1
|
Bernier D, Grafl N, Gnauck J, Betat H, Dengler S, Huc I, Mörl M. Armless hairpin-like tRNAs in Romanomermis culicivorax: evolutionary adaptation of a mitochondrial elongation factor EF-Tu. J Biol Chem 2025:110294. [PMID: 40419126 DOI: 10.1016/j.jbc.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
tRNAs are central players in translation, delivering cognate amino acids to the ribosome. To fulfill this essential function, secondary and tertiary structures of tRNAs are highly conserved. In metazoan, however, several mitochondrial tRNAs show strong structural deviations and lack D- or T-arms. As these elements are important for the interaction with tRNA-binding proteins, these proteins are adapted to recognize such unusual targets. A prominent example is mitochondrial EF-Tu, delivering aminoacylated tRNAs to the ribosome. In nematode mitochondria, two variants of mt-EF-Tu exist. While mt-EF-Tu2 is specific for D-armless mt-tRNASer, mt-EF-Tu1 recognizes the remaining 20 tRNAs. The most bizarre mt-tRNAs are found in Romanomermis culicivorax, where hairpin-like structures were described lacking both D- and T-arm. To ensure functional translation with such extremely reduced tRNAs, the corresponding mt-EF-Tu1 must have undergone a further adaptation. In a comparative analysis, the tRNA binding behavior of recombinant mitochondrial EF-Tu1 versions from several nematodes was investigated. They all carry a C-terminal extension that is required for an efficient interaction with non-canonical tRNAs. Furthermore, in mt-EF-Tu1 from R. culicivorax and C. elegans, a basic residue in domain III was identified that represents an additional adaptation in the transition from canonical towards hairpin-like tRNA substrates. The results indicate that nematode mt-EF-Tu1 proteins are in principle able to interact with hairpin-like tRNAs, although such transcripts are only found in some of these species. Hence, concerning mt-EF-Tu, the evolutionary stage is set for a further truncation of mitochondrial tRNAs towards armless structures.
Collapse
Affiliation(s)
- Dorian Bernier
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Nadine Grafl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Josefine Gnauck
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Sebastian Dengler
- Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Ivan Huc
- Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Hammermeister A, Gaik M, Dahate P, Glatt S. Structural Snapshots of Human tRNA Modifying Enzymes. J Mol Biol 2025:169106. [PMID: 40210523 DOI: 10.1016/j.jmb.2025.169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/22/2025] [Indexed: 04/12/2025]
Abstract
Cells use a plethora of specialized enzymes to post-transcriptionally introduce chemical modifications into transfer RNA (tRNA) molecules. These modifications contribute novel chemical properties to the affected nucleotides and are crucial for the tRNA maturation process and for most other aspects of tRNA biology. Whereas, some of the modifications are ubiquitous and the respective modifying enzymes are conserved in all domains of life, other modifications are found only in specific organisms, in specific tRNAs or at specific positions of tRNAs. Despite the fact, that evolution has shaped a tremendous variety of tRNA modifications and the respective modification cascades, the clinical relevance of patient-derived mutations has recently led to an increased interest in the set of human tRNA modifying enzymes. Over decades macromolecular crystallography has immensely contributed to understand the enzymatic function of tRNA modifying enzymes at the molecular level. The advent of high resolution single-particle cryo-EM has recently led to structures of several clinically relevant human tRNA modifying enzymes in complex with tRNAs and a more fundamental understanding of the mechanistic consequences of specific disease-related mutations. Here, we aim to provide a comprehensive summary of the currently available experimentally determined structures of human tRNA modifying enzymes.
Collapse
Affiliation(s)
| | - Monika Gaik
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Priyanka Dahate
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland; Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Thalhofer V, Doktor C, Philipp L, Betat H, Mörl M. An alternative adaptation strategy of the CCA-adding enzyme to accept noncanonical tRNA substrates in Ascaris suum. J Biol Chem 2025; 301:108414. [PMID: 40107618 PMCID: PMC12013499 DOI: 10.1016/j.jbc.2025.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Playing a central role in translation, tRNAs act as an essential adapter linking the correct amino acid to the corresponding mRNA codon in translation. Due to this function, all tRNAs exhibit a typical secondary and tertiary structure to be recognized by the tRNA maturation enzymes as well as many components of the translation machinery. Yet, there is growing evidence for structurally deviating tRNAs in metazoan mitochondria, requiring a coevolution and adaptation of these enzymes to the unusual structures of their substrates. Here, it is shown that the CCA-adding enzyme of Ascaris suum carries such a specific adaptation in form of a C-terminal extension. The corresponding enzymes of other nematodes also carry such extensions, and many of them have an additional adaptation in a small region of their N-terminal catalytic core. Thus, the presented data indicate that these enzymes evolved two distinct strategies to tolerate noncanonical tRNAs as substrates for CCA incorporation. The identified C-terminal extension represents a surprising case of convergent evolution in tRNA substrate adaptation, as the nematode mitochondrial translation factor EF-Tu1 carries a similar extension that is essential for efficient binding to such structurally deviating tRNAs.
Collapse
Affiliation(s)
| | - Claudius Doktor
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Lena Philipp
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Bhatta A, Kuhle B, Yu RD, Spanaus L, Ditter K, Bohnsack KE, Hillen HS. Molecular basis of human nuclear and mitochondrial tRNA 3' processing. Nat Struct Mol Biol 2025; 32:613-624. [PMID: 39747487 PMCID: PMC11996679 DOI: 10.1038/s41594-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Eukaryotic transfer RNA (tRNA) precursors undergo sequential processing steps to become mature tRNAs. In humans, ELAC2 carries out 3' end processing of both nucleus-encoded (nu-tRNAs) and mitochondria-encoded (mt-tRNAs) tRNAs. ELAC2 is self-sufficient for processing of nu-tRNAs but requires TRMT10C and SDR5C1 to process most mt-tRNAs. Here we show that TRMT10C and SDR5C1 specifically facilitate processing of structurally degenerate mt-tRNAs lacking the canonical elbow. Structures of ELAC2 in complex with TRMT10C, SDR5C1 and two divergent mt-tRNA substrates reveal two distinct mechanisms of pre-tRNA recognition. While canonical nu-tRNAs and mt-tRNAs are recognized by direct ELAC2-RNA interactions, processing of noncanonical mt-tRNAs depends on protein-protein interactions between ELAC2 and TRMT10C. These results provide the molecular basis for tRNA 3' processing in both the nucleus and the mitochondria and explain the organelle-specific requirement for additional factors. Moreover, they suggest that TRMT10C-SDR5C1 evolved as a mitochondrial tRNA maturation platform to compensate for the structural erosion of mt-tRNAs in bilaterian animals.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, University of Göttingen, Göttingen, Germany
| | - Bernhard Kuhle
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryan D Yu
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, University of Göttingen, Göttingen, Germany
| | - Lucas Spanaus
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Ditter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Zhang W, Westhof E. The Biology of tRNA t 6A Modification and Hypermodifications-Biogenesis and Disease Relevance. J Mol Biol 2025:169091. [PMID: 40155300 DOI: 10.1016/j.jmb.2025.169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The structure and function of transfer RNAs (tRNAs) are highly dependent on post-transcriptional chemical modifications that attach distinct chemical groups to various nucleobase atoms at selected tRNA positions via enzymatic reactions. In all three domains of life, the greatest diversity of chemical modifications is concentrated at positions 34 and 37 of the tRNA anticodon loops. N6-threonylcarbamoyladenosine (t6A) is an essential and universal modification occurring at position 37 of tRNAs that decode codons beginning with an adenine. In a subset of tRNAs from specific organisms, t6A is converted into a variety of hypermodified forms, including cyclic N6-threonylcarbamoyladenosine (ct6A), hydroxy-N6-threonylcarbamoyladenosine (ht6A), N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-cyclic N6-threonylcarbamoyladenosine (ms2ct6A). The tRNAs carrying t6A or one of its hypermodified derivatives are dubbed as the t6A family. The t6A family modifications pre-organize the anticodon loop in a conformation that enhances binding to the cognate mRNA codons, thereby promoting translational fidelity. The dysfunctional installation of modifications in the tRNA t6A family leads to translation errors, compromises proteostasis and cell viability, interferes with the growth and development of higher eukaryotes and is implicated in several human diseases, such as neurological disorders, mitochondrial encephalomyopathies, type 2 diabetes and cancers. In addition, loss-of-function mutations in KEOPS complex-the tRNA t6A-modifying enzyme-are associated with shortened telomeres, defects in DNA damage response and transcriptional dysregulation in eukaryotes. The chemical structures, the molecular functions, the known cellular roles and the biosynthetic pathways of the t6A tRNA family are described by integrating and linking biochemical and structural data on these modifications to their biological functions.
Collapse
Affiliation(s)
- Wenhua Zhang
- School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, China.
| | - Eric Westhof
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, 325000 Wenzhou, China; Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg 67084 Strasbourg, France
| |
Collapse
|
6
|
Li Z, Zhang F. Comparative mitogenomics of Cheiracanthium species (Araneae: Cheiracanthiidae) with phylogenetic implication and evolutionary insights. PeerJ 2025; 13:e18314. [PMID: 39963199 PMCID: PMC11831973 DOI: 10.7717/peerj.18314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 02/20/2025] Open
Abstract
The genus Cheiracanthium C. L. Koch, 1839 is the most species-rich genus of the family Cheiracanthiidae. Given the unavailability of information on the evolutionary biology and molecular taxonomy of this genus, here we sequenced nine mitochondrial genomes (mitogenomes) of Cheiracanthium species, four of which were fully annotated, and conducted comparative analyses with other well-characterized Araneae mitogenomes. We also provide phylogenetic insights on the genus Cheiracanthium. The circular mitogenomes of the Cheiracanthium contain 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and one putative control region (CR). All genes show a high A+T bias, characterized by a negative AT skew and positive GC skew, along with numerous overlapped regions and intergenic spacers. Approximately half of the tRNAs lack TΨC and/or dihydrouracil (DHU) arm and are characterized with unpaired amino acid acceptor arms. Most PCGs used the standard ATN start codons and TAR termination codons. The mitochondrial gene order of Cheiracanthium differs significantly from the putative ancestral gene order (Limulus polyphemus). Our novel phylogenetic analyses infer Cheiracanthiidae to be the sister group of Salticidae in BI analysis, but as sister to the node with Miturgidae, Viridasiidae, Corinnidae, Selenopidae, Salticidae, and Philodromidae in ML analysis. We confirm that Cheiracanthium is paraphyletic, for the first time using molecular phylogenetic approaches, with the earliest divergence estimated at 67 Ma. Our findings enhance our understanding of Cheiracanthium taxonomy and evolution.
Collapse
Affiliation(s)
- Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| |
Collapse
|
7
|
Valentín Gesé G, Hällberg BM. Structural basis of 3'-tRNA maturation by the human mitochondrial RNase Z complex. EMBO J 2024; 43:6573-6590. [PMID: 39516281 PMCID: PMC11649783 DOI: 10.1038/s44318-024-00297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Maturation of human mitochondrial tRNA is essential for cellular energy production, yet the underlying mechanisms remain only partially understood. Here, we present several cryo-EM structures of the mitochondrial RNase Z complex (ELAC2/SDR5C1/TRMT10C) bound to different maturation states of mitochondrial tRNAHis, showing the molecular basis for tRNA-substrate selection and catalysis. Our structural insights provide a molecular rationale for the 5'-to-3' tRNA processing order in mitochondria, the 3'-CCA antideterminant effect, and the basis for sequence-independent recognition of mitochondrial tRNA substrates. Furthermore, our study links mutations in ELAC2 to clinically relevant mitochondrial diseases, offering a deeper understanding of the molecular defects contributing to these conditions.
Collapse
MESH Headings
- Humans
- Mitochondria/metabolism
- Endoribonucleases/metabolism
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Cryoelectron Microscopy
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/chemistry
- RNA, Transfer, His/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- Models, Molecular
- Mutation
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/chemistry
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/genetics
- Methyltransferases
- Neoplasm Proteins
Collapse
Affiliation(s)
- Genís Valentín Gesé
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
- Centre for Structural Systems Biology (CSSB) and Karolinska Institutet VR-RÅC, Hamburg, Germany.
| |
Collapse
|
8
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Edelmann M, Couperus S, Rodríguez-Robles E, Rivollier J, Roberts T, Panke S, Marlière P. Evolving Escherichia coli to use a tRNA with a non-canonical fold as an adaptor of the genetic code. Nucleic Acids Res 2024; 52:12650-12668. [PMID: 39315692 PMCID: PMC11551756 DOI: 10.1093/nar/gkae806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
All known bacterial tRNAs adopt the canonical cloverleaf 2D and L-shaped 3D structures. We aimed to explore whether alternative tRNA structures could be introduced in bacterial translation. To this end, we crafted a vitamin-based genetic system to evolve Escherichia coli toward activity of structurally non-canonical tRNAs. The system reliably couples (escape frequency <10-12) growth with the activities of a novel orthogonal histidine suppressor tRNA (HisTUAC) and of the cognate ARS (HisS) via suppression of a GTA valine codon in the mRNA of an enzyme in thiamine biosynthesis (ThiN). Suppression results in the introduction of an essential histidine and thereby confers thiamine prototrophy. We then replaced HisTUAC in the system with non-canonical suppressor tRNAs and selected for growth. A strain evolved to utilize mini HisT, a tRNA lacking the D-arm, and we identified the responsible mutation in an RNase gene (pnp) involved in tRNA degradation. This indicated that HisS, the ribosome, and EF-Tu accept mini HisT ab initio, which we confirmed genetically and through in vitro translation experiments. Our results reveal a previously unknown flexibility of the bacterial translation machinery for the accepted fold of the adaptor of the genetic code and demonstrate the power of the vitamin-based suppression system.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Code
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
- Nucleic Acid Conformation
- Protein Biosynthesis
- Thiamine/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/chemistry
- Mutation
- Histidine/metabolism
- Histidine/genetics
- RNA, Transfer, His/metabolism
- RNA, Transfer, His/genetics
- RNA, Transfer, His/chemistry
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA Folding
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Codon/genetics
Collapse
Affiliation(s)
- Martin P Edelmann
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sietse Couperus
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Emilio Rodríguez-Robles
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Julie Rivollier
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| | - Tania M Roberts
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| |
Collapse
|
10
|
Lu S, Jin M, Yu Z, Zhang W. Structure-function analysis of tRNA t 6A-catalysis, assembly, and thermostability of Aquifex aeolicus TsaD 2B 2 tetramer in complex with TsaE. J Biol Chem 2024; 300:107962. [PMID: 39510188 DOI: 10.1016/j.jbc.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) at position 37 of tRNAs is one of the core post-transcriptional modifications that are needed for promoting translational fidelity. In bacteria, TsaC uses L-threonine, bicarbonate, and ATP to generate an intermediate threonylcarbamoyladenylate (TC-AMP), of which the TC moiety is transferred to N6 atom of tRNA A37 to generate t6A by TsaD with the support of TsaB and TsaE. TsaD and TsaB form a TsaDB dimer to which tRNA and TsaE are competitively bound. The catalytic mechanism of TsaD and auxiliary roles of TsaB and TsaE remain to be fully elucidated. In this study, we reconstituted tRNA t6A biosynthesis using TsaC, TsaD, TsaB, and TsaE from Aquifex aeolicus and determined crystal structures of apo-form and ADP-bound form of TsaD2B2 tetramer. Our TsaD2B2-TsaE-tRNA model coupled with functional validations reveal that the binding of tRNA or TsaE to TsaDB is regulated by C-terminal tail of TsaB and a helical hairpin α1-α2 of TsaD. A. aeolicus TsaDB possesses a basal t6A catalytic activity that is stimulated by TsaE at the cost of ATP consumption. Our data suggest that the binding of TsaE to TsaDB induces conformational changes of α1, α2, α6, α7, and α8 of TsaD and C-terminal tail of TsaB, leading to the release of tRNA t6A and AMP. ATP-mediated binding of TsaE to TsaDB resets a t6A active conformation of TsaDB. Dimerization of TsaDB enhances thermostability and promotes t6A catalysis of TsaD2B2-tRNA, of which GC base pairs in anticodon stem are needed for the correct folding of thermophilic tRNA at higher temperatures.
Collapse
Affiliation(s)
- Shuze Lu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Zhijiang Yu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Bobbo T, Biscarini F, Yaddehige SK, Alberghini L, Rigoni D, Bianchi N, Taccioli C. Machine learning classification of archaea and bacteria identifies novel predictive genomic features. BMC Genomics 2024; 25:955. [PMID: 39402493 PMCID: PMC11472548 DOI: 10.1186/s12864-024-10832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Several genome-based methods have been developed for their accurate classification, yet many aspects of the specific genomic features that determine these differences are not fully understood. In this study, we used publicly available whole-genome sequences from bacteria ( N = 2546 ) and archaea ( N = 109 ). From these, a set of genomic features (nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes (ncRNA, rRNA, tRNA), Chargaff's, topological entropy and Shannon's entropy scores) was extracted and used as input data to develop machine learning models for the classification of archaea and bacteria. RESULTS The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable importance, tRNA topological and Shannon's entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA and rRNA Chargaff's scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topological and Shannon's) was the most important genomic feature for classification, pointing at the complex interactions between the genetic code, tRNAs and the translational machinery. CONCLUSIONS tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classification of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Tania Bobbo
- Institute for Biomedical Technologies, National Research Council (CNR), Via Fratelli Cervi 93, Segrate (MI), 20054, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Edoardo Bassini 15, Milano, 20133, Italy.
| | - Sachithra K Yaddehige
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Leonardo Alberghini
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Davide Rigoni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, Padova, 35131, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy.
| |
Collapse
|
12
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Meynier V, Hardwick SW, Catala M, Roske JJ, Oerum S, Chirgadze DY, Barraud P, Yue WW, Luisi BF, Tisné C. Structural basis for human mitochondrial tRNA maturation. Nat Commun 2024; 15:4683. [PMID: 38824131 PMCID: PMC11144196 DOI: 10.1038/s41467-024-49132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.
Collapse
Affiliation(s)
- Vincent Meynier
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marjorie Catala
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Johann J Roske
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Stephanie Oerum
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carine Tisné
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France.
| |
Collapse
|
14
|
Yared MJ, Marcelot A, Barraud P. Beyond the Anticodon: tRNA Core Modifications and Their Impact on Structure, Translation and Stress Adaptation. Genes (Basel) 2024; 15:374. [PMID: 38540433 PMCID: PMC10969862 DOI: 10.3390/genes15030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.
Collapse
Affiliation(s)
| | | | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France; (M.-J.Y.); (A.M.)
| |
Collapse
|
15
|
Kim Y, Cho S, Kim JC, Park HS. tRNA engineering strategies for genetic code expansion. Front Genet 2024; 15:1373250. [PMID: 38516376 PMCID: PMC10954879 DOI: 10.3389/fgene.2024.1373250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The advancement of genetic code expansion (GCE) technology is attributed to the establishment of specific aminoacyl-tRNA synthetase/tRNA pairs. While earlier improvements mainly focused on aminoacyl-tRNA synthetases, recent studies have highlighted the importance of optimizing tRNA sequences to enhance both unnatural amino acid incorporation efficiency and orthogonality. Given the crucial role of tRNAs in the translation process and their substantial impact on overall GCE efficiency, ongoing efforts are dedicated to the development of tRNA engineering techniques. This review explores diverse tRNA engineering approaches and provides illustrative examples in the context of GCE, offering insights into the user-friendly implementation of GCE technology.
Collapse
Affiliation(s)
| | | | | | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
17
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 PMCID: PMC11849751 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
Affiliation(s)
- Tyler J Smith
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Rachel N Giles
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Chen SC, Jiang HY, Liao SR, Chen TX, Wang XQ. Complete mitochondrial genome of Stethoconus japonicus (Hemiptera: Miridae): Insights into the evolutionary traits within the family Miridae. Gene 2024; 891:147830. [PMID: 37758005 DOI: 10.1016/j.gene.2023.147830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
The mitochondrial (mt) genome sequence of insects possesses numerous evolutionary traits. To better understand the evolution of mt genomes within the family Miridae, the complete mt genome of the predatory Japanese plant bug Stethoconus japonicus Schumacher was sequenced before undertaking a comparative analysis of all reported plant bug mt genomes. The mt genome of S. japonicus is a closed-circular and double-stranded DNA molecule of 16,274 bp (GenBank: MK341530), which consists of 13 protein-coding genes (PCGs), 2 rRNAs, 22 tRNAs and a putative control region (CR). Consistent with other plant bugs, the mt genome of S. japonicus is strongly AT-biased (73.49 %) with A-skewed (0.202) and C-skewed (-0.248). All 13 PCGs initiate translation using ATN codons and TAA served as complete stop codons for eight PCGs, which as incomplete stop codon "T-" for cox1, nad1, nad5-6 and "TA-" for cox2. Regarding other features, all 22 tRNAs could be folded into typical cloverleaf secondary structures. The control region is 1,717 bp and contains a long tandem repeat sequence of a 165 bp unit repeated six times. Similar sequence with variable number of tandemly repeated units from intra-genus CRs is a distinct characteristic of plant bug mt genomes. Phylogenetic relationships of 15 bugs were eventually analyzed based on Maximum likelihood (ML) and Bayesian inference (BI) methods using 17 mt genome sequences. In the phylogenetic trees, species from a same genus or subfamily are clustered into a branch with high supporting values.and the result suggest that Deraeocorinae is more closely related to Mirinae than Bryocorinae. Finally, this study revealed that mutation of tRNA anticodon is a useful phylogenetic marker that could be of significance for studies of evolutionary patterns.
Collapse
Affiliation(s)
- Shi-Chun Chen
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Hong-Yan Jiang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Shu-Ran Liao
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Ting-Xu Chen
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| | - Xiao-Qing Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, PR China.
| |
Collapse
|
19
|
Ohira T, Suzuki T. Transfer RNA modifications and cellular thermotolerance. Mol Cell 2024; 84:94-106. [PMID: 38181765 DOI: 10.1016/j.molcel.2023.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
RNA molecules are modified post-transcriptionally to acquire their diverse functions. Transfer RNA (tRNA) has the widest variety and largest numbers of RNA modifications. tRNA modifications are pivotal for decoding the genetic code and stabilizing the tertiary structure of tRNA molecules. Alternation of tRNA modifications directly modulates the structure and function of tRNAs and regulates gene expression. Notably, thermophilic organisms exhibit characteristic tRNA modifications that are dynamically regulated in response to varying growth temperatures, thereby bolstering fitness in extreme environments. Here, we review the history and latest findings regarding the functions and biogenesis of several tRNA modifications that contribute to the cellular thermotolerance of thermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
20
|
Saleh S, Farabaugh PJ. Posttranscriptional modification to the core of tRNAs modulates translational misreading errors. RNA (NEW YORK, N.Y.) 2023; 30:37-51. [PMID: 37907335 PMCID: PMC10726164 DOI: 10.1261/rna.079797.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Protein synthesis on the ribosome involves successive rapid recruitment of cognate aminoacyl-tRNAs and rejection of the much more numerous incorrect near- or non-cognates. The principal feature of translation elongation is that at every step, many incorrect aa-tRNAs unsuccessfully enter the A site for each cognate accepted. Normal levels of translational accuracy require that cognate tRNAs have relatively similar acceptance rates by the ribosome. To achieve that, tRNAs evolved to compensate for differences in amino acid properties and codon-anticodon strength that affect acceptance. Part of that response involved tRNA posttranscriptional modifications, which can affect tRNA decoding efficiency, accuracy, and structural stability. The most intensively modified regions of the tRNA are the anticodon loop and structural core of the tRNA. Anticodon loop modifications directly affect codon-anticodon pairing and therefore modulate accuracy. Core modifications have been thought to ensure consistent decoding rates principally by stabilizing tRNA structure to avoid degradation; however, degradation due to instability appears to only be a significant issue above normal growth temperatures. We suspected that the greater role of modification at normal temperatures might be to tune tRNAs to maintain consistent intrinsic rates of acceptance and peptide transfer and that hypomodification by altering these rates might degrade the process of discrimination, leading to increased translational errors. Here, we present evidence that most tRNA core modifications do modulate the frequency of misreading errors, suggesting that the need to maintain accuracy explains their deep evolutionary conservation.
Collapse
Affiliation(s)
- Sima Saleh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
21
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Vilardo E, Toth U, Hazisllari E, Hartmann R, Rossmanith W. Cleavage kinetics of human mitochondrial RNase P and contribution of its non-nuclease subunits. Nucleic Acids Res 2023; 51:10536-10550. [PMID: 37779095 PMCID: PMC10602865 DOI: 10.1093/nar/gkad713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
RNase P is the endonuclease responsible for the 5' processing of precursor tRNAs (pre-tRNAs). Unlike the single-subunit protein-only RNase P (PRORP) found in plants or protists, human mitochondrial RNase P is a multi-enzyme assembly that in addition to the homologous PRORP subunit comprises a methyltransferase (TRMT10C) and a dehydrogenase (SDR5C1) subunit; these proteins, but not their enzymatic activities, are required for efficient pre-tRNA cleavage. Here we report a kinetic analysis of the cleavage reaction by human PRORP and its interplay with TRMT10C-SDR5C1 including 12 different mitochondrial pre-tRNAs. Surprisingly, we found that PRORP alone binds pre-tRNAs with nanomolar affinity and can even cleave some of them at reduced efficiency without the other subunits. Thus, the ancient binding mode, involving the tRNA elbow and PRORP's PPR domain, appears basically retained by human PRORP, and its metallonuclease domain is in principle correctly folded and functional. Our findings support a model according to which the main function of TRMT10C-SDR5C1 is to direct PRORP's nuclease domain to the cleavage site, thereby increasing the rate and accuracy of cleavage. This functional dependence of human PRORP on an extra tRNA-binding protein complex likely reflects an evolutionary adaptation to the erosion of canonical structural features in mitochondrial tRNAs.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Enxhi Hazisllari
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition. Nat Commun 2023; 14:4794. [PMID: 37558671 PMCID: PMC10412605 DOI: 10.1038/s41467-023-40354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNASer isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNASer(UGA), and perform a structural and functional comparison with the mSerRS-mtRNASer(GCU) complex. We find that despite their common function, mtRNASer(UGA) and mtRNASer(GCU) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNASer. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
24
|
Mohler K, Moen JM, Rogulina S, Rinehart J. System-wide optimization of an orthogonal translation system with enhanced biological tolerance. Mol Syst Biol 2023; 19:e10591. [PMID: 37477096 PMCID: PMC10407733 DOI: 10.15252/msb.202110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI)University of California, San FranciscoSan FranciscoCAUSA
- 2QBI Coronavirus Research Group (QCRG)San FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Svetlana Rogulina
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| | - Jesse Rinehart
- Department of Cellular & Molecular PhysiologyYale School of MedicineNew HavenCTUSA
- Systems Biology InstituteYale UniversityNew HavenCTUSA
| |
Collapse
|
25
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
26
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
27
|
Zhang W, Lin L, Ding Y, Zhang F, Zhang J. Comparative Mitogenomics of Jumping Spiders with First Complete Mitochondrial Genomes of Euophryini (Araneae: Salticidae). INSECTS 2023; 14:517. [PMID: 37367333 DOI: 10.3390/insects14060517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Salticidae is the most species-rich family of spiders with diverse morphology, ecology and behavior. However, the characteristics of the mitogenomes within this group are poorly understood with relatively few well-characterized complete mitochondrial genomes. In this study, we provide completely annotated mitogenomes for Corythalia opima and Parabathippus shelfordi, which represent the first complete mitogenomes of the tribe Euophryini of Salticidae. The features and characteristics of the mitochondrial genomes are elucidated for Salticidae by thoroughly comparing the known well-characterized mitogenomes. The gene rearrangement between trnL2 and trnN was found in two jumping spider species, Corythalia opima and Heliophanus lineiventris Simon, 1868. Additionally, the rearrangement of nad1 to between trnE and trnF found in Asemonea sichuanensis Song & Chai, 1992 is the first protein-coding gene rearrangement in Salticidae, which may have an important phylogenetic implication for the family. Tandem repeats of various copy numbers and lengths were discovered in three jumping spider species. The codon usage analyses showed that the evolution of codon usage bias in salticid mitogenomes was affected by both selection and mutational pressure, but selection may have played a more important role. The phylogenetic analyses provided insight into the taxonomy of Colopsus longipalpis (Żabka, 1985). The data presented in this study will improve our understanding of the evolution of mitochondrial genomes within Salticidae.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Long Lin
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhui Ding
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
28
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
29
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nat Commun 2022; 13:5100. [PMID: 36042193 PMCID: PMC9427863 DOI: 10.1038/s41467-022-32544-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human mitochondrial gene expression relies on the specific recognition and aminoacylation of mitochondrial tRNAs (mtRNAs) by nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs). Despite their essential role in cellular energy homeostasis, strong mutation pressure and genetic drift have led to an unparalleled sequence erosion of animal mtRNAs. The structural and functional consequences of this erosion are not understood. Here, we present cryo-EM structures of the human mitochondrial seryl-tRNA synthetase (mSerRS) in complex with mtRNASer(GCU). These structures reveal a unique mechanism of substrate recognition and aminoacylation. The mtRNASer(GCU) is highly degenerated, having lost the entire D-arm, tertiary core, and stable L-shaped fold that define canonical tRNAs. Instead, mtRNASer(GCU) evolved unique structural innovations, including a radically altered T-arm topology that serves as critical identity determinant in an unusual shape-selective readout mechanism by mSerRS. Our results provide a molecular framework to understand the principles of mito-nuclear co-evolution and specialized mechanisms of tRNA recognition in mammalian mitochondrial gene expression.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
30
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
31
|
Bhatta A, Hillen HS. Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes. Trends Biochem Sci 2022; 47:965-977. [PMID: 35725940 DOI: 10.1016/j.tibs.2022.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Ribonuclease P (RNase P) enzymes are responsible for the 5' processing of tRNA precursors. In addition to the well-characterised ribozyme-based RNase P enzymes, an evolutionarily distinct group of protein-only RNase Ps exists. These proteinaceous RNase Ps (PRORPs) can be found in all three domains of life and can be divided into two structurally different types: eukaryotic and prokaryotic. Recent structural studies on members of both families reveal a surprising diversity of molecular architectures, but also highlight conceptual and mechanistic similarities. Here, we provide a comparison between the different types of PRORP enzymes and review how the combination of structural, biochemical, and biophysical studies has led to a molecular picture of protein-mediated tRNA processing.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Goettingen, D-37075 Goettingen, Germany.
| |
Collapse
|
32
|
Kumar J, Lackey L, Waldern JM, Dey A, Mustoe AM, Weeks KM, Mathews DH, Laederach A. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 2022; 11:73888. [PMID: 35695373 PMCID: PMC9236610 DOI: 10.7554/elife.73888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.
Collapse
Affiliation(s)
- Jayashree Kumar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, United States
| | - Justin M Waldern
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
33
|
Westhof E, Thornlow B, Chan PP, Lowe TM. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res 2022; 50:4100-4112. [PMID: 35380696 PMCID: PMC9023262 DOI: 10.1093/nar/gkac222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.
Collapse
Affiliation(s)
- Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
34
|
Bhatta A, Dienemann C, Cramer P, Hillen HS. Structural basis of RNA processing by human mitochondrial RNase P. Nat Struct Mol Biol 2021; 28:713-723. [PMID: 34489609 PMCID: PMC8437803 DOI: 10.1038/s41594-021-00637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
35
|
Possible Roles of tRNA Fragments, as New Regulatory ncRNAs, in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22179481. [PMID: 34502386 PMCID: PMC8431707 DOI: 10.3390/ijms22179481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding the pathophysiology of rheumatoid arthritis (RA) has led to the successful development of molecule-targeted drugs for the treatment of RA. However, some RA patients are refractory to these treatments, suggesting that the pathological mechanism of the disease is not entirely understood. Genome and transcriptome analysis is essential for understanding the unknown pathophysiology of human diseases. Rapid and more comprehensive gene analysis technologies have revealed notable changes in the expression of coding RNA and non-coding RNA in RA patients. This review focuses on the current state of non-coding RNA research in relation to RA, especially on tRNA fragments. Interestingly, it has been found that tRNA fragments repress translation and are antiapoptotic. The association between tRNA fragments and various diseases has been studied, and this article reviews the possible role of tRNA fragments in RA.
Collapse
|
36
|
Fagan SG, Helm M, Prehn JHM. tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol 2021; 205:102118. [PMID: 34245849 DOI: 10.1016/j.pneurobio.2021.102118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
tRNA-derived small RNAs (tsRNA) are a recently identified family of non-coding RNA that have been associated with a variety of cellular functions including the regulation of protein translation and gene expression. Recent sequencing and bioinformatic studies have identified the broad spectrum of tsRNA in the nervous system and demonstrated that this new class of non-coding RNA is produced from tRNA by specific cleavage events catalysed by ribonucleases such as angiogenin and dicer. Evidence is also accumulating that production of tsRNA is increased during disease processes where they regulate stress responses, proteostasis, and neuronal survival. Mutations to tRNA cleaving and modifying enzymes have been implicated in several neurodegenerative disorders, and tsRNA levels in the blood are advancing as biomarkers for neurological disease. In this review we summarize the physiological importance of tsRNA in the central nervous system and their relevance to neurological disease.
Collapse
Affiliation(s)
- Steven G Fagan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences - IPBS, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
37
|
Lawrence TJ, Hadi-Nezhad F, Grosse I, Ardell DH. tSFM 1.0: tRNA Structure-Function Mapper. Bioinformatics 2021; 37:3654-3656. [PMID: 33904572 PMCID: PMC8545343 DOI: 10.1093/bioinformatics/btab247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Structure-conditioned information statistics have proven useful to predict and visualize tRNA Class-Informative Features (CIFs) and their evolutionary divergences. Although permutation p-values can quantify the significance of CIF divergences between two taxa, their naive Monte Carlo approximation is slow and inaccurate. The Peaks-over-Threshold approach of Knijnenburg et al. (2009) promises improvements to both speed and accuracy of permutation p-values, but has no publicly available API. AVAILABILITY AND IMPLEMENTATION We present tRNA Structure-Function Mapper (tSFM) v1.0, an open-source, multi-threaded application that efficiently computes, visualizes, and assesses significance of single- and paired-site CIFs and their evolutionary divergences for any RNA, protein, gene or genomic element sequence family. multiple estimators of permutation p-values for CIF evolutionary divergences are provided along with condidence intervals. tSFM is implemented in Python 3 with compiled C extensions and is freely available through GitHub (https://github.com/tlawrence3/tSFM) and PyPI. SUPPLEMENTARY INFORMATION Supplementary materials are available at Bioinformatics online.
Collapse
Affiliation(s)
- Travis J Lawrence
- Quantitative and Systems Biology Program, University of California, Merced, United States of America.,Biosciences Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37830, United States of America
| | - Fatemeh Hadi-Nezhad
- Quantitative and Systems Biology Program, University of California, Merced, United States of America
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Center of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, United States of America.,Department of Molecular and Cell Biology, University of California, Merced, California 95343, United States of America
| |
Collapse
|
38
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
40
|
Schauss J, Kundu A, Fingerhut BP, Elsaesser T. Magnesium Contact Ions Stabilize the Tertiary Structure of Transfer RNA: Electrostatics Mapped by Two-Dimensional Infrared Spectra and Theoretical Simulations. J Phys Chem B 2021; 125:740-747. [PMID: 33284610 PMCID: PMC7848891 DOI: 10.1021/acs.jpcb.0c08966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Ions interacting with hydrated RNA
play a central role in defining
its secondary and tertiary structure. While spatial arrangements of
ions, water molecules, and phosphate groups have been inferred from
X-ray studies, the role of electrostatic and other noncovalent interactions
in stabilizing compact folded RNA structures is not fully understood
at the molecular level. Here, we demonstrate that contact ion pairs
of magnesium (Mg2+) and phosphate groups embedded in local
water shells stabilize the tertiary equilibrium structure of transfer
RNA (tRNA). Employing dialyzed tRNAPhe from yeast and tRNA
from Escherichia coli, we follow the
population of Mg2+ sites close to phosphate groups of the
ribose-phosphodiester backbone step by step, combining linear and
nonlinear infrared spectroscopy of phosphate vibrations with molecular
dynamics simulations and ab initio vibrational frequency calculations.
The formation of up to six Mg2+/phosphate contact pairs
per tRNA and local field-induced reorientations of water molecules
balance the phosphate–phosphate repulsion in nonhelical parts
of tRNA, thus stabilizing the folded structure electrostatically.
Such geometries display limited sub-picosecond fluctuations in the
arrangement of water molecules and ion residence times longer than
1 μs. At higher Mg2+ excess, the number of contact
ion pairs per tRNA saturates around 6 and weakly interacting ions
prevail. Our results suggest a predominance of contact ion pairs over
long-range coupling of the ion atmosphere and the biomolecule in defining
and stabilizing the tertiary structure of tRNA.
Collapse
Affiliation(s)
- Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Achintya Kundu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| |
Collapse
|
41
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
42
|
Neelagandan N, Lamberti I, Carvalho HJF, Gobet C, Naef F. What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biol 2020; 10:200292. [PMID: 33292102 PMCID: PMC7776565 DOI: 10.1098/rsob.200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain. Additionally, these studies have fuelled quantitative and mathematical modelling of translation elongation. In this review, we provide a comprehensive overview of the key determinants of translation elongation. We discuss consequences of ribosome stalling or collision, and how the cells regulate translation in case of such events. Next, we review theoretical approaches and widely used mathematical models that have become an essential ingredient to interpret complex molecular datasets and study translation dynamics quantitatively. Finally, we review recent advances in live-cell reporter and related analysis techniques, to monitor the translation dynamics of single cells and single-mRNA molecules in real time.
Collapse
Affiliation(s)
| | | | | | | | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
43
|
Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, Betat H, Sauter C, Mörl M. Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. Int J Mol Sci 2020; 21:E9047. [PMID: 33260740 PMCID: PMC7730189 DOI: 10.3390/ijms21239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
Collapse
Affiliation(s)
- Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Susanne Philipp
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Sonja Bonin
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Kévin Rollet
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Tina Jühling
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| |
Collapse
|
44
|
Infante-Rojas H, Marino-Ramirez L, Hernández-Fernández J. Structural analysis of leucine, lysine and tryptophan mitochondrial tRNA of nesting turtles Caretta caretta (Testudines: Chelonioidea) in the Colombian Caribbean. PeerJ 2020; 8:e9204. [PMID: 32596037 PMCID: PMC7306221 DOI: 10.7717/peerj.9204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/25/2020] [Indexed: 11/20/2022] Open
Abstract
The understanding of the functional properties of mitochondrial transfer RNA (mt tRNAs) depend on the knowledge of its structure. tRNA acts as an interface between polynucleotides and polypeptides thus, they are key molecules in protein biosynthesis. The tRNA molecule has a functional design and, given its importance in the translation of mitochondrial genes, it is plausible that modifications of the structure can affect the synthesis of proteins and the functional properties of the mitochondria. In a previous work, the mitochondrial genome of an individual of the nesting Caretta caretta of the Colombian Caribbean was obtained, where specific mutations were identified in the only tRNALeu (CUN), tRNATrp and tRNALys genes. In order to analyze the effect of these mutations on these three mt tRNAs, the prediction of 2D and 3D structures was performed. Genes were sequenced in 11 nesting loggerhead turtles from the Colombian Caribbean. Two-dimensional structures were inferred using the ARWEN program, and three-dimensional structures were obtained with the RNA Composer 3D program. Two polymorphisms were identified in tRNATrp and another one was located in tRNALys, both specific to C. caretta. The thymine substitution in nucleotide position 14 of tRNATrp could constitute an endemic polymorphism of the nesting colony of the Colombian Caribbean. Two 2D and three 3D patterns were obtained for tRNATrp. In the case of tRNALys and tRNALeu 2D and 3D structures were obtained respectively, which showed compliance to canonical structures, with 4 bp in the D-arm, 4-5 bp in the T-arm, and 5 bp in the anticodon arm. Moderate deviations were found, such as a change in the number of nucleotides, elongation in loops or stems and non-Watson-Crick base pairing: adenine-adenine in stem D of tRNATrp, uracil-uracil and adenine-cytosine in the acceptor arm of the tRNALys and cytosine-cytosine in the anticodon stem of the tRNALeu. In addition, distortions or lack of typical interactions in 3D structures gave them unique characteristics. According to the size of the variable region (4-5 nt), the three analyzed tRNAs belong to class I. The interactions in the three studied tRNAs occur mainly between D loop-variable region, and between spacer bases-variable region, which classifies them as tRNA of typology II. The polymorphisms and structural changes described can, apparently, be post-transcriptionally stabilized. It will be crucial to perform studies at the population and functional levels to elucidate the synthetic pathways affected by these genes. This article analyses for the first time the 1D, 2D and 3D structures of the mitochondrial tRNALys, tRNATrp and tRNALeu in the loggerhead turtle.
Collapse
Affiliation(s)
- Harvey Infante-Rojas
- Department of Natural and Environmental Sciences, Genetics, Molecular Biology and Bioinformatics Lab, Jorge Tadeo Lozano University, Bogotá, Cundinamarca, Colombia
| | | | - Javier Hernández-Fernández
- Department of Natural and Environmental Sciences, Genetics, Molecular Biology and Bioinformatics Lab, Jorge Tadeo Lozano University, Bogotá, Cundinamarca, Colombia
| |
Collapse
|
45
|
Gawroński P, Pałac A, Scharff LB. Secondary Structure of Chloroplast mRNAs In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2020; 9:E323. [PMID: 32143324 PMCID: PMC7154907 DOI: 10.3390/plants9030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Abstract
mRNA secondary structure can influence gene expression, e.g., by influencing translation initiation. The probing of in vivo mRNA secondary structures is therefore necessary to understand what determines the efficiency and regulation of gene expression. Here, in vivo mRNA secondary structure was analyzed using dimethyl sulfate (DMS)-MaPseq and compared to in vitro-folded RNA. We used an approach to analyze specific, full-length transcripts. To test this approach, we chose low, medium, and high abundant mRNAs. We included both monocistronic and multicistronic transcripts. Because of the slightly alkaline pH of the chloroplast stroma, we could probe all four nucleotides with DMS. The structural information gained was evaluated using the known structure of the plastid 16S rRNA. This demonstrated that the results obtained for adenosines and cytidines were more reliable than for guanosines and uridines. The majority of mRNAs analyzed were less structured in vivo than in vitro. The in vivo secondary structure of the translation initiation region of most tested genes appears to be optimized for high translation efficiency.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Pałac
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
46
|
Weitzel CS, Li L, Zhang C, Eilts KK, Bretz NM, Gatten AL, Whitaker RJ, Martinis SA. Duplication of leucyl-tRNA synthetase in an archaeal extremophile may play a role in adaptation to variable environmental conditions. J Biol Chem 2020; 295:4563-4576. [PMID: 32102848 DOI: 10.1074/jbc.ra118.006481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited. Using bioinformatics analyses, we identified two distinct leucyl-tRNA synthetase (LeuRS) genes within all genomes of the archaeal family Sulfolobaceae. Remarkably, one copy, designated LeuRS-I, had key amino acid substitutions within its editing domain that would be expected to disrupt hydrolytic editing of mischarged tRNALeu and to result in variation within the proteome of these extremophiles. We found that another copy, LeuRS-F, contains canonical active sites for aminoacylation and editing. Biochemical and genetic analyses of the paralogs within Sulfolobus islandicus supported the hypothesis that LeuRS-F, but not LeuRS-I, functions as an essential tRNA synthetase that accurately charges leucine to tRNALeu for protein translation. Although LeuRS-I was not essential, its expression clearly supported optimal S. islandicus growth. We conclude that LeuRS-I may have evolved to confer a selective advantage under the extreme and fluctuating environmental conditions characteristic of the volcanic hot springs in which these archaeal extremophiles reside.
Collapse
Affiliation(s)
| | - Li Li
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801
| | - Changyi Zhang
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Kristen K Eilts
- Department of Chemistry, Illinois State University, Normal, Illinois 61761
| | - Nicholas M Bretz
- Department of Chemistry, Illinois State University, Normal, Illinois 61761
| | - Alex L Gatten
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Susan A Martinis
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
47
|
Fan JY, Huang Q, Ji QQ, Wang ED. LeuRS can leucylate type I and type II tRNALeus in Streptomyces coelicolor. Nucleic Acids Res 2020; 47:6369-6385. [PMID: 31114902 PMCID: PMC6614811 DOI: 10.1093/nar/gkz443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.
Collapse
Affiliation(s)
- Jia-Yi Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Qian Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - Quan-Quan Ji
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
48
|
Kuhle B, Chihade J, Schimmel P. Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun 2020; 11:969. [PMID: 32080176 PMCID: PMC7033119 DOI: 10.1038/s41467-020-14725-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
Metazoan complexity and life-style depend on the bioenergetic potential of mitochondria. However, higher aerobic activity and genetic drift impose strong mutation pressure and risk of irreversible fitness decline in mitochondrial (mt)DNA-encoded genes. Bilaterian mitochondria-encoded tRNA genes, key players in mitochondrial activity, have accumulated mutations at significantly higher rates than their cytoplasmic counterparts, resulting in foreshortened and fragile structures. Here we show that fragility of mt tRNAs coincided with the evolution of bilaterian animals. We demonstrate that bilaterians compensated for this reduced structural complexity in mt tRNAs by sequence-independent induced-fit adaption to the cognate mitochondrial aminoacyl-tRNA synthetase (aaRS). Structural readout by nuclear-encoded aaRS partners relaxed the sequence constraints on mt tRNAs and facilitated accommodation of functionally disruptive mutational insults by cis-acting epistatic compensations. Our results thus suggest that mutational freedom in mt tRNA genes is an adaptation to increased mutation pressure that was associated with the evolution of animal complexity. Bilaterian mitochondria-encoded tRNA genes accumulate mutations at higher rates than their cytoplasmic tRNA counterparts, resulting in idiosyncratic structures. Here the authors suggest an evolutionary basis for the observed mutational freedom of mitochondrial (mt) tRNAs and reveal the associated co-adaptive structural and functional changes in mt aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Bernhard Kuhle
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Joseph Chihade
- Department of Chemistry, Carleton College, 1 North College St., Northfield, MN, 55057, USA
| | - Paul Schimmel
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Department of Molecular Medicine, The Scripps Florida Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
49
|
Payea MJ, Hauke AC, De Zoysa T, Phizicky EM. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast. RNA (NEW YORK, N.Y.) 2020; 26:29-43. [PMID: 31619505 PMCID: PMC6913130 DOI: 10.1261/rna.073155.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.
Collapse
Affiliation(s)
- Matthew J Payea
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Thareendra De Zoysa
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
50
|
Fandilolu P, Kamble AS, Dound AS, Sonawane KD. Role of Wybutosine and Mg 2+ Ions in Modulating the Structure and Function of tRNA Phe: A Molecular Dynamics Study. ACS OMEGA 2019; 4:21327-21339. [PMID: 31867527 PMCID: PMC6921629 DOI: 10.1021/acsomega.9b02238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Transfer RNA remains to be a mysterious molecule of the cell repertoire. With its modified bases and selectivity of codon recognition, it remains to be flexible inside the ribosomal machinery for smooth and hassle-free protein biosynthesis. Structural changes occurring in tRNA due to the presence or absence of wybutosine, with and without Mg2+ ions, have remained a point of interest for structural biologists. Very few studies have come to a conclusion correlating the changes either with the structure and flexibility or with the codon recognition. Considering the above facts, we have implemented molecular modeling methods to address these problems using multiple molecular dynamics (MD) simulations of tRNAPhe along with codons. Our results highlight some of the earlier findings and also shed light on some novel structural and functional aspects. Changes in the stability of tRNAPhe in native or codon-bound states result from the conformations of constituent nucleotides with respect to each other. A smaller change in their conformations leads to structural distortions in the base-pairing geometry and eventually in the ribose-phosphate backbone. MD simulation studies highlight the preference of UUC codons over UUU by tRNAPhe in the presence of wybutosine and Mg2+ ions. This study also suggests that magnesium ions are required by tRNAPhe for proper recognition of UUC/UUU codons during ribosomal interactions with tRNA.
Collapse
Affiliation(s)
- Prayagraj
M. Fandilolu
- Structural
Bioinformatics Unit, Department of Biochemistry and Department of
Microbiology, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Asmita S. Kamble
- Structural
Bioinformatics Unit, Department of Biochemistry and Department of
Microbiology, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Ambika S. Dound
- Structural
Bioinformatics Unit, Department of Biochemistry and Department of
Microbiology, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Kailas D. Sonawane
- Structural
Bioinformatics Unit, Department of Biochemistry and Department of
Microbiology, Shivaji University, Kolhapur 416004, Maharashtra, India
| |
Collapse
|