1
|
Matos RG, Simmons KJ, Fishwick CWG, McDowall KJ, Arraiano CM. Identification of Ribonuclease Inhibitors for the Control of Pathogenic Bacteria. Int J Mol Sci 2024; 25:8048. [PMID: 39125622 PMCID: PMC11311990 DOI: 10.3390/ijms25158048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Bacteria are known to be constantly adapting to become resistant to antibiotics. Currently, efficient antibacterial compounds are still available; however, it is only a matter of time until these compounds also become inefficient. Ribonucleases are the enzymes responsible for the maturation and degradation of RNA molecules, and many of them are essential for microbial survival. Members of the PNPase and RNase II families of exoribonucleases have been implicated in virulence in many pathogens and, as such, are valid targets for the development of new antibacterials. In this paper, we describe the use of virtual high-throughput screening (vHTS) to identify chemical compounds predicted to bind to the active sites within the known structures of RNase II and PNPase from Escherichia coli. The subsequent in vitro screening identified compounds that inhibited the activity of these exoribonucleases, with some also affecting cell viability, thereby providing proof of principle for utilizing the known structures of these enzymes in the pursuit of new antibacterials.
Collapse
Affiliation(s)
- Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Katie J. Simmons
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Colin W. G. Fishwick
- Astbury Centre for Structural Molecular Biology, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Kenneth J. McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
2
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
3
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
4
|
Lodato PB. The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli. Sci Rep 2021; 11:18372. [PMID: 34526533 PMCID: PMC8443680 DOI: 10.1038/s41598-021-97736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
5
|
Goddard LR, Mardle CE, Gneid H, Ball CG, Gowers DM, Atkins HS, Butt LE, Watts JK, Vincent HA, Callaghan AJ. An Investigation into the Potential of Targeting Escherichia coli rne mRNA with Locked Nucleic Acid (LNA) Gapmers as an Antibacterial Strategy. Molecules 2021; 26:molecules26113414. [PMID: 34200016 PMCID: PMC8200214 DOI: 10.3390/molecules26113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.
Collapse
Affiliation(s)
- Layla R. Goddard
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Charlotte E. Mardle
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
| | - Hassan Gneid
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01609, USA; (H.G.); (J.K.W.)
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Ciara G. Ball
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
| | - Helen S. Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Louise E. Butt
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01609, USA; (H.G.); (J.K.W.)
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DY, UK
- Correspondence: (H.A.V.); (A.J.C.)
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; (L.R.G.); (C.E.M.); (C.G.B.); (D.M.G.); (L.E.B.)
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DY, UK
- Correspondence: (H.A.V.); (A.J.C.)
| |
Collapse
|
6
|
Targeting of the Essential acpP, ftsZ, and rne Genes in Carbapenem-Resistant Acinetobacter baumannii by Antisense PNA Precision Antibacterials. Biomedicines 2021; 9:biomedicines9040429. [PMID: 33921011 PMCID: PMC8071358 DOI: 10.3390/biomedicines9040429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Infections by carbapenem-resistant A. baumannii (CRAB), a widespread nosocomial pathogen, are becoming increasingly difficult to prevent and treat. Therefore, there is an urgent need for discovery of novel antibiotics against CRAB. Programmable, precision antisense antibiotics, e.g., based on the nucleic acid mimic PNA (peptide nucleic acid) have shown promise in this respect in the form of PNA-BPP (bacteria penetrating peptide) conjugates targeting essential bacterial genes. In the present study, we designed and synthesized a series of PNA-BPPs targeting the translation initiation region of the ftsZ, acpP, or rne gene of CRAB strains. The antimicrobial activity of the compounds and effects on gene expression level was compared to that of analogous mismatch PNA controls. Three antisense conjugates (KFF)3K-eg1-(acpP)PNA (5639), (KFF)3K-eg1-(ftsZ)PNA (5612), and (KFF)3-K-eg1-(rne)PNA (5656) exhibited complete growth inhibition against several CRAB strains at 1-2, 2-8, and 2 µM, respectively, and the compounds were bactericidal at 1-2× MIC. The bactericidal effect was correlated to reduction of target gene mRNA level using RT-qPCR, and the compounds showed no bacterial membrane disruption activity at 1-2× MIC. PNA5612 was tested against a series of 12 CRAB isolates and all were sensitive at 2-8 µM. In addition, the conjugates exhibited no cellular toxicity in the HepG2 cell line (up to 20 μM) and did not shown significant antibacterial activity against other Gram negatives (E. coli, P. aeruginosa). These results provide a starting point for discovery of antisense precision designer antibiotics for specific treatment of CRAB infections.
Collapse
|
7
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
8
|
Mardle CE, Goddard LR, Spelman BC, Atkins HS, Butt LE, Cox PA, Gowers DM, Vincent HA, Callaghan AJ. Identification and analysis of novel small molecule inhibitors of RNase E: Implications for antibacterial targeting and regulation of RNase E. Biochem Biophys Rep 2020; 23:100773. [PMID: 32548313 PMCID: PMC7284133 DOI: 10.1016/j.bbrep.2020.100773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 05/30/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E. RNase E, an essential bacterial endoribonuclease, is a potential antibacterial target. Three novel small molecule inhibitors of RNase E are identified. Each inhibitor is active against RNase E from E. coli, F. tularensis and A. baumannii. Two, as non-natural compounds, are suitable lead compounds for antibiotic development. One, a metabolite, is a potential novel regulator of RNase E.
Collapse
Affiliation(s)
- Charlotte E Mardle
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Layla R Goddard
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Bailei C Spelman
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen S Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom.,University of Exeter, Exeter, United Kingdom.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louise E Butt
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Paul A Cox
- School of Pharmacy and Biomedical Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Darren M Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen A Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Anastasia J Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| |
Collapse
|
9
|
Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HH. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 2020; 93:103278. [DOI: 10.1016/j.jdent.2020.103278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
|
10
|
Chen H, Tang Y, Weir MD, Gao J, Imazato S, Oates TW, Lei L, Wang S, Hu T, Xu HHK. Effects of S. mutans gene-modification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dent Mater 2019; 36:296-309. [PMID: 31839202 DOI: 10.1016/j.dental.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/17/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Antibacterial quaternary ammonium monomers (QAMs) are used in resins. The rnc gene in Streptococcus mutans (S. mutans) plays a key role in resisting antibiotics. The objectives of this study were to investigate for the first time: (1) the effects of rnc deletion on S. mutans biofilms and acid production; (2) the combined effects of rnc deletion with dimethylaminohexadecyl methacrylate (DMAHDM) on biofilm-inhibition efficacy. METHODS Parent S. mutans strain UA159 (ATCC 700610) and the rnc-deleted S. mutans were used. Bacterial growth, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) were measured to analyze the bacterial susceptibility of the parent and rnc-deleted S. mutans against DMAHDM, with the gold-standard chlorhexidine (CHX) as control. Biofilm biomass, polysaccharide and lactic acid production were measured. RESULTS The drug-susceptibility of the rnc-deleted S. mutans to DMAHDM or CHX was 2-fold higher than parent S. mutans. The drug-susceptibility did not increase after 10 passages (p < 0.05). Deleting the rnc gene increased the biofilm susceptibility to DMAHDM or CHX by 2-fold. The rnc-deletion in S. mutans reduced biofilm biomass, polysaccharide and lactic acid production, even at no drugs. DMAHDM was nearly 40 % more potent than the gold-standard CHX. The combination of rnc deletion+DMAHDM treatment achieved the greatest reduction in biofilm biomass, polysaccharide synthesis, and lactic acid production. SIGNIFICANCE Gene modification by deleting the rnc in S. mutans reduced the biofilm growth and acid production, and the rnc deletion+DMAHDM method showed the greatest biofilm-inhibition efficacy, for the first time. The dual strategy of antibacterial monomer+bacterial gene modification shows great potential to control biofilms and inhibit caries.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jianghong Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Operative Dentistry and Endodontics & Periodontics and Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Mardle CE, Shakespeare TJ, Butt LE, Goddard LR, Gowers DM, Atkins HS, Vincent HA, Callaghan AJ. A structural and biochemical comparison of Ribonuclease E homologues from pathogenic bacteria highlights species-specific properties. Sci Rep 2019; 9:7952. [PMID: 31138855 PMCID: PMC6538622 DOI: 10.1038/s41598-019-44385-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Regulation of gene expression through processing and turnover of RNA is a key mechanism that allows bacteria to rapidly adapt to changing environmental conditions. Consequently, RNA degrading enzymes (ribonucleases; RNases) such as the endoribonuclease RNase E, frequently play critical roles in pathogenic bacterial virulence and are potential antibacterial targets. RNase E consists of a highly conserved catalytic domain and a variable non-catalytic domain that functions as the structural scaffold for the multienzyme degradosome complex. Despite conservation of the catalytic domain, a recent study identified differences in the response of RNase E homologues from different species to the same inhibitory compound(s). While RNase E from Escherichia coli has been well-characterised, far less is known about RNase E homologues from other bacterial species. In this study, we structurally and biochemically characterise the RNase E catalytic domains from four pathogenic bacteria: Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei and Acinetobacter baumannii, with a view to exploiting RNase E as an antibacterial target. Bioinformatics, small-angle x-ray scattering and biochemical RNA cleavage assays reveal globally similar structural and catalytic properties. Surprisingly, subtle species-specific differences in both structure and substrate specificity were also identified that may be important for the development of effective antibacterial drugs targeting RNase E.
Collapse
Affiliation(s)
- Charlotte E Mardle
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Thomas J Shakespeare
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Louise E Butt
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Layla R Goddard
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Darren M Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen S Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom.,University of Exeter, Exeter, United Kingdom.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen A Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.
| | - Anastasia J Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.
| |
Collapse
|
12
|
Colquhoun JM, Ha L, Beckley A, Meyers B, Flaherty DP, Dunman PM. Identification of Small Molecule Inhibitors of Staphylococcus aureus RnpA. Antibiotics (Basel) 2019; 8:antibiotics8020048. [PMID: 31035380 PMCID: PMC6627331 DOI: 10.3390/antibiotics8020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus RnpA is thought to be a unique dual functional antimicrobial target that is required for two essential cellular processes, precursor tRNA processing and messenger RNA degradation. Herein, we used a previously described whole cell-based mupirocin synergy assay to screen members of a 53,000 compound small molecule diversity library and simultaneously enrich for agents with cellular RnpA inhibitory activity. A medicinal chemistry-based campaign was launched to generate a preliminary structure activity relationship and guide early optimization of two novel chemical classes of RnpA inhibitors identified, phenylcarbamoyl cyclic thiophene and piperidinecarboxamide. Representatives of each chemical class displayed potent anti-staphylococcal activity, limited the protein’s in vitro ptRNA processing and mRNA degradation activities, and exhibited favorable therapeutic indexes. The most potent piperidinecarboxamide RnpA inhibitor, JC2, displayed inhibition of cellular RnpA mRNA turnover, RnpA-depletion strain hypersusceptibility, and exhibited antimicrobial efficacy in a wax worm model of S. aureus infection. Taken together, these results establish that the whole cell screening assay used is amenable to identifying small molecule RnpA inhibitors within large chemical libraries and that the chemical classes identified here may represent progenitors of new classes of antimicrobials that target RnpA.
Collapse
Affiliation(s)
- Jennifer M Colquhoun
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Lisha Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
| | - Andrew Beckley
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Brinkley Meyers
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47906, USA.
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47906, USA.
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Ha L, Colquhoun J, Noinaj N, Das C, Dunman PM, Flaherty DP. Crystal structure of the ribonuclease-P-protein subunit from Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 2018; 74:632-637. [PMID: 30279314 PMCID: PMC6168776 DOI: 10.1107/s2053230x18011512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus ribonuclease-P-protein subunit (RnpA) is a promising antimicrobial target that is a key protein component for two essential cellular processes, RNA degradation and transfer-RNA (tRNA) maturation. The first crystal structure of RnpA from the pathogenic bacterial species, S. aureus, is reported at 2.0 Å resolution. The structure presented maintains key similarities with previously reported RnpA structures from bacteria and archaea, including the highly conserved RNR-box region and aromatic residues in the precursor-tRNA 5'-leader-binding domain. This structure will be instrumental in the pursuit of structure-based designed inhibitors targeting RnpA-mediated RNA processing as a novel therapeutic approach for treating S. aureus infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Catalytic Domain
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/enzymology
- Substrate Specificity
Collapse
Affiliation(s)
- Lisha Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer Colquhoun
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Thuraisamy T, Lodato PB. Influence of RNase E deficiency on the production of stx2-bearing phages and Shiga toxin in an RNase E-inducible strain of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. J Med Microbiol 2018; 67:724-732. [PMID: 29620505 PMCID: PMC7001489 DOI: 10.1099/jmm.0.000728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In enterohaemorrhagic Escherichia coli (EHEC), stx1 or stx2 genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both stx phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate stx genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated. METHODOLOGY Cultures of the EHEC strains TEA028-rne containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively. RESULTS RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious stx2 phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. stx1 phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures. CONCLUSION RNase E scarcity reduces stx2 phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.
Collapse
|
15
|
Bernardini A, Martínez JL. Genome-wide analysis shows that RNase G plays a global role in the stability of mRNAs in Stenotrophomonas maltophilia. Sci Rep 2017; 7:16016. [PMID: 29167539 PMCID: PMC5700063 DOI: 10.1038/s41598-017-16091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Gene expression is determined by critical processes such as RNA synthesis and degradation. Ribonucleases participate in the coordinated and differential decay of messenger RNAs. We describe a suitable method of normalization and calculation of mRNAs half-life values quantified by RNA-Seq. We determined the mRNA half-lives of more than 2000 genes in Stenotrophomonas maltophilia D457 and in an isogenic RNase G deficient mutant. Median half-lives were 2,74 and 3 min in the wild-type and the rng-deficient strain, respectively. The absence of RNase G resulted in an overall enhancement of mRNA half-life times, showing that many RNAs are targets of RNase G in S. maltophilia. Around 40 genes are likely to be regulated directly by RNase G since their half-lives were more than two-fold higher in the rng-deficient mutant. Gene length, GC content or expression levels did not correlate with mRNAs lifetimes, although groups of genes with different functions showed different RNA half-lives. Further, we predicted 1542 gene pairs to be part of the same operons in S. maltophilia. In contrast to what was described for other bacteria, our data indicate that RNase G has a global role in mRNA stability and consequently in the regulation of S. maltophilia gene expression.
Collapse
Affiliation(s)
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Functional assignment for essential hypothetical proteins of Staphylococcus aureus N315. Int J Biol Macromol 2017; 108:765-774. [PMID: 29111265 DOI: 10.1016/j.ijbiomac.2017.10.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus, the causative agent of nosocomial infections worldwide, has acquired resistance to almost all antibiotics stressing the need to develop novel drugs against this pathogen. In S. aureus N315, 302 genes have been identified as essential genes, indispensable for growth and survival of the pathogen. The functions of 40 proteins encoded by S. aureus essential genes were found to be hypothetical and thus referred as essential hypothetical proteins (EHPs). The present study aims to carry out functional characterization of EHPs using bioinformatics tools/databases, whose performance was assessed by Receiver operating characteristic curve analysis. Evaluation of physicochemical parameters, homology search against known proteins, domain analysis, subcellular localization analysis and virulence prediction assisted us to characterize EHPs. Functional assignment for 35 EHPs was made with high confidence. They belong to different functional classes like enzymes, binding proteins, miscellaneous proteins, helicases, transporters and virulence factors. Around 35% of EHPs were from hydrolases family. A group of EHPs (32.5%) were predicted as virulence factors. Of 35, 19 essential pathogen-specific proteins were considered as probable drug targets. Two targets were found to be druggable and others were novel targets. Outcome of the study could aid to identify novel drugs for better treatment of S. aureus infections.
Collapse
|
17
|
Hausmann S, Guimarães VA, Garcin D, Baumann N, Linder P, Redder P. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5'-ends. RNA Biol 2017; 14:1431-1443. [PMID: 28277929 DOI: 10.1080/15476286.2017.1300223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
RNA decay and RNA maturation are important steps in the regulation of bacterial gene expression. RNase J, which is present in about half of bacterial species, has been shown to possess both endo- and 5' to 3' exo-ribonuclease activities. The exonucleolytic activity is clearly involved in the degradation of mRNA and in the maturation of at least the 5' end of 16S rRNA in the 2 Firmicutes Staphylococcus aureus and Bacillus subtilis. The endoribonuclease activity of RNase J from several species has been shown to be weak in vitro and 3-D structural data of different RNase J orthologs have not provided a clear explanation for the molecular basis of this activity. Here, we show that S. aureus RNase J1 is a manganese dependent homodimeric enzyme with strong 5' to 3' exo-ribonuclease as well as endo-ribonuclease activity. In addition, we demonstrated that SauJ1 can efficiently degrade 5' triphosphorylated RNA. Our results highlight RNase J1 as an important player in RNA turnover in S. aureus.
Collapse
Affiliation(s)
- Stéphane Hausmann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Vanessa Andrade Guimarães
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Dominique Garcin
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Natalia Baumann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Patrick Linder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Peter Redder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland.,b Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse III Toulouse , France
| |
Collapse
|
18
|
Huen J, Lin CL, Golzarroshan B, Yi WL, Yang WZ, Yuan HS. Structural Insights into a Unique Dimeric DEAD-Box Helicase CshA that Promotes RNA Decay. Structure 2017; 25:469-481. [PMID: 28238534 DOI: 10.1016/j.str.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jennifer Huen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Bagher Golzarroshan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Wan-Li Yi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC.
| |
Collapse
|
19
|
Ribonucleases, antisense RNAs and the control of bacterial plasmids. Plasmid 2015; 78:26-36. [DOI: 10.1016/j.plasmid.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/23/2022]
|
20
|
Small-molecule inhibitors of Staphylococcus aureus RnpA-mediated RNA turnover and tRNA processing. Antimicrob Agents Chemother 2015; 59:2016-28. [PMID: 25605356 DOI: 10.1128/aac.04352-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.
Collapse
|
21
|
RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J Control Release 2014; 189:150-7. [DOI: 10.1016/j.jconrel.2014.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023]
|
22
|
Vercruysse M, Köhrer C, Davies BW, Arnold MFF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014; 10:e1004175. [PMID: 24901994 PMCID: PMC4047096 DOI: 10.1371/journal.ppat.1004175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3′ end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3′ end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes. Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Markus F. F. Arnold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachussets, United States of America
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
24
|
Abstract
The increasing emergence of antimicrobial multiresistant bacteria is of great concern to public health. While these bacteria are becoming an ever more prominent cause of nosocomial and community-acquired infections worldwide, the antibiotic discovery pipeline has been stalled in the last few years with very few efforts in the research and development of novel antibacterial therapies. Some of the root causes that have hampered current antibiotic drug development are the lack of understanding of the mode of action (MOA) of novel antibiotic molecules and the poor characterization of the bacterial physiological response to antibiotics that ultimately causes resistance. Here, we review how bacterial genetic tools can be applied at the genomic level with the goal of profiling resistance to antibiotics and elucidating antibiotic MOAs. Specifically, we highlight how chemical genomic detection of the MOA of novel antibiotic molecules and antibiotic profiling by next-generation sequencing are leveraging basic antibiotic research to unprecedented levels with great opportunities for knowledge translation.
Collapse
Affiliation(s)
- Silvia T Cardona
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and.,b Department of Medical Microbiology & Infectious Disease , University of Manitoba , Winnipeg , Canada
| | - Carrie Selin
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| | - April S Gislason
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| |
Collapse
|
25
|
Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl ribonucleoside complex. Curr Microbiol 2013; 67:226-33. [PMID: 23512123 DOI: 10.1007/s00284-013-0350-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/20/2013] [Indexed: 01/28/2023]
Abstract
The increase in antibiotic-resistant microorganisms has driven a search for new antibiotic targets and novel antimicrobial agents. A large number of different antibiotics target bacterial ribosomal subunit formation. Several specific ribonucleases are important in the processing of rRNA during subunit biogenesis. This work demonstrates that the ribonuclease inhibitor, vanadyl ribonucleoside complex (VRC), can inhibit RNases involved in ribosomal subunit formation. The ribosomal subunit synthesis rate was significantly decreased and ribosomal RNA from the subunit precursors was degraded. VRC had no inhibitory effect on translation. VRC also potentiated the inhibitory effects of an aminoglycoside and a macrolide antibiotic.
Collapse
|
26
|
Frazier AD, Champney WS. Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli. Arch Microbiol 2012; 194:1033-41. [PMID: 22930249 DOI: 10.1007/s00203-012-0839-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 06/29/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
Abstract
The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.
Collapse
Affiliation(s)
- Ashley D Frazier
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|