV, Zharmukhamedova TY, Khokhlova ON, Dyachenko IA. A novel view of the problem of Osteoarthritis in experimental rat model. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.51772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: The article presents the results of the functional tests to improve the assessment of MIA-induced osteoarthritis development and the effectiveness of NSAID therapy.
Materials and methods: In the study, 26 male SD rats were used. MIA-induced osteoarthritis was simulated in the right knee joint. After an intra-articular injection of MIA, the animals were treated with ibuprofen and meloxicam. Pain assessment was studied in the following functional tests: incapacitance (hind limb weight bearing) test, von Frey test (mechanical allodynia), grip strength test, and knee diameter measurement. At the end of the study, a histological analysis of the knee joint was performed.
Results and discussion: An intra-articular MIA injection reduced 1.5 times the paw withdrawal threshold. In the rats that suffered MIA-induced osteoarthritis, the difference between the diameters of the intact and injected joints was 1.05 mm, compared to 0.03 mm difference in the control group. Hind limb weight bearing asymmetry was 89.5% when simulating MIA-induced osteoarthritis. The muscular hind limb grip strength in rats with MIA-induced osteoarthritis was significantly reduced on 3rd and 7th days after simulating osteoarthritis. Ibuprofen and meloxicam showed significant efficacy in all the above tests, although ibuprofen effectiveness was more pronounced than that of meloxicam.
Conclusion: The following functional tests were identified as the most significant and sufficient to assess the development of MIA-induced osteoarthritis and analgesic efficacy of NSAIDs: incapacitance test, allodynia test (von Frey filaments), measurement of hind limb grip strength and measurement of the diameter of the inflamed knee joint. The histological analysis made it possible to confirm the correspondence of the physiological response and pathological changes in the knee joint.
Collapse
|
15
|
Gomes FIF, Cunha FQ, Cunha TM. Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 2020; 176:113862. [PMID: 32081790 DOI: 10.1016/j.bcp.2020.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Pain is a classical sign of inflammation, and sensitization of primary sensory neurons (PSN) is the most important mediating mechanism. This mechanism involves direct action of inflammatory mediators such as prostaglandins and sympathetic amines. Pharmacologic control of inflammatory pain is based on two principal strategies: (i) non-steroidal anti-inflammatory drugs targeting inhibition of prostaglandin production by cyclooxygenases and preventing nociceptor sensitization in humans and animals; (ii) opioids and dipyrone that directly block nociceptor sensitization via activation of the NO signaling pathway. This review summarizes basic concepts of inflammatory pain that are necessary to understand the mechanisms of peripheral NO signaling that promote peripheral analgesia; we also discuss therapeutic perspectives based on the modulation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Isaac F Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
16
|
Kántás B, Börzsei R, Szőke É, Bánhegyi P, Horváth Á, Hunyady Á, Borbély É, Hetényi C, Pintér E, Helyes Z. Novel Drug-Like Somatostatin Receptor 4 Agonists are Potential Analgesics for Neuropathic Pain. Int J Mol Sci 2019; 20:E6245. [PMID: 31835716 PMCID: PMC6940912 DOI: 10.3390/ijms20246245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via the somatostatin sst4 receptor without endocrine actions. Therefore, sst4 is considered to be a novel target for drug development in pain including chronic neuropathy, which is an emerging unmet medical need. Here, we examined the in silico binding, the sst4-linked G-protein activation on stable receptor expressing cells (1 nM to 10 μM), and the effects of our novel pyrrolo-pyrimidine molecules in mouse inflammatory and neuropathic pain models. All four of the tested compounds (C1-C4) bind to the same binding site of the sst4 receptor with similar interaction energy to high-affinity reference sst4 agonists, and they all induce G-protein activation. C1 is the more efficacious (γ-GTP-binding: 218.2% ± 36.5%) and most potent (EC50: 37 nM) ligand. In vivo testing of the actions of orally administered C1 and C2 (500 µg/kg) showed that only C1 decreased the resiniferatoxin-induced acute neurogenic inflammatory thermal allodynia and mechanical hyperalgesia significantly. Meanwhile, both of them remarkably reduced partial sciatic nerve ligation-induced chronic neuropathic mechanical hyperalgesia after a single oral administration of the 500 µg/kg dose. These orally active novel sst4 agonists exert potent anti-hyperalgesic effect in a chronic neuropathy model, and therefore, they can open promising drug developmental perspectives.
Collapse
Affiliation(s)
- Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Péter Bánhegyi
- Avicor Ltd., Herman Ottó str. 15, H-1022 Budapest, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| |
Collapse
|
17
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
18
|
Kameda T, Zvick J, Vuk M, Sadowska A, Tam WK, Leung VY, Bölcskei K, Helyes Z, Applegate LA, Hausmann ON, Klasen J, Krupkova O, Wuertz-Kozak K. Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. Int J Mol Sci 2019; 20:E1767. [PMID: 30974795 PMCID: PMC6480240 DOI: 10.3390/ijms20071767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023] Open
Abstract
Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1β) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.
Collapse
Affiliation(s)
- Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Department of Orthopaedic Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | - Joel Zvick
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Miriam Vuk
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Aleksandra Sadowska
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Wai Kit Tam
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Lee Ann Applegate
- Department of Musculoskeletal Medicine, Unit of Regenerative Therapy (UTR), University Hospital Lausanne, EPCR/02 Chemin des Croisettes 22, 1066 Epalinges, Switzerland.
| | - Oliver N Hausmann
- Neuro- and Spine Center, St. Anna Hospital, Sankt-Anna-Strasse 32, 6006 Luzern, Switzerland.
| | - Juergen Klasen
- Clinic Prodorso, Walchestrasse 15, 8006 Zurich, Switzerland.
| | - Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), Harlachinger Str. 51, 81547 Munich, Germany.
- Department of Health Sciences, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
| |
Collapse
|
19
|
Szentes N, Tékus V, Mohos V, Borbély É, Helyes Z. Exploratory and locomotor activity, learning and memory functions in somatostatin receptor subtype 4 gene-deficient mice in relation to aging and sex. GeroScience 2019; 41:631-641. [PMID: 30903571 PMCID: PMC6885027 DOI: 10.1007/s11357-019-00059-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The inhibitory neuropeptide somatostatin regulates several functions in the nervous system including memory. Its concentrations decrease by age leading to functional alterations, but there are little known about the receptorial mechanism. We discovered that somatostatin receptor 4 (sst4) mediates analgesic, anti-depressant, and anti-inflammatory effects without endocrine actions, and it is a unique target for drug development. We investigated the exploratory and locomotor activities and learning and memory functions of male and female sst4gene-deficient mice compared with their wild-types (WT) at ages of 3, 12, 17 months in the Y-maze test, open field test (OFT), radial-arm maze (RAM) test and novel object recognition (NOR) test. Young sst4 gene-deficient females visited, repeated, and missed significantly less arms than the WTs in the RAM; males showed decreased exploration in the NOR. Young mice moved significantly more, spend longer time in OFT center, and visited more arms in the Y-maze than older ones. Young WT females spend significantly longer time in the OFT center, visited, missed and repeated more arms of the RAM than males. Old males found more rewards than females. Young males explored longer the novel object than young females and older males in the NOR; the recognition index was smaller in females. We conclude that aging and sex are important factors of behavioral parameters that should be focused on in such studies. Sst4 is likely to influence locomotion and exploratory behavior only in young mice, but not during normal aging, which is a beneficial feature of a good drug target focusing on the elderly.
Collapse
Affiliation(s)
- Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary. .,PharmInVivo Ltd., Pécs, Hungary.
| |
Collapse
|
20
|
Taneja A, Della Pasqua O, Danhof M. Challenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm. Eur J Clin Pharmacol 2017; 73:1219-1236. [PMID: 28894907 PMCID: PMC5599481 DOI: 10.1007/s00228-017-2301-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
AIM Despite an improved understanding of the molecular mechanisms of nociception, existing analgesic drugs remain limited in terms of efficacy in chronic conditions, such as neuropathic pain. Here, we explore the underlying pathophysiological mechanisms of neuropathic and inflammatory pain and discuss the prerequisites and opportunities to reduce attrition and high-failure rate in the development of analgesic drugs. METHODS A literature search was performed on preclinical and clinical publications aimed at the evaluation of analgesic compounds using MESH terms in PubMed. Publications were selected, which focused on (1) disease mechanisms leading to chronic/neuropathic pain and (2) druggable targets which are currently under evaluation in drug development. Attention was also given to the role of biomarkers and pharmacokinetic-pharmacodynamic modelling. RESULTS Multiple mechanisms act concurrently to produce pain, which is a non-specific manifestation of underlying nociceptive pathways. Whereas these manifestations can be divided into neuropathic and inflammatory pain, it is now clear that inflammatory mechanisms are a common trigger for both types of pain. This has implications for drug development, as the assessment of drug effects in experimental models of neuropathic and chronic pain is driven by overt behavioural measures. By contrast, the use of mechanistic biomarkers in inflammatory pain has provided the pharmacological basis for dose selection and evaluation of non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSION A different paradigm is required for the identification of relevant targets and candidate molecules whereby pain is coupled to the cause of sensorial signal processing dysfunction rather than clinical symptoms. Biomarkers which enable the characterisation of drug binding and target activity are needed for a more robust dose rationale in early clinical development. Such an approach may be facilitated by quantitative clinical pharmacology and evolving technologies in brain imaging, allowing accurate assessment of target engagement, and prediction of treatment effects before embarking on large clinical trials.
Collapse
Affiliation(s)
- A Taneja
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK.,Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - M Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|