1
|
Lopalco A, Iacobazzi RM, Lopedota AA, Denora N. Recent Advances in Nanodrug Delivery Systems Production, Efficacy, Safety, and Toxicity. Methods Mol Biol 2025; 2834:303-332. [PMID: 39312172 DOI: 10.1007/978-1-0716-4003-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In the last three decades, the development of nanoparticles or nano-formulations as drug delivery systems has emerged as a promising tool to overcome the limitations of conventional delivery, potentially to improve the stability and solubility of active molecules, promote their transport across the biological membranes, and prolong circulation times to increase efficacy of a therapy. Despite several nano-formulations having applications in drug delivery, some issues concerning their safety and toxicity are still debated. This chapter describes the recent available information regarding safety, toxicity, and efficacy of nano-formulations for drug delivery. Several key factors can influence the behavior of nanoparticles in a biological environment, and their evaluation is crucial to design non-toxic and effective nano-formulations. Among them, we have focused our attention on materials and methods for their preparation (including the innovative microfluidic technique), mechanisms of interactions with biological systems, purification of nanoparticles, manufacture impurities, and nano-stability. This chapter places emphasis on the utilization of in silico, in vitro, and in vivo models for the assessment and prediction of toxicity associated with these nano-formulations. Furthermore, the chapter includes specific examples of in vitro and in vivo studies conducted on nanoparticles, illustrating their application in this field.
Collapse
Affiliation(s)
- Antonio Lopalco
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Rosa Maria Iacobazzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Assunta Lopedota
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Demir E, Turna Demir F. Drosophila melanogaster as a dynamic in vivo model organism reveals the hidden effects of interactions between microplastic/nanoplastic and heavy metals. J Appl Toxicol 2023; 43:212-219. [PMID: 35644834 DOI: 10.1002/jat.4353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023]
Abstract
Plastic waste in different environments has been constantly transforming into microplastic/nanoplastic (MNPLs). As they may coexist with other contaminants, they may behave as vectors that transport various toxic trace elements, including metals. Because the impact of exposure to such matter on health still remains elusive, the abundant presence of MNPLs has lately become a pressing environmental issue. Researchers have been utilizing Drosophila melanogaster as a dynamic in vivo model in genetic research for some time. The fly has also recently gained wider recognition in toxicology and nanogenotoxicity studies. The use of nanoparticles in numerous medical and consumer products raises serious concern, since many in vitro studies have shown their toxic potential. However, there is rather limited in vivo research into nanomaterial genotoxicity using mice or other mammalians owing to high costs and ethical concerns. In this context, Drosophila, thanks to its genetic tractability, short life span, with its entire life cycle lasting about 10 days, and distinct developmental stages, renders this organism an excellent model in testing toxic effects mediated by MNPLs. This review therefore aims to encourage research entities to employ Drosophila as a model in their nanogenotoxicity experiments focusing on impact of MNPLs at the molecular level.
Collapse
Affiliation(s)
- Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya, Turkey
| | - Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
4
|
Turna Demir F, Demir E. Genotoxicity mechanism of food preservative propionic acid in the in vivo Drosophila model: gut damage, oxidative stress, cellular immune response and DNA damage. Toxicol Mech Methods 2022; 33:327-336. [PMID: 36253933 DOI: 10.1080/15376516.2022.2137871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Propionic acid is a short-chain fatty acid that is the main fermentation product of the enteric microbiome. It is found naturally and added to foods as a preservative and evaluated by health authorities as safe for use in foods. However, propionic acid has been reported in the literature to be associated with both health and disease. The purpose of this work is to better understand how propionic acid affects Drosophila melanogaster by examining some of the effects of this compound on the D. melanogaster hemocytes. D. melanogaster was chosen as a suitable in vivo model to detect potential risks of propionic acid (at five concentrations ranging from 0.1 to 10 mM) used as a food preservative. Toxicity, cellular immune response, intracellular oxidative stress (reactive oxygen species, ROS), gut damage, and DNA damage (via Comet assay) were the end-points evaluated. Significant genotoxic effects were detected in selected cell targets in a concentration dependent manner, especially at two highest concentrations (5 and 10 mM) of propionic acid. This study is the first study reporting genotoxicity data in the hemocytes of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects caused by the ingested food preservative product.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Turkey
| |
Collapse
|
5
|
Turna Demir F, Akkoyunlu G, Demir E. Interactions of Ingested Polystyrene Microplastics with Heavy Metals (Cadmium or Silver) as Environmental Pollutants: A Comprehensive In Vivo Study Using Drosophila melanogaster. BIOLOGY 2022; 11:1470. [PMID: 36290374 PMCID: PMC9598744 DOI: 10.3390/biology11101470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
Living organisms are now constantly exposed to microplastics and nanoplastics (MNPLs), and besides their toxic potential, they can also act as carriers of various hazardous elements such as heavy metals. Therefore, this study explored possible interactions between polystyrene microplastics (PSMPLs) and two metal pollutants: cadmium chloride (CdCl2) and silver nitrate (AgNO3). To better understand the extent of biological effects caused by different sizes of PSMPLs, we conducted in vivo experiments with five doses (from 0.01 to 10 mM) that contained polystyrene particles measuring 4, 10, and 20 µm in size on Drosophila larvae. Additional experiments were performed by exposing larvae to two individual metals, CdCl2 (0.5 mM) and AgNO3 (0.5 mM), as well as combined exposure to PSMPLs (0.01 and 10 mM) and these metals, in an attempt to gain new insight into health risks of such co-exposure. Using transmission electron microscopy imaging, we managed to visualize the biodistribution of ingested PSMPLs throughout the fly's body, observing the interactions of such plastics with Drosophila intestinal lumen, cellular uptake by gut enterocytes, the passage of plastic particles through the intestinal barrier to leak into the hemolymph, and cellular uptake by hemocytes. Observations detected size and shape changes in the ingested PSMPLs. Egg-to-adult viability screening revealed no significant toxicity upon exposure to individual doses of tested materials; however, the combined exposure to plastic and metal particles induced aggravated genotoxic effects, including intestinal damage, genetic damage, and intracellular oxidative stress (ROS generation), with smaller sized plastic particles + metals (cadmium and silver) causing greater damage.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| | - Gökhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| |
Collapse
|
6
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
7
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
8
|
Cypriyana P J J, S S, Angalene J LA, Samrot AV, Kumar S S, Ponniah P, Chakravarthi S. Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Halappanavar S, Nymark P, Krug HF, Clift MJD, Rothen-Rutishauser B, Vogel U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007628. [PMID: 33559363 DOI: 10.1002/smll.202007628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Faster, cheaper, sensitive, and mechanisms-based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM-induced lung fibrosis, are proposed.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17177, Sweden
| | - Harald F Krug
- NanoCASE GmbH, St. Gallerstr. 58, Engelburg, 9032, Switzerland
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, DK-2800 Kgs., Denmark
| |
Collapse
|
10
|
Masood MI, Naseem M, Warda SA, Tapia-Laliena MÁ, Rehman HU, Nasim MJ, Schäfer KH. Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116179. [PMID: 33348142 DOI: 10.1016/j.envpol.2020.116179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany; Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, 87550, Pakistan
| | - Salam A Warda
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany
| | | | - Habib Ur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany
| | - Karl Herbert Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Department of Pediatric Surgery Mannheim, University Medicine Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
11
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
12
|
de Cristo Soares Alves A, Lavayen V, Figueiró F, Dallemole DR, de Fraga Dias A, Cé R, Battastini AMO, Guterres SS, Pohlmann AR. Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharm Res 2020; 37:91. [PMID: 32385723 DOI: 10.1007/s11095-020-02804-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Bevacizumab (BCZ) is a recombinant monoclonal antibody that inhibits the biological activity of the vascular endothelial growth factor, which has an important role in angiogenesis for tumoral growth and progression. In this way, our objective was to develop chitosan-coated lipid-core nanocapsules functionalized with BCZ by an organometallic complex using gold-III. METHODS The formulation was produced and characterized in relation to physicochemical characteristics. Furthermore, the antitumoral and antiangiogenic activities were evaluated against C6 glioma cell line and chicken embryo chorioallantoic membrane (CAM), respectively. RESULTS Final formulation showed nanometric size, narrow polydispersity, positive zeta potential and gold clusters size lower than 2 nm. BCZ in aqueous solution (0.01-0.10 μmol L-1) did not show cytotoxic activity in vitro against C6 glioma cell line; although, MLNC-Au-BCZ showed cytotoxicity with a median inhibition concentration of 30 nmol L-1 of BCZ. Moreover, MLNC-Au-BCZ demonstrated cellular internalization dependent on incubation time and BCZ concentration. BCZ solution did not induce significant apoptosis as compared to MLNC-Au-BCZ within 24 h of treatment. CAM assay evidenced potent antiangiogenic activity for MLNC-Au-BCZ, representing a decrease of 5.6 times in BCZ dose comparing to BCZ solution. CONCLUSION MLNC-Au-BCZ is a promising product for the treatment of solid tumors.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
| | - Vladimir Lavayen
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Danieli Rosane Dallemole
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Rodrigo Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil. .,Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
13
|
Rubio L, Marcos R, Hernández A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:51-68. [PMID: 31822207 DOI: 10.1080/10937404.2019.1700598] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years, increasing global attention has focused on "microplastics" (MPs) and "nanoplastics" (NPs) resulting in many studies on the effects of these compounds on ecological and environmental aspects. These tiny particles (<5000 µm), predominantly derived from the degradation of plastics, pollute the marine and terrestrial ecosystems with the ability to enter into the food chain. In this manner, human consumption of food contaminated with MPs or NPs is unavoidable, but the related consequences remain to be determined. The aim of this review is to complement previous reviews on this topic by providing new studies related to exposure, absorption, and toxicity in mammalian in vivo and in vitro systems. With respect to novel information, gaps and limitations hindering attainment of firm conclusions as well as preparation of a reliable risk assessment are identified. Subsequently, recommendations for in vivo and in vitro testing methods are presented in order to perform further relevant and targeted research studies.
Collapse
Affiliation(s)
- Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros, Dominican Republic
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
14
|
Hirsch C, Schildknecht S. In Vitro Research Reproducibility: Keeping Up High Standards. Front Pharmacol 2019; 10:1484. [PMID: 31920667 PMCID: PMC6916005 DOI: 10.3389/fphar.2019.01484] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Concern regarding the reproducibility of observations in life science research has emerged in recent years, particularly in view of unfavorable experiences with preclinical in vivo research. The use of cell-based systems has increasingly replaced in vivo research and the application of in vitro models enjoys an ever-growing popularity. To avoid repeating past mistakes, high standards of reproducibility and reliability must be established and maintained in the field of in vitro biomedical research. Detailed guidance documenting the appropriate handling of cells has been authored, but was received with quite disparate perception by different branches in biomedical research. In that regard, we intend to raise awareness of the reproducibility issue among scientists in all branches of contemporary life science research and their individual responsibility in this matter. We have herein compiled a selection of the most susceptible steps of everyday in vitro cell culture routines that have the potential to influence cell quality and recommend practices to minimize the likelihood of poor cell quality impairing reproducibility with modest investment of time and resources.
Collapse
Affiliation(s)
- Cordula Hirsch
- Particles-Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Stefan Schildknecht
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Leite PEC, Pereira MR, Harris G, Pamies D, Dos Santos LMG, Granjeiro JM, Hogberg HT, Hartung T, Smirnova L. Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Part Fibre Toxicol 2019; 16:22. [PMID: 31159811 PMCID: PMC6545685 DOI: 10.1186/s12989-019-0307-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background The blood brain barrier (BBB) is the bottleneck of brain-targeted drug development. Due to their physico-chemical properties, nanoparticles (NP) can cross the BBB and accumulate in different areas of the central nervous system (CNS), thus are potential tools to carry drugs and treat brain disorders. In vitro systems and animal models have demonstrated that some NP types promote neurotoxic effects such as neuroinflammation and neurodegeneration in the CNS. Thus, risk assessment of the NP is required, but current 2D cell cultures fail to mimic complex in vivo cellular interactions, while animal models do not necessarily reflect human effects due to physiological and species differences. Results We evaluated the suitability of in vitro models that mimic the human CNS physiology, studying the effects of metallic gold NP (AuNP) functionalized with sodium citrate (Au-SC), or polyethylene glycol (Au-PEG), and polymeric polylactic acid NP (PLA-NP). Two different 3D neural models were used (i) human dopaminergic neurons differentiated from the LUHMES cell line (3D LUHMES) and (ii) human iPSC-derived brain spheroids (BrainSpheres). We evaluated NP uptake, mitochondrial membrane potential, viability, morphology, secretion of cytokines, chemokines and growth factors, and expression of genes related to ROS regulation after 24 and 72 h exposures. NP were efficiently taken up by spheroids, especially when PEGylated and in presence of glia. AuNP, especially PEGylated AuNP, effected mitochondria and anti-oxidative defense. PLA-NP were slightly cytotoxic to 3D LUHMES with no effects to BrainSpheres. Conclusions 3D brain models, both monocellular and multicellular are useful in studying NP neurotoxicity and can help identify how specific cell types of CNS are affected by NP. Electronic supplementary material The online version of this article (10.1186/s12989-019-0307-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulo Emílio Corrêa Leite
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| | | | - Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Department of Physiology, University of Lausanne, Lausanne, CH-1015, USA
| | - Lisia Maria Gobbo Dos Santos
- Department of Chemistry, National Institute of Quality Control in Health - INCQS/Fiocruz, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - José Mauro Granjeiro
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.,Dental School, Fluminense Federal University, Niteroi, Rio de Janeiro, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,University of Konstanz, Biology, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Ammonium lauryl sulfate-induced apoptotic cell death may be due to mitochondrial dysfunction triggered by caveolin-1. Toxicol In Vitro 2019; 57:132-142. [DOI: 10.1016/j.tiv.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/23/2019] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
|
17
|
Joossens E, Macko P, Palosaari T, Gerloff K, Ojea-Jiménez I, Gilliland D, Novak J, Fortaner Torrent S, Gineste JM, Römer I, Briffa SM, Valsami-Jones E, Lynch I, Whelan M. A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. Sci Data 2019; 6:46. [PMID: 31048742 PMCID: PMC6497662 DOI: 10.1038/s41597-019-0053-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 01/22/2023] Open
Abstract
The large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e. one measurement per well) with optical plate-readers. We present here a dataset including data based on a maximum of 14 different read outs (including viable cell count, cell membrane permeability, apoptotic cell death, mitochondrial membrane potential and steatosis) of the human hepatoma HepaRG cell line treated with a large set of nanomaterials, coatings and supernatants at different concentrations. The database, given its size, can be utilized in the development of in silico hazard assessment and prediction tools or can be combined with toxicity results from other in vitro test systems.
Collapse
Affiliation(s)
| | - Peter Macko
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Taina Palosaari
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Kirsten Gerloff
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Jaroslav Novak
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Human & Environmental Health & Safety Group, Materials Safety Unit, LEITAT, C/Palllars 179-185, 08005, Barcelona, Spain
| | - Sophie Marie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
18
|
Ortenzio J, Degn L, Goldstein-Plesser A, McGee JK, Navratilova J, Rogers K, Zucker RM, Boyes WK. Determination of Silver Nanoparticle Dose in vitro. NANOIMPACT 2019; 14:100156. [PMID: 34316524 PMCID: PMC8312577 DOI: 10.1016/j.impact.2019.100156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An important issue for interpreting in vitro nanomaterial testing is quantifying the dose delivered to target cells. Considerations include the concentration added to the culture, the proportion of the applied dose that interacts with the target cells, and the amount that is eventually absorbed by the target cells. Rapid and efficient techniques are needed to determine delivered doses. Previously, we demonstrated that TiO2 and silver nanoparticles (AgNP) were absorbed by cells in a dose dependent manner between 1 μg/ml and 30 μg/ml and were detected in cells by light scatter using a flow cytometer. Here, we compare four potential indices of the dose of AgNP to cells, including: inductively coupled plasma - mass spectrometry (ICP-MS); flow cytometry side scatter (SSC); and amount of silver deposited to the cell layer as estimated with both an integrated Volumetric Centrifugation Method - In Vitro Sedimentation, Diffusion and Dosimetry Model (VCM-ISDD) and a Distorted Grid (DG) model. A retinal pigment epithelial cell line was exposed to 20 nm or 75 nm citrate-coated AgNP for 24 hr. The relationships between particle sizes and internalized doses varied according to the dose metric. Twenty-four hours after exposure, the cell layer contained a greater mass of silver when treated with 75 nm AgNP than with 20 nm AgNP. When the dose was expressed as the number of particles or as the total surface area of absorbed particles, however, the reverse was true; the dose to the cells was higher after exposure to 20 than 75 nm AgNP. Flow cytometry SSC increased with dose for both sizes of AgNP, and was correlated with Ag in cells measured by ICP-MS. The rate of SSC increase was greater for 75 than for 20 nm AgNP, suggesting it could be used as an indicator of cellular dose after accounting for particle size and composition. Silver was detected by ICP-MS in re-suspended supernates of the isolated cell layer suggested that not all the silver deposited to the cell layer was absorbed by the cells. Both the VCM-ISDD and DG models estimated the proportion of Ag deposited to the cellular layer, which in both cases was greater than the amount of silver in the cells measured by ICP-MS. Modeled deposition more closely compared to the total Ag deposition by ICP-MS, i.e. mass of silver in the cells plus the resuspended, unabsorbed Ag from the cell layer. ICP-MS indicated the mass of silver in cells from AgNP treatment, but not whether the Ag was in the form of particles or dissolved ions. Deposition models predicted the amount of AgNP deposited to the cell layer, but not cellular uptake. Flow cytometry SSC was correlated to cellular uptake of particle-form AgNP and could be calibrated against ICP-MS to indicate mass of cellular uptake. Therefore, a combination of approaches may be required to accurately understand cellular dosimetry of in vitro nanotoxicology experiments. In summary, cellular dosimetry is an important consideration for nanotoxicology experiments, and not necessarily related to the applied dose.
Collapse
Affiliation(s)
- Jayna Ortenzio
- Oak Ridge Institute for Science and Education (ORISE) appointee at the National Health and Environmental Effects Research Laboratory, USEPA, RTP, NC 27711
| | - Laura Degn
- Toxicity Assessment Division, MD B105-04, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, RTP, NC 27711
| | - Alice Goldstein-Plesser
- Oak Ridge Institute for Science and Education (ORISE) appointee at the National Health and Environmental Effects Research Laboratory, USEPA, RTP, NC 27711
| | - John K. McGee
- EPH Division, MD B105-02 NHEERL, ORD, U.S. E.P.A., Research Triangle Park, NC 27711, USA
| | - Jana Navratilova
- National Research Council Fellow at the National Exposure Research Laboratory, USEPA, RTP, NC 27711
| | - Kim Rogers
- Exposure Methods & Measurements Division, National Exposure Research Laboratory, USEPA, RTP, NC 27711
| | - Robert M. Zucker
- Toxicity Assessment Division, MD B105-04, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, RTP, NC 27711
| | - William K. Boyes
- Toxicity Assessment Division, MD B105-04, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, RTP, NC 27711
- Corresponding author: 109 T.W. Alexander Drive, B105-04, NHEERL/TAD/NB, U.S. EPA, Research Triangle Park, NC 27711, United States, Telephone: +1-919-541-7538; Fax:+1-919-541-4849;
| |
Collapse
|
19
|
Abstract
Quantitative in vitro to in vivo extrapolation (QIVIVE) is broadly considered a prerequisite bridge from in vitro findings to a dose paradigm. Quality and relevance of cell systems are the first prerequisite for QIVIVE. Information-rich and mechanistic endpoints (biomarkers) improve extrapolations, but a sophisticated endpoint does not make a bad cell model a good one. The next need is reverse toxicokinetics (TK), which estimates the dose necessary to reach a tissue concentration that is active in vitro. The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) has created a roadmap for animal-free systemic toxicity testing, in which the needs and opportunities for TK are elaborated, in the context of different systemic toxicities. The report was discussed at two stakeholder forums in Brussels in 2012 and in Washington in 2013; the key recommendations are summarized herein. Contrary to common belief and the Paracelsus paradigm of everything is toxic, the majority of industrial chemicals do not exhibit toxicity. Strengthening the credibility of negative results of alternative approaches for hazard identification, therefore, avoids the need for QIVIVE. Here, especially the combination of methods in integrated testing strategies is most promising. Two further but very different approaches aim to overcome the problem of modeling in vivo complexity: The human-on-a-chip movement aims to reproduce large parts of living organism's complexity via microphysiological systems, that is, organ equivalents combined by microfluidics. At the same time, the Toxicity Testing in the 21st Century (Tox-21c) movement aims for mechanistic approaches (adverse outcome pathways as promoted by Organisation for Economic Co-operation and Development (OECD) or pathways of toxicity in the Human Toxome Project) for high-throughput screening, biological phenotyping, and ultimately a systems toxicology approach through integration with computer modeling. These 21st century approaches also require 21st century validation, for example, by evidence-based toxicology. Ultimately, QIVIVE is a prerequisite for extrapolating Tox-21c such approaches to human risk assessment.
Collapse
Affiliation(s)
- Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Movia D, Bazou D, Volkov Y, Prina-Mello A. Multilayered Cultures of NSCLC cells grown at the Air-Liquid Interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 2018; 8:12920. [PMID: 30150787 PMCID: PMC6110800 DOI: 10.1038/s41598-018-31332-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence supports the advantages of inhalation over other drug-administration routes in the treatment of lung diseases, including cancer. Although data obtained from animal models and conventional in vitro cultures are informative, testing the efficacy of inhaled chemotherapeutic agents requires human-relevant preclinical tools. Such tools are currently unavailable. Here, we developed and characterized in vitro models for the efficacy testing of inhaled chemotherapeutic agents against non-small-cell lung cancer (NSCLC). These models recapitulated key elements of both the lung epithelium and the tumour tissue, namely the direct contact with the gas phase and the three-dimensional (3D) architecture. Our in vitro models were formed by growing, for the first time, human adenocarcinoma (A549) cells as multilayered mono-cultures at the Air-Liquid Interface (ALI). The in vitro models were tested for their response to four benchmarking chemotherapeutics, currently in use in clinics, demonstrating an increased resistance to these drugs as compared to sub-confluent monolayered 2D cell cultures. Chemoresistance was comparable to that detected in 3D hypoxic tumour spheroids. Being cultured in ALI conditions, the multilayered monocultures demonstrated to be compatible with testing drugs administered as a liquid aerosol by a clinical nebulizer, offering an advantage over 3D tumour spheroids. In conclusion, we demonstrated that our in vitro models provide new human-relevant tools allowing for the efficacy screening of inhaled anti-cancer drugs.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Yuri Volkov
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
- Department of Histology, Cytology and Embryology, First Moscow State Sechenov Medical University, Moskva, Russian Federation
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Affiliation(s)
- Eşref Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Giresun University, Giresun, Turkey
| | - Ricard Marcos
- Departament de Genètica i de Microbiologia, Grup de Mutagènesi, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Bengoetxea X, de Cerain AL, Azqueta A, Ramirez MJ. Purported Interactions of Amyloid-β and Glucocorticoids in Cytotoxicity and Genotoxicity: Implications in Alzheimer's Disease. J Alzheimers Dis 2018; 54:1085-1094. [PMID: 27589535 DOI: 10.3233/jad-160636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the presence of aggregates of the amyloid-β peptide (Aβ) that are believed to be neurotoxic. One of the purposed damaging mechanisms of Aβ is oxidative insult, which eventually could damage the cellular genome. Stress and associated increases in glucocorticoids (GCs) have been described as a risk factor for the development of AD, although the purported genotoxic effects of GCs have not been fully characterized. Therefore, it is possible to speculate about purported synergistic effects of GCs on the Aβ-driven genotoxic damage. This in vitro study addresses the single and combined cyto/genotoxic effects of Aβ and GCs in SH-SY5Y cells. Cytotoxicity was determined by the MTT assay, and the genotoxic effects were studied using the comet assay. A comet assay derivation allows for measuring the presence of the FPG-sensitive sites (mainly 8-oxoguanines) in the DNA, apart from the DNA strand breaks. Treatment with Aβ (10 μM, 72 h) induced cytotoxicity (35% decrease in cell viability) and DNA strand breaks, but had no significant effect on oxidative DNA damage (FPG sites). Corticosterone showed no effect on cell viability, genotoxicity, or reparation processes. Corticosterone was unable to neither reverse nor potentiate Aβ driven effects. The present results suggest the existence of alternative mechanisms for the Aβ driven damage, not involving oxidative damage of DNA. In addition, could be suggested that the interaction between Aβ and GCs in AD does not seem to involve DNA damage.
Collapse
|
23
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
24
|
Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regul Toxicol Pharmacol 2017; 91:257-266. [DOI: 10.1016/j.yrtph.2017.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
|
25
|
Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. Green Toxicology: a strategy for sustainable chemical and material development. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:16. [PMID: 28435767 PMCID: PMC5380705 DOI: 10.1186/s12302-017-0115-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 05/04/2023]
Abstract
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Hartung
- John Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
- CAAT-Europe, University of Konstanz, Universitaetsstrasse 10, 78467 Constance, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Mathes
- DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany
| | | | | | - Christoph Studer
- Federal Office of Public Health, Schwarzenburgstraße 157, 3003 Bern, Switzerland
| | - Harald F. Krug
- Empa, Materials Science and Technology, Lerchenfeld-straße 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
26
|
de Ávila RI, de Sousa Vieira M, Gaeti MPN, Moreira LC, de Brito Rodrigues L, de Oliveira GAR, Batista AC, Vinhal DC, Menegatti R, Valadares MC. Toxicity evaluation of the photoprotective compound LQFM048: Eye irritation, skin toxicity and genotoxic endpoints. Toxicology 2017; 376:83-93. [DOI: 10.1016/j.tox.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/25/2016] [Indexed: 11/27/2022]
|
27
|
Evans SJ, Clift MJD, Singh N, de Oliveira Mallia J, Burgum M, Wills JW, Wilkinson TS, Jenkins GJS, Doak SH. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 2017; 32:233-241. [PMID: 27815329 PMCID: PMC5180173 DOI: 10.1093/mutage/gew054] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Neenu Singh
- Faculty of Health Sciences and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Jefferson de Oliveira Mallia
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Michael Burgum
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - John W Wills
- Environmental Health Sciences and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada and
| | - Thomas S Wilkinson
- Microbiology and Infectious Diseases, Institute of Life Science, MRC CLIMB Centre, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK,
| |
Collapse
|
28
|
|
29
|
Ojer P, Iglesias T, Azqueta A, Irache J, López de Cerain A. Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. Eur J Pharm Biopharm 2015; 97:206-17. [DOI: 10.1016/j.ejpb.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
30
|
Aufderheide M, Förster C, Beschay M, Branscheid D, Emura M. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium. ACTA ACUST UNITED AC 2015; 68:77-87. [PMID: 26507834 DOI: 10.1016/j.etp.2015.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Abstract
The increased application of in vitro systems in pharmacology and toxicology requires cell culture systems that facilitate the cultivation process and ensure stable, reproducible and controllable cultivation conditions. Up to now, some devices have been developed for the cultivation of cells under submersed conditions. However, systems meeting the requirements of an air-liquid interface (ALI) cultivation for the special needs of bronchial epithelial cells for example are still lacking. In order to obtain in vivo like organization and differentiation of these cells they need to be cultivated under ALI conditions on microporous membranes in direct contact with the environmental atmosphere. For this purpose, a Long-Term-Cultivation system was developed (CULTEX(®) LTC-C system) for the computer-controlled cultivation of such cells. The transwell inserts are placed in an incubator module (24 inserts), which can be adjusted for the medium level (ultrasonic pulse-echosensor), time and volume-dependent medium exchange, and frequency for mixing the medium with a rotating disc for homogeneous distribution of medium and secretion components. Normal primary freshly isolated bronchial epithelial cells were cultivated for up to 38 days to show the efficiency of such a cultivation procedure for generating 3D cultures exhibiting in vivo-like pseudostratified organization of the cells as well as differentiation characteristics like mucus-producing and cilia-forming cells.
Collapse
Affiliation(s)
| | - Christine Förster
- Institute of Pathology, KRH Klinikum Nordstadt, Haltenhoffstr. 41, 30167 Hannover, Germany.
| | - Morris Beschay
- Department of Thoracic Surgery, Bielefeld Evangelical Hospital, Burgsteig 13, 33617 Bielefeld, Germany.
| | - Detlev Branscheid
- Department of Thoracic Surgery, Bielefeld Evangelical Hospital, Burgsteig 13, 33617 Bielefeld, Germany.
| | - Makito Emura
- Cultex Laboratories GmbH, Feodor-Lynen-Str. 21, 30625 Hannover, Germany.
| |
Collapse
|
31
|
Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1788-804. [PMID: 26425431 PMCID: PMC4578397 DOI: 10.3762/bjnano.6.183] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/30/2015] [Indexed: 05/18/2023]
Abstract
The increasing production and use of engineered nanomaterials (ENMs) inevitably results in their higher concentrations in the environment. This may lead to undesirable environmental effects and thus warrants risk assessment. The ecotoxicity testing of a wide variety of ENMs rapidly evolving in the market is costly but also ethically questionable when bioassays with vertebrates are conducted. Therefore, alternative methods, e.g., models for predicting toxicity mechanisms of ENMs based on their physico-chemical properties (e.g., quantitative (nano)structure-activity relationships, QSARs/QNARs), should be developed. While the development of such models relies on good-quality experimental toxicity data, most of the available data in the literature even for the same test species are highly variable. In order to map and analyse the state of the art of the existing nanoecotoxicological information suitable for QNARs, we created a database NanoE-Tox that is available as Supporting Information File 1. The database is based on existing literature on ecotoxicology of eight ENMs with different chemical composition: carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper oxide (CuO), and iron oxide (FeO x ; Fe2O3, Fe3O4). Altogether, NanoE-Tox database consolidates data from 224 articles and lists altogether 1,518 toxicity values (EC50/LC50/NOEC) with corresponding test conditions and physico-chemical parameters of the ENMs as well as reported toxicity mechanisms and uptake of ENMs in the organisms. 35% of the data in NanoE-Tox concerns ecotoxicity of Ag NPs, followed by TiO2 (22%), CeO2 (13%), and ZnO (10%). Most of the data originates from studies with crustaceans (26%), bacteria (17%), fish (13%), and algae (11%). Based on the median toxicity values of the most sensitive organism (data derived from three or more articles) the toxicity order was as follows: Ag > ZnO > CuO > CeO2 > CNTs > TiO2 > FeO x . We believe NanoE-Tox database contains valuable information for ENM environmental hazard estimation and development of models for predicting toxic potential of ENMs.
Collapse
Affiliation(s)
- Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Mawson Institute, University of South Australia, Mawson Lakes, 5095 South Australia, Australia
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, California 93106-5131, United States
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
32
|
Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, Ponti J, Kinsner-Ovaskainen A, Rossi F, Oomen A, Bos P, Chen R, Bai R, Chen C, Rocks L, Fulton N, Ross B, Hutchison G, Tran L, Mues S, Ossig R, Schnekenburger J, Campagnolo L, Vecchione L, Pietroiusti A, Fadeel B. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy. PLoS One 2015; 10:e0127174. [PMID: 25996496 PMCID: PMC4440714 DOI: 10.1371/journal.pone.0127174] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.
Collapse
Affiliation(s)
- Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Torres Andón
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Luisana Di Cristo
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Bianca Maria Rotoli
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Agnieszka Mech
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - Nanna B Hartmann
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy; Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kirsten Rasmussen
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - Juan Riego-Sintes
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - Jessica Ponti
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - Agnieszka Kinsner-Ovaskainen
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - François Rossi
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission-Joint Research Centre, Ispra, Italy
| | - Agnes Oomen
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter Bos
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Rui Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing, P. R. China
| | - Ru Bai
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing, P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing, P. R. China
| | - Louise Rocks
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Norma Fulton
- Centre for Nano Safety, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Bryony Ross
- Centre for Nano Safety, Edinburgh Napier University, Edinburgh, United Kingdom; Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Gary Hutchison
- Centre for Nano Safety, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Sarah Mues
- Biomedizinisches Technologiezentrum, Westfälische Wilhelms-Universität, Münster, Germany
| | - Rainer Ossig
- Biomedizinisches Technologiezentrum, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedizinisches Technologiezentrum, Westfälische Wilhelms-Universität, Münster, Germany
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Vecchione
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 2014; 9:749-59. [PMID: 25358738 DOI: 10.3109/17435390.2014.976284] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra , Cerdanyola del Vallès, Barcelona , Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Powers CM, Gift J, Lehmann GM. Sparking connections: toward better linkages between research and human health policy-an example with multiwalled carbon nanotubes. Toxicol Sci 2014; 141:6-17. [PMID: 24928890 DOI: 10.1093/toxsci/kfu117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Risk assessment and subsequent risk management of environmental contaminants can benefit from early collaboration among researchers, risk assessors, and risk managers. The benefits of collaboration in research planning are particularly evident in light of (1) increasing calls to expand upon the risk assessment paradigm to include a greater focus on problem formulation and consideration of potential tradeoffs between risk management options, and (2) decreasing research budgets. Strategically connecting research planning to future decision making may be most critical in areas of emerging science for which data are often insufficient to clearly direct targeted research to support future risk assessment and management efforts. This article illustrates an application of the comprehensive environmental assessment approach to inform research planning for future risk assessment and management of one emerging material, multiwalled carbon nanotubes (MWCNTs). High-priority research areas identified for MWCNTs in flame-retardant coatings applied to upholstery textiles included the following: release across the product life cycle; environmental transport, transformation and fate in air, wastewater and sediment; exposure in human occupational and consumer groups; kinetics in the human body; impacts on human health and aquatic populations; and impacts on economic, social, and environmental resources. This article focuses on specific research questions related to human health and how these may connect to future risk assessments and risk management efforts. Such connections will support more effective collaborations across the scientific community and may inform the prioritization of research funding opportunities for emerging materials like MWCNTs.
Collapse
Affiliation(s)
- Christina M Powers
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Jeff Gift
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Geniece M Lehmann
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
35
|
Hristozov D, MacCalman L, Jensen K, Stone V, Scott-Fordsmand J, Nowack B, Fernandes T, Marcomini A. Risk Assessment of Engineered Nanomaterials. Nanotoxicology 2014. [DOI: 10.1201/b16562-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 2013; 172:456-66. [PMID: 23742883 PMCID: PMC5831149 DOI: 10.1016/j.jconrel.2013.05.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/10/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
Abstract
Preclinical characterization of novel nanotechnology-based formulations is often challenged by physicochemical characteristics, sterility/sterilization issues, safety and efficacy. Such challenges are not unique to nanomedicine, as they are common in the development of small and macromolecular drugs. However, due to the lack of a general consensus on critical characterization parameters, a shortage of harmonized protocols to support testing, and the vast variety of engineered nanomaterials, the translation of nanomedicines into clinic is particularly complex. Understanding the immune compatibility of nanoformulations has been identified as one of the important factors in (pre)clinical development and requires reliable in vitro and in vivo immunotoxicity tests. The generally low sensitivity of standard in vivo toxicity tests to immunotoxicities, inter-species variability in the structure and function of the immune system, high costs and relatively low throughput of in vivo tests, and ethical concerns about animal use underscore the need for trustworthy in vitro assays. Here, we consider the correlation (or lack thereof) between in vitro and in vivo immunotoxicity tests as a mean to identify useful in vitro assays. We review literature examples and case studies from the experience of the NCI Nanotechnology Characterization Lab, and highlight assays where predictability has been demonstrated for a variety of nanomaterials and assays with high potential for predictability in vivo.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702
| | - Scott E. McNeil
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
38
|
Sabbioni E, Fortaner S, Farina M, Del Torchio R, Olivato I, Petrarca C, Bernardini G, Mariani-Costantini R, Perconti S, Di Giampaolo L, Gornati R, Di Gioacchino M. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: anin vitromodel. Nanotoxicology 2013; 8:455-64. [DOI: 10.3109/17435390.2013.796538] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Wang A, Marinakos SM, Badireddy AR, M. Powers C, A. Houck K. Characterization of physicochemical properties of nanomaterials and their immediate environments in high‐throughput screening of nanomaterial biological activity. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:430-48. [DOI: 10.1002/wnan.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/23/2013] [Accepted: 04/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Amy Wang
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Stella M. Marinakos
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Appala Raju Badireddy
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Christina M. Powers
- National Center for Environmental Assessment (NCEA)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Keith A. Houck
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| |
Collapse
|
40
|
Fadeel B, Feliu N, Vogt C, Abdelmonem AM, Parak WJ. Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:111-29. [PMID: 23335558 DOI: 10.1002/wnan.1206] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Engineered nanomaterials offer exciting opportunities for 'smart' drug delivery and in vivo imaging of disease processes, as well as in regenerative medicine. The ability to manipulate matter at the nanoscale enables many new properties that are both desirable and exploitable, but the same properties could also give rise to unexpected toxicities that may adversely affect human health. Understanding the physicochemical properties that drive toxicological outcomes is a formidable challenge as it is not trivial to separate and, hence, to pinpoint individual material characteristics of nanomaterials. In addition, nanomaterials that interact with biological systems are likely to acquire a surface corona of biomolecules that may dictate their biological behavior. Indeed, we propose that it is the combination of material-intrinsic properties (the 'synthetic identity') and context-dependent properties determined, in part, by the bio-corona of a given biological compartment (the 'biological identity') that will determine the interactions of engineered nanomaterials with cells and tissues and subsequent outcomes. The delineation of these entwined 'identities' of engineered nanomaterials constitutes the bridge between nanotoxicological research and nanomedicine.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 2013; 42:8339-59. [DOI: 10.1039/c3cs60145e] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Sabbioni E, Fortaner S, Farina M, Del Torchio R, Petrarca C, Bernardini G, Mariani-Costantini R, Perconti S, Di Giampaolo L, Gornati R, Di Gioacchino M. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts. Nanotoxicology 2012; 8:88-99. [PMID: 23167736 DOI: 10.3109/17435390.2012.752051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanistic understanding of nanotoxicity requires the physico-chemical characterisation of nanoparticles (NP), and their comparative investigation relative to the corresponding ions and microparticles (MP). Following this approach, the authors studied the dissolution, interaction with medium components, bioavailability in culture medium, uptake and intracellular distribution of radiolabelled Co forms (CoNP, CoMP and Co(2+)) in Balb/3T3 mouse fibroblasts. Co(2+) first saturates the binding sites of molecules in the extracellular milieu (e.g., albumin and histidine) and on the cell surface. Only after saturation, Co(2+) is actively uptaken. CoNP, instead, are predicted to be internalised by endocytosis. Dissolution of Co particles allows the formation of Co compounds (CoNP-rel), whose mechanism of cellular internalisation is unknown. Co uptake (ranking CoMP > CoNP > Co(2+)) reached maximum at 4 h. Once inside the cell, CoNP spread into the cytosol and organelles. Consequently, massive amounts of Co ions and CoNP-rel can reach subcellular compartments normally unexposed to Co(2+). This could explain the fact that the nuclear and mitochondrial Co concentrations resulted significantly higher than those obtained with Co(2+).
Collapse
Affiliation(s)
- Enrico Sabbioni
- ECSIN - European Center for the Sustainable Impact of Nanotechnologies, Veneto Nanotech ScpA , Rovigo , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vales G, Demir E, Kaya B, Creus A, Marcos R. Genotoxicity of cobalt nanoparticles and ions inDrosophila. Nanotoxicology 2012; 7:462-8. [DOI: 10.3109/17435390.2012.689882] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Pokhrel LR, Silva T, Dubey B, El Badawy AM, Tolaymat TM, Scheuerman PR. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:414-422. [PMID: 22521164 DOI: 10.1016/j.scitotenv.2012.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO(2) and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO(2) was not toxic as high as 2.5 g L(-1) to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl(2)>AgNO(3)>PVP-nAg>unclean Citrate-nAg>clean Citrate-nAg>ZnSO(4)>nZnO>CdSe QDs>nTiO(2)/TiO(2). These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants.
Collapse
Affiliation(s)
- Lok R Pokhrel
- Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
45
|
Downs TR, Crosby ME, Hu T, Kumar S, Sullivan A, Sarlo K, Reeder B, Lynch M, Wagner M, Mills T, Pfuhler S. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res 2012; 745:38-50. [PMID: 22504169 DOI: 10.1016/j.mrgentox.2012.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/27/2022]
Abstract
While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-α and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation.
Collapse
Affiliation(s)
- Thomas R Downs
- The Procter and Gamble Co., Miami Valley Innovation Center, 11810 East Miami River Road, Cincinnati, OH 45252, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
CAAT News & Views. Altern Lab Anim 2011. [DOI: 10.1177/026119291103900401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|