1
|
Alkhammash A. Pharmacology of epitranscriptomic modifications: Decoding the therapeutic potential of RNA modifications in drug resistance. Eur J Pharmacol 2025; 994:177397. [PMID: 39978710 DOI: 10.1016/j.ejphar.2025.177397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
RNA modifications, collectively known as epitranscriptomic modifications, have emerged as critical regulators of gene expression, cellular adaptation, and therapeutic resistance. This review explores the pharmacological potential of targeting RNA modifications, including N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as strategies to overcome drug resistance in cancer. We examine key regulatory enzymes, writers, erasers, and readers-and their roles in modulating RNA stability, translation, and splicing. Advances in combination therapies, integrating RNA modification modulators with conventional chemotherapies and immune checkpoint inhibitors, have shown promising outcomes in reversing multidrug resistance (MDR). Emerging RNA-targeting technologies, such as CRISPR/Cas13 systems and advanced RNA sequencing platforms, further enable precision manipulation of RNA molecules, opening new therapeutic frontiers. However, several challenges persist, including issues related to pharmacokinetics, acquired resistance, and the complexity of epitranscriptomic networks. This review underscores the need for innovative delivery systems, such as lipid nanoparticles and tissue-specific targeting strategies, and highlights the dynamic nature of RNA modifications in response to environmental and therapeutic stress. Ongoing research into non-coding RNA modifications and the interplay between epitranscriptomics and epigenetics offers exciting possibilities for developing novel RNA-targeting therapies. The continued evolution of RNA-based technologies will be crucial in advancing precision medicine, addressing drug resistance, and improving clinical outcomes across multiple diseases.
Collapse
Affiliation(s)
- Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Artika IM, Arianti R, Demény MÁ, Kristóf E. RNA modifications and their role in gene expression. Front Mol Biosci 2025; 12:1537861. [PMID: 40351534 PMCID: PMC12061695 DOI: 10.3389/fmolb.2025.1537861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Post-transcriptional RNA modifications have recently emerged as critical regulators of gene expression programs. Understanding normal tissue development and disease susceptibility requires knowledge of the various cellular mechanisms which control gene expression in multicellular organisms. Research into how different RNA modifications such as in N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), 2'-O-methylation (Nm), N7-methylguanosine (m7G) etc. affect the expression of genes could be valuable. This review highlights the current understanding of RNA modification, methods used to study RNA modification, types of RNA modification, and molecular mechanisms underlying RNA modification. The role of RNA modification in modulating gene expression in both physiological and diseased states is discussed. The potential applications of RNA modification in therapeutic development are elucidated.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, Indonesia
| | - Máté Á. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Campeanu IJ, Jiang Y, Afisllari H, Dzinic S, Polin L, Yang ZQ. Multi-omics analysis reveals CMTR1 upregulation in cancer and roles in ribosomal protein gene expression and tumor growth. Cell Commun Signal 2025; 23:197. [PMID: 40275371 PMCID: PMC12023683 DOI: 10.1186/s12964-025-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND CMTR1 (cap methyltransferase 1), a key nuclear mRNA cap methyltransferase, catalyzes 2'-O-methylation of the first transcribed nucleotide, a critical step in mRNA cap formation. Previous studies have implicated CMTR1 in embryonic stem cell differentiation and immune responses during viral infection; however, its role in cancer biology remains largely unexplored. This study aims to elucidate CMTR1's function in cancer progression and evaluate its potential as a novel therapeutic target in certain cancer types. METHODS We conducted a comprehensive multi-omics analysis of CMTR1 across various human cancers using TCGA and CPTAC datasets. Functional studies were performed using CRISPR-mediated knockout and siRNA knockdown in human and mouse basal-like breast cancer models. Transcriptomic and pathway enrichment analyses were carried out in CMTR1 knockout/knockdown models to identify CMTR1-regulated genes. In silico screening and biochemical assays were employed to identify novel CMTR1 inhibitors. RESULTS Multi-omics analysis revealed that CMTR1 is significantly upregulated at the mRNA, protein, and phosphoprotein levels across multiple cancer types in the TCGA and CPTAC datasets. Functional studies demonstrated that CMTR1 depletion significantly inhibits tumor growth both in vitro and in vivo. Transcriptomic analysis of CMTR1 knockout cells revealed that CMTR1 primarily regulates ribosomal protein genes and other transcripts containing 5' Terminal Oligopyrimidine (TOP) motifs. Additionally, CMTR1 affects the expression of snoRNA host genes and snoRNAs, suggesting a broader role in RNA metabolism. Mechanistic studies indicated that CMTR1's target specificity is partly determined by mRNA structure, particularly the presence of 5'TOP motifs. Finally, through in silico screening and biochemical assays, we identified several novel CMTR1 inhibitors, including N97911, which demonstrated in vitro growth inhibition activity in breast cancer cells. CONCLUSIONS Our findings establish CMTR1 as an important player in cancer biology, regulating critical aspects of RNA metabolism and ribosome biogenesis. The study highlights CMTR1's potential as a therapeutic target in certain cancer types and provides a foundation for developing novel cancer treatments targeting mRNA cap methylation.
Collapse
Affiliation(s)
- Ion John Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hilda Afisllari
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
4
|
Shuvalova E, Shuvalov A, Al Sheikh W, Ivanov A, Biziaev N, Egorova T, Dmitriev S, Terenin I, Alkalaeva E. Eukaryotic initiation factors eIF4F and eIF4B promote translation termination upon closed-loop formation. Nucleic Acids Res 2025; 53:gkaf161. [PMID: 40066881 PMCID: PMC11894530 DOI: 10.1093/nar/gkaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/18/2024] [Indexed: 03/15/2025] Open
Abstract
Eukaryotic translation initiation factor 4F (eIF4F), comprising subunits eIF4G, eIF4E, and eIF4A, plays a pivotal role in the 48S preinitiation complex assembly and ribosomal scanning. Additionally, eIF4B enhances the helicase activity of eIF4A. eIF4F also interacts with poly (A)-binding protein (PABP) bound to the poly (A) tail of messenger RNA (mRNA), thereby forming a closed-loop structure. PABP, in turn, interacts with eukaryotic release factor 3 (eRF3), stimulating translation termination. Here, we employed a reconstituted mammalian system to directly demonstrate that eIF4F potently enhances translation termination. Specifically, eIF4A and eIF4B promote the loading of eRF1 into the A site of the ribosome, while eIF4G1 stimulates the GTPase activity of eRF3 and facilitates the dissociation of release factors following peptide release. We also identified MIF4G as the minimal domain required for this activity and showed that eIF4G2/DAP5 can also promote termination. Our findings provide compelling evidence that the closed-loop mRNA structure facilitates translation termination, with PABP and eIF4F directly involved in this process.
Collapse
Affiliation(s)
- Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Walaa Al Sheikh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V Egorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Amiri M, Mahmood N, Tahmasebi S, Sonenberg N. eIF4F-mediated dysregulation of mRNA translation in cancer. RNA (NEW YORK, N.Y.) 2025; 31:416-428. [PMID: 39809544 PMCID: PMC11874970 DOI: 10.1261/rna.080340.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Messenger RNA (mRNA) translational control plays a pivotal role in regulating cellular proteostasis under physiological and pathological conditions. Dysregulated mRNA translation is pervasive in cancer, in which protein synthesis is elevated to support accelerated cell growth and proliferation. Consequently, targeting the mRNA translation machinery has emerged as a therapeutic strategy to treat cancer. In this Perspective, we summarize the current knowledge of translation dysregulation in cancer, with emphasis on the eukaryotic translation initiation factor 4F complex. We outline recent endeavors to apply this knowledge to develop novel treatment strategies to combat cancer.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
6
|
Fukuchi K, Nakashima Y, Abe N, Kimura S, Hashiya F, Shichino Y, Liu Y, Ogisu R, Sugiyama S, Kawaguchi D, Inagaki M, Meng Z, Kajihara S, Tada M, Uchida S, Li TT, Maity R, Kawasaki T, Kimura Y, Iwasaki S, Abe H. Internal cap-initiated translation for efficient protein production from circular mRNA. Nat Biotechnol 2025:10.1038/s41587-025-02561-8. [PMID: 39972222 DOI: 10.1038/s41587-025-02561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Circular mRNA faces challenges in enhancing its translation potential as an RNA therapeutic. Here we introduce two molecular designs that bolster circular mRNA translation through an internal cap-initiated mechanism. The first consists of a circular mRNA with a covalently attached N7-methylguanosine (m7G) cap through a branching structure (cap-circ mRNA). This modification allows circular mRNA to recruit translation machinery and produce proteins more efficiently than internal ribosome entry site (IRES)-containing circular mRNAs. Combining with an N1-methylpseudouridine (m1Ψ) modification, cap-circ mRNA exhibits a lower acute immunostimulatory effect, maintaining high translation in mice. The second design features the non-covalent attachment of an m7G cap to a circular mRNA through hybridization with an m7G cap-containing oligonucleotide, enhancing translation by more than 50-fold. This setup allows circular mRNAs to synthesize reporter proteins upon hybridizing with capped mRNAs or long non-coding RNAs and to undergo rolling circle-type translation. These advancements broaden the therapeutic applications of circular mRNAs by minimizing their molecular size, elevating translation efficiency and facilitating cell-type-selective translation.
Collapse
Affiliation(s)
- Kosuke Fukuchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Seigo Kimura
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Nagoya, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Nagoya, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Yiwei Liu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryoko Ogisu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Satomi Sugiyama
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shiryu Kajihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Satoshi Uchida
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Ting-Ting Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ramkrishna Maity
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tairin Kawasaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
7
|
Pearson LA, Petit AP, Mendoza Martinez C, Bellany F, Lin D, Niven S, Swift R, Eadsforth T, Fyfe P, Paul M, Postis V, Hu X, Cowling VH, Gray DW. Characterisation of RNA guanine-7 methyltransferase (RNMT) using a small molecule approach. Biochem J 2025; 482:BCJ20240608. [PMID: 39869500 DOI: 10.1042/bcj20240608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
The maturation of the RNA cap involving guanosine N-7 methylation, catalyzsed by the HsRNMT (RNA guanine-7 methyltransferase (HsRNMT)-RAM (RNA guanine-N7 methyltransferase activating subunit (RAM) complex, is currently under investigation as a novel strategy to combat PIK3CA -mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterizsation of two small molecule hits. Biophysics, biochemistry and structural biology confirm that both compounds bind competitively with cap and bind effectively to HsRNMT-RAM in the presence of the co-product SAH, with a binding affinity (KD) of approximately 1 μM. This stabilisation of the enzyme--product complex results in uncompetitive inhibition. Finally, we describe the properties of the cap pocket and provided suggestions for further development of the tool compounds.
Collapse
Affiliation(s)
- Lesley-Anne Pearson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Alain-Pierre Petit
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | | | - Fiona Bellany
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - De Lin
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Sarah Niven
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Rachel Swift
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Thomas Eadsforth
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Paul Fyfe
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Marilyn Paul
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Vincent Postis
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Xiao Hu
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Victoria H Cowling
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, U.K
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
8
|
Yamada H, Iwai H, Hashiya F, Kimura Y, Abe H, Yamamoto J. Concise Affinity-Based Purification of Ligated mRNA for Structure-Activity Relationship Studies of Nucleosugar Modification Patterns. Chembiochem 2025; 26:e202400711. [PMID: 39533830 DOI: 10.1002/cbic.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming. In this study, we developed a two-step affinity purification method for rapid sample preparation. In this method, ligated mRNA is captured by oligo dT magnetic beads and streptavidin magnetic beads with 3'-biotinylated oligo DNA, which are complementary to the 3'-poly(A) and 5' terminal sequences of the target mRNA, respectively. Therefore, the target mRNA can be isolated from a complex mixture of splint ligations. Using this method, six sugar-modified mRNAs were simultaneously purified, and the translational activities of these mRNAs were evaluated immediately after purification. The results demonstrate that this methodology is suitable for the rapid preparation of various chemically synthesized mRNAs to identify their optimal modification patterns.
Collapse
Affiliation(s)
- Hiroki Yamada
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Hiroto Iwai
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroshi Abe
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Junichiro Yamamoto
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| |
Collapse
|
9
|
Ripp A, Krämer M, Barth V, Moser P, Haas TM, Singh J, Huck T, Gleue L, Friedland K, Helm M, Jessen HJ. The P(III)-Amidite Based Synthesis of Stable Isotope Labeled mRNA-Cap-Structures Enables their Sensitive Quantitation from Brain Tissue. Angew Chem Int Ed Engl 2025; 64:e202414537. [PMID: 39324525 DOI: 10.1002/anie.202414537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The 5' cap structure is crucial to mRNA function, with its diverse methylation patterns depending on the cellular state. Sensitive analytical methods are sought after to quantify this cap variety also referred to as cap epitranscriptome. To address a bottleneck for accurate and precise quantitation, we report a facile and fast access to high-quality synthetic standards via a new route, involving P(III)-amidite chemistry. A range of cap nucleotides and their stable heavy isotopic labeled analogues were derived from nucleoside diphosphates, which themselves were directly prepared in a one-step reaction sequence starting from unprotected nucleosides using a triphosphorylating reagent in combination with ethylenediamine. Considering a wider scope, the route also enables direct access to magic spot nucleotides and diphosphates of isoprenyl-alcohols. Stable-isotope labeled cap nucleotides derived from this route paved the way for the development of a highly sensitive LC-MS/MS method, applied to the characterization of mouse brain cap epitranscriptomes, which turned out to be very different from those of cultured cell lines of widespread use in the life sciences.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Martina Krämer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Vanessa Barth
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Patrick Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| |
Collapse
|
10
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Campeanu IJ, Jiang Y, Afisllari H, Dzinic S, Polin L, Yang ZQ. Multi-omics analysis reveals CMTR1 upregulation in cancer and roles in ribosomal protein gene expression and tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621171. [PMID: 39553963 PMCID: PMC11565914 DOI: 10.1101/2024.10.30.621171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The mRNA cap methyltransferase CMTR1 plays a crucial role in RNA metabolism and gene expression regulation, yet its significance in cancer remains largely unexplored. Here, we present a comprehensive multi-omics analysis of CMTR1 across various human cancers, revealing its widespread upregulation and potential as a therapeutic target. Integrating transcriptomic and proteomic data from a large set of cancer samples, we demonstrate that CMTR1 is upregulated at the mRNA, protein, and phosphoprotein levels across multiple cancer types. Functional studies using CRISPR-mediated knockout and siRNA knockdown in breast cancer models show that CMTR1 depletion significantly inhibits tumor growth both in vitro and in vivo . Transcriptomic analysis reveals that CMTR1 primarily regulates ribosomal protein genes and other transcripts containing 5' Terminal Oligopyrimidine (TOP) motifs. Additionally, CMTR1 affects the expression of snoRNA host genes and snoRNAs, suggesting a broader role in RNA metabolism. Mechanistically, we propose that CMTR1's target specificity is partly determined by mRNA structure, particularly the presence of 5'TOP motifs. Furthermore, we identify a novel CMTR1 inhibitor, N97911, through in silico screening and biochemical assays, which demonstrates significant anti-tumor activity in vitro . Our findings establish CMTR1 as a key player in cancer biology, regulating critical aspects of RNA metabolism and ribosome biogenesis, and highlight its potential as a therapeutic target across multiple cancer types.
Collapse
|
12
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Silvestri F, Montuoro R, Catalani E, Tilesi F, Willems D, Romano N, Ricciardi S, Cervia D, Ceci M. eIF3d specialized translation requires a RACK1-driven eIF3d binding to 43S PIC in proliferating SH-SY5Y neuroblastoma cells. Cell Signal 2024; 125:111494. [PMID: 39477045 DOI: 10.1016/j.cellsig.2024.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Translation initiation of most mammalian mRNAs is mediated by a 5' cap structure that binds eukaryotic initiation factor 4E (eIF4E). Notably, most mRNAs are still capped when eIF4E is inhibited, suggesting alternative mechanisms likely mediate cap-dependent mRNA translation without functional eIF4F. Here we found that, when eIF4E is inhibited, the ribosomal scaffold RACK1 recruits eIF3d on the 43S pre-initiation complex. Moreover, we found that it is just PKCBII in its active form that promotes the binding of RACK1 to eIF3d. These studies disclose a previously unknown role of ribosomal RACK1 for eIF3d specialized translation.
Collapse
Affiliation(s)
- Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy.
| | - Raffaele Montuoro
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy.
| | - Francesca Tilesi
- Department of Ecological and Biological Science (DEB), Università degli Studi Della Tuscia, Viterbo, Italy.
| | - Daniela Willems
- Department of Ecological and Biological Science (DEB), Università degli Studi Della Tuscia, Viterbo, Italy.
| | - Nicla Romano
- Department of Ecological and Biological Science (DEB), Università degli Studi Della Tuscia, Viterbo, Italy.
| | - Sara Ricciardi
- National Institute of Molecular Genetics, INGM "Romeo ed Enrica Invernizzi", 20122 Milan, Italy; Department of Biological Sciences, DBS, University of Milan, 20133 Milan, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Department of Ecological and Biological Science (DEB), Università degli Studi Della Tuscia, Viterbo, Italy.
| |
Collapse
|
14
|
Vidya E, Jami-Alahmadi Y, Mayank AK, Rizwan J, Xu JMS, Cheng T, Leventis R, Sonenberg N, Wohlschlegel JA, Vera M, Duchaine TF. EDC-3 and EDC-4 regulate embryonic mRNA clearance and biomolecular condensate specialization. Cell Rep 2024; 43:114781. [PMID: 39331503 DOI: 10.1016/j.celrep.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.
Collapse
Affiliation(s)
- Elva Vidya
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Jia Ming Stella Xu
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Tianhao Cheng
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Rania Leventis
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada.
| |
Collapse
|
15
|
Lisy S, Rothamel K, Perevalova-Pinzul Y, Ascano M. PAR-dCLIP: Enabling detection of RNA binding protein target transcripts bound at 5' termini through the incorporation of a decapping step. Methods Enzymol 2024; 705:159-222. [PMID: 39389663 PMCID: PMC12010692 DOI: 10.1016/bs.mie.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA binding proteins (RBPs) are responsible for facilitating a wealth of post-transcriptional gene regulatory functions. The role of an RBP on regulated transcripts can be investigated through a pull-down of the RBP and high-throughput sequencing (HTS) of the associated transcripts. Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), is one such pull-down method that isolates, detects, and sequences the cDNA of RBP-associated transcripts. PAR-CLIP relies on a photoactivatable ribonucleoside analogue, 4-thiouridine, to facilitate covalent RNA-protein crosslinks at 365 nm. These crosslinks permit stringent wash conditions and result in T to C mismatch incorporations during reverse transcription, a unique parameter for the computational analysis of high-confidence binding sites. However, until now, RBPs that bind at the 5'-termini of RNAs have been uniquely restricted from the full potential bandwidth of autoradiographic detection and HTS library preparation. The 5'-termini of RNAs are highly modified, including the most common Pol-II derived modification: the 7-methylguanosine (m7G) cap. In the conventional PAR-CLIP protocol, cap-binding proteins protect the m7G cap from the RNase treatment that generates the necessary substrate for autoradiographic detection and 5' adapter ligation-thus occluding entire populations of RNA from visualization and HTS. Here, we introduce decapping-PAR-CLIP or PAR-dCLIP. We incorporate a decapping step into the PAR-CLIP protocol to generate the necessary substrate to sequence m7G capped transcripts. While PAR-dCLIP was originally targeted towards known m7G-cap binding proteins, we argue that all RBP inquiries, and particularly those suspected to regulate translation, should incorporate this decapping step to ensure that all possible populations of bound transcripts are identified.
Collapse
Affiliation(s)
- Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States; Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, United States
| | - Yelena Perevalova-Pinzul
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
16
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
17
|
Roiuk M, Neff M, Teleman AA. eIF4E-independent translation is largely eIF3d-dependent. Nat Commun 2024; 15:6692. [PMID: 39107322 PMCID: PMC11303786 DOI: 10.1038/s41467-024-51027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Mykola Roiuk
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marilena Neff
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
18
|
Lukoszek R, Inesta-Vaquera F, Brett NJM, Liang S, Hepburn LA, Hughes DJ, Pirillo C, Roberts EW, Cowling VH. CK2 phosphorylation of CMTR1 promotes RNA cap formation and influenza virus infection. Cell Rep 2024; 43:114405. [PMID: 38923463 PMCID: PMC11290353 DOI: 10.1016/j.celrep.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The RNA cap methyltransferase CMTR1 methylates the first transcribed nucleotide of RNA polymerase II transcripts, impacting gene expression mechanisms, including during innate immune responses. Using mass spectrometry, we identify a multiply phosphorylated region of CMTR1 (phospho-patch [P-Patch]), which is a substrate for the kinase CK2 (casein kinase II). CMTR1 phosphorylation alters intramolecular interactions, increases recruitment to RNA polymerase II, and promotes RNA cap methylation. P-Patch phosphorylation occurs during the G1 phase of the cell cycle, recruiting CMTR1 to RNA polymerase II during a period of rapid transcription and RNA cap formation. CMTR1 phosphorylation is required for the expression of specific RNAs, including ribosomal protein gene transcripts, and promotes cell proliferation. CMTR1 phosphorylation is also required for interferon-stimulated gene expression. The cap-snatching virus, influenza A, utilizes host CMTR1 phosphorylation to produce the caps required for virus production and infection. We present an RNA cap methylation control mechanism whereby CK2 controls CMTR1, enhancing co-transcriptional capping.
Collapse
Affiliation(s)
| | - Francisco Inesta-Vaquera
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Biochemistry and Molecular Biology and Genetics, School of Sciences, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Natasha J M Brett
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Shang Liang
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lydia A Hepburn
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David J Hughes
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews KY16 9ST, UK
| | - Chiara Pirillo
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Edward W Roberts
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Victoria H Cowling
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
19
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
20
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
21
|
Knop K, Gomez-Moreira C, Galloway A, Ditsova D, Cowling VH. RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression. DISCOVERY IMMUNOLOGY 2023; 3:kyad021. [PMID: 38572449 PMCID: PMC10989996 DOI: 10.1093/discim/kyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 04/05/2024]
Abstract
On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM (RNMT-Activating Mini protein/RAMAC/Fam103a1), the cofactor of the RNA cap methyltransferase RNMT (RNA guanosine N-7 cap methyltransferase), is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilizes RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knockout T cells, activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT cofactor.
Collapse
Affiliation(s)
- Katarzyna Knop
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | | | - Alison Galloway
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Dimitrinka Ditsova
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Victoria H Cowling
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| |
Collapse
|
22
|
Pugsley L, Naineni SK, Amiri M, Yanagiya A, Cencic R, Sonenberg N, Pelletier J. C8ORF88: A Novel eIF4E-Binding Protein. Genes (Basel) 2023; 14:2076. [PMID: 38003019 PMCID: PMC10670996 DOI: 10.3390/genes14112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Translation initiation in eukaryotes is regulated at several steps, one of which involves the availability of the cap binding protein to participate in cap-dependent protein synthesis. Binding of eIF4E to translational repressors (eIF4E-binding proteins [4E-BPs]) suppresses translation and is used by cells to link extra- and intracellular cues to protein synthetic rates. The best studied of these interactions involves repression of translation by 4E-BP1 upon inhibition of the PI3K/mTOR signaling pathway. Herein, we characterize a novel 4E-BP, C8ORF88, whose expression is predominantly restricted to early spermatids. C8ORF88:eIF4E interaction is dependent on the canonical eIF4E binding motif (4E-BM) present in other 4E-BPs. Whereas 4E-BP1:eIF4E interaction is dependent on the phosphorylation of 4E-BP1, these sites are not conserved in C8ORF88 indicating a different mode of regulation.
Collapse
Affiliation(s)
- Lauren Pugsley
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | | | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; (L.P.); (S.K.N.); (M.A.); (N.S.)
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
23
|
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med 2023; 21:693. [PMID: 37794448 PMCID: PMC10552228 DOI: 10.1186/s12967-023-04553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Antibody technology is widely used in the fields of biomedical and clinical therapies. Nonetheless, the complex in vitro expression of recombinant proteins, long production cycles, and harsh storage conditions have limited their applications in medicine, especially in clinical therapies. Recently, this dilemma has been overcome to a certain extent by the development of mRNA delivery systems, in which antibody-encoding mRNAs are enclosed in nanomaterials and delivered to the body. On entering the cytoplasm, the mRNAs immediately bind to ribosomes and undergo translation and post-translational modifications. This process produces monoclonal or bispecific antibodies that act directly on the patient. Additionally, it eliminates the cumbersome process of in vitro protein expression and extends the half-life of short-lived proteins, which significantly reduces the cost and duration of antibody production. This review focuses on the benefits and drawbacks of mRNA antibodies compared with the traditional in vitro expressed antibodies. In addition, it elucidates the progress of mRNA antibodies in the prevention of infectious diseases and oncology therapy.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Dangjin Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| |
Collapse
|
24
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
25
|
Andrzejewska A, Grzela R, Stankiewicz-Drogon A, Rogujski P, Nagaraj S, Darzynkiewicz E, Lukomska B, Janowski M. Mesenchymal stem cell engineering by ARCA analog-capped mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:454-468. [PMID: 37588684 PMCID: PMC10425852 DOI: 10.1016/j.omtn.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
We previously have shown that mRNA-based engineering may enhance mesenchymal stem cell (MSC) trafficking. However, optimal conditions for in vitro mRNA engineering of MSCs are unknown. Here, we investigated several independent variables: (1) transfection factor (Lipofectamine 2000 vs. TransIT), (2) mRNA purification method (spin column vs. high-performance liquid chromatography [HPLC] column), and (3) mRNA capping (ARCA vs. β-S-ARCA D1 and β-S-ARCA D2). Dependent variables included protein production based on mRNA template (measured by the bioluminescence of reporter gene luciferase over hours), MSC metabolic activity corresponding with their wellbeing measured by CCK-8 over days, and endogenous expression of genes by RT-qPCR related to innate intracellular immune response and decapping at two time points: days 2 and 5. We have found that Lipofectamine 2000 outperforms TransIT, and used it throughout the study. Then, we showed that mRNA must be purified by HPLC to be relatively neutral to MSCs in terms of metabolic activity and endogenous protein production. Ultimately, we demonstrated that β-S-ARCA D1 enables higher protein production but at the cost of lower MSC metabolic activity, with no impact on RT-qPCR results. Thus Lipofectamine 2000-based in vitro transfection of HPLC-purified and ARCA- or β-S-ARCA D1-capped mRNA is optimal for MSC engineering.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
27
|
Wan Q, Zheng K, Wu J, Bu S, Jiao M, Zhou H, Lu Y, Zheng H, Wu G, Rao S, Chen H, Yan F, Peng J. The Additional 15 nt of 5' UTR in a Novel Recombinant Isolate of Chilli Veinal Mottle Virus in Solanum nigrum L. Is Crucial for Infection. Viruses 2023; 15:1428. [PMID: 37515116 PMCID: PMC10384581 DOI: 10.3390/v15071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
An isolate of chilli veinal mottle virus (ChiVMV; genus Potyvirus) of Solanum nigrum L. from southwest China (ChiVMV-YunN/Yuxi) was identified and sequenced (GenBank: OP404087). Comparison with other ChiVMV isolates and recombination analyses suggested a recombinant origin. The most significant recombination event among all 21 complete ChiVMV isolates was an ending breakpoint at 1408-1488 for ChiVMV-YunN/Yuxi with ChiVMV-TaiW and ChiVMV-YunN/Ca operating as the respective major and minor parents. Interestingly, the 5' UTR of ChiVMV-YunN/Yuxi is 15 nucleotides ('AAAAATAAAACAACC') longer than other reported isolates. A full-length clone of ChiVMV-YunN/Yuxi was constructed and was shown to be infectious in Nicotiana benthamiana. The additional 15 nt of 5' UTR in ChiVMV-YunN/Yuxi was stable when transmitted through three generations. Experiments with modified clones showed that the additional 15 nt are essential for infection by this isolate.
Collapse
Affiliation(s)
- Qionglian Wan
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Kaiyue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shan Bu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mengting Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hairu Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
28
|
Lukaszewicz M, Mrozek AF, Bojarska E, Stelmach J, Stepinski J, Darzynkiewicz E. Contribution of Nudt12 enzyme to differentially methylated dinucleotides of 5'RNA cap structure. Biochim Biophys Acta Gen Subj 2023:130400. [PMID: 37301333 DOI: 10.1016/j.bbagen.2023.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Aleksandra-Ferenc Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Stelmach
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
29
|
Inagaki M, Abe N, Li Z, Nakashima Y, Acharyya S, Ogawa K, Kawaguchi D, Hiraoka H, Banno A, Meng Z, Tada M, Ishida T, Lyu P, Kokubo K, Murase H, Hashiya F, Kimura Y, Uchida S, Abe H. Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat Commun 2023; 14:2657. [PMID: 37169757 PMCID: PMC10175277 DOI: 10.1038/s41467-023-38244-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Starting with the clinical application of two vaccines in 2020, mRNA therapeutics are currently being investigated for a variety of applications. Removing immunogenic uncapped mRNA from transcribed mRNA is critical in mRNA research and clinical applications. Commonly used capping methods provide maximum capping efficiency of around 80-90% for widely used Cap-0- and Cap-1-type mRNAs. However, uncapped and capped mRNA possesses almost identical physicochemical properties, posing challenges to their physical separation. In this work, we develop hydrophobic photocaged tag-modified cap analogs, which separate capped mRNA from uncapped mRNA by reversed-phase high-performance liquid chromatography. Subsequent photo-irradiation recovers footprint-free native capped mRNA. This approach provides 100% capping efficiency even in Cap-2-type mRNA with versatility applicable to 650 nt and 4,247 nt mRNA. We find that the Cap-2-type mRNA shows up to 3- to 4-fold higher translation activity in cultured cells and animals than the Cap-1-type mRNA prepared by the standard capping method.
Collapse
Affiliation(s)
- Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Susit Acharyya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kazuya Ogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ayaka Banno
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Tatsuma Ishida
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Pingxue Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kengo Kokubo
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
30
|
Liang S, Almohammed R, Cowling VH. The RNA cap methyltransferases RNMT and CMTR1 co-ordinate gene expression during neural differentiation. Biochem Soc Trans 2023:233029. [PMID: 37145036 DOI: 10.1042/bst20221154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Regulation of RNA cap formation has potent impacts on gene regulation, controlling which transcripts are expressed, processed and translated into protein. Recently, the RNA cap methyltransferases RNA guanine-7 methyltransferase (RNMT) and cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (CMTR1) have been found to be independently regulated during embryonic stem (ES) cell differentiation controlling the expression of overlapping and distinct protein families. During neural differentiation, RNMT is repressed and CMTR1 is up-regulated. RNMT promotes expression of the pluripotency-associated gene products; repression of the RNMT complex (RNMT-RAM) is required for repression of these RNAs and proteins during differentiation. The predominant RNA targets of CMTR1 encode the histones and ribosomal proteins (RPs). CMTR1 up-regulation is required to maintain the expression of histones and RPs during differentiation and to maintain DNA replication, RNA translation and cell proliferation. Thus the co-ordinate regulation of RNMT and CMTR1 is required for different aspects of ES cell differentiation. In this review, we discuss the mechanisms by which RNMT and CMTR1 are independently regulated during ES cell differentiation and explore how this influences the co-ordinated gene regulation required of emerging cell lineages.
Collapse
Affiliation(s)
- Shang Liang
- Cancer Research UK Beatson Institute, Glasgow, U.K
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajaei Almohammed
- Cancer Research UK Beatson Institute, Glasgow, U.K
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, U.K
| | - Victoria H Cowling
- Cancer Research UK Beatson Institute, Glasgow, U.K
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, U.K
| |
Collapse
|
31
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
33
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
34
|
Feng Y, Grotegut S, Jovanovic P, Gandin V, Olson SH, Murad R, Beall A, Colayco S, De-Jesus P, Chanda S, English BP, Singer RH, Jackson M, Topisirovic I, Ronai ZA. Inhibition of coronavirus HCoV-OC43 by targeting the eIF4F complex. Front Pharmacol 2022; 13:1029093. [PMID: 36532738 PMCID: PMC9751428 DOI: 10.3389/fphar.2022.1029093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.
Collapse
Affiliation(s)
- Yongmei Feng
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Predrag Jovanovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Rabi Murad
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Anne Beall
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sharon Colayco
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Paul De-Jesus
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sumit Chanda
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Brian P. English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Robert H. Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Michael Jackson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ze’ev A. Ronai
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
35
|
van den Elzen AMG, Watson MJ, Thoreen CC. mRNA 5' terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay. PLoS Genet 2022; 18:e1010532. [PMID: 36441824 PMCID: PMC9731452 DOI: 10.1371/journal.pgen.1010532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay.
Collapse
Affiliation(s)
- Antonia M. G. van den Elzen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Maegan J. Watson
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Carson C. Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
36
|
Condé L, Allatif O, Ohlmann T, de Breyne S. Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses 2022; 14:1505. [PMID: 35891485 PMCID: PMC9322171 DOI: 10.3390/v14071505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5'UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5'UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| | - Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| |
Collapse
|
37
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
38
|
Abe N, Imaeda A, Inagaki M, Li Z, Kawaguchi D, Onda K, Nakashima Y, Uchida S, Hashiya F, Kimura Y, Abe H. Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction. ACS Chem Biol 2022; 17:1308-1314. [PMID: 35608277 DOI: 10.1021/acschembio.1c00996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific chemical modification of mRNA can improve its translational efficiency and stability. For this purpose, it is desirable to develop a complete chemical synthesis method for chemically modified mRNA. The key is a chemical reaction that introduces a cap structure into the chemically synthesized RNA. In this study, we developed a fast and quantitative chemical capping reaction between 5'-phosphorylated RNA and N7-methylated GDP imidazolide in the presence of 1-methylimidazole in the organic solvent dimethyl sulfoxide. It enabled quantitative preparation of capping RNA within 3 h. We prepared chemically modified 107-nucleotide mRNAs, including N6-methyladenosine, insertion of non-nucleotide linkers, and 2'-O-methylated nucleotides at the 5' end and evaluated their effects on translational activity in cultured HeLa cells. The results showed that mRNAs with non-nucleotide linkers in the untranslated regions were sufficiently tolerant to translation and that mRNAs with the Cap_2 structure had higher translational activity than those with the Cap_0 structure.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Akihiro Imaeda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
39
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
40
|
Control of non-productive RNA polymerase II transcription via its early termination in metazoans. Biochem Soc Trans 2022; 50:283-295. [PMID: 35166324 DOI: 10.1042/bst20201140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Transcription establishes the universal first step of gene expression where RNA is produced by a DNA-dependent RNA polymerase. The most versatile of eukaryotic RNA polymerases, RNA polymerase II (Pol II), transcribes a broad range of DNA including protein-coding and a variety of non-coding transcription units. Although Pol II can be configured as a durable enzyme capable of transcribing hundreds of kilobases, there is reliable evidence of widespread abortive Pol II transcription termination shortly after initiation, which is often followed by rapid degradation of the associated RNA. The molecular details underlying this phenomenon are still vague but likely reflect the action of quality control mechanisms on the early Pol II complex. Here, we summarize current knowledge of how and when such promoter-proximal quality control is asserted on metazoan Pol II.
Collapse
|
41
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
42
|
Liang S, Silva JC, Suska O, Lukoszek R, Almohammed R, Cowling V. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2905-2922. [PMID: 35212377 PMCID: PMC8934662 DOI: 10.1093/nar/gkac122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
CMTR1 (cap methyltransferase 1) catalyses methylation of the first transcribed nucleotide of RNAPII transcripts (N1 2′-O-Me), creating part of the mammalian RNA cap structure. In addition to marking RNA as self, N1 2′-O-Me has ill-defined roles in RNA expression and translation. Here, we investigated the gene specificity of CMTR1 and its impact on RNA expression in embryonic stem cells. Using chromatin immunoprecipitation, CMTR1 was found to bind to transcription start sites (TSS) correlating with RNAPII levels, predominantly binding at histone genes and ribosomal protein (RP) genes. Repression of CMTR1 expression resulted in repression of RNAPII binding at the TSS and repression of RNA expression, particularly of histone and RP genes. In correlation with regulation of histones and RP genes, CMTR1 repression resulted in repression of translation and induction of DNA replication stress and damage. Indicating a direct role for CMTR1 in transcription, addition of recombinant CMTR1 to purified nuclei increased transcription of the histone and RP genes. CMTR1 was found to be upregulated during neural differentiation and there was an enhanced requirement for CMTR1 for gene expression and proliferation during this process. We highlight the distinct roles of the cap methyltransferases RNMT and CMTR1 in target gene expression and differentiation.
Collapse
Affiliation(s)
- Shang Liang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joana C Silva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga Suska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Radoslaw Lukoszek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- To whom correspondence should be addressed. Tel: +44 1382 386997; Fax: +44 1382 386997;
| |
Collapse
|
43
|
Jensen KB, Dredge BK, Toubia J, Jin X, Iadevaia V, Goodall GJ, Proud CG. capCLIP: a new tool to probe translational control in human cells through capture and identification of the eIF4E-mRNA interactome. Nucleic Acids Res 2021; 49:e105. [PMID: 34255842 PMCID: PMC8501963 DOI: 10.1093/nar/gkab604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Translation of eukaryotic mRNAs begins with binding of their m7G cap to eIF4E, followed by recruitment of other translation initiation factor proteins. We describe capCLIP, a novel method to comprehensively capture and quantify the eIF4E (eukaryotic initiation factor 4E) 'cap-ome' and apply it to examine the biological consequences of eIF4E-cap binding in distinct cellular contexts. First, we use capCLIP to identify the eIF4E cap-omes in human cells with/without the mTORC1 (mechanistic target of rapamycin, complex 1) inhibitor rapamycin, there being an emerging consensus that rapamycin inhibits translation of TOP (terminal oligopyrimidine) mRNAs by displacing eIF4E from their caps. capCLIP reveals that the representation of TOP mRNAs in the cap-ome is indeed systematically reduced by rapamycin, thus validating our new methodology. capCLIP also refines the requirements for a functional TOP sequence. Second, we apply capCLIP to probe the consequences of phosphorylation of eIF4E. We show eIF4E phosphorylation reduces overall eIF4E-mRNA association and, strikingly, causes preferential dissociation of mRNAs with short 5'-UTRs. capCLIP is a valuable new tool to probe the function of eIF4E and of other cap-binding proteins such as eIF4E2/eIF4E3.
Collapse
Affiliation(s)
- Kirk B Jensen
- Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Xin Jin
- Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.,School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Valentina Iadevaia
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Gregory J Goodall
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
44
|
Weiss B, Allen GE, Kloehn J, Abid K, Jaquier-Gubler P, Curran JA. eIF4E3 forms an active eIF4F complex during stresses (eIF4FS) targeting mTOR and re-programs the translatome. Nucleic Acids Res 2021; 49:5159-5176. [PMID: 33893802 PMCID: PMC8136781 DOI: 10.1093/nar/gkab267] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Karim Abid
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joseph Alphonsus Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| |
Collapse
|