1
|
Coles NP, Elsheikh S, Quesnel A, Butler L, Achadu O, Islam M, Kalesh K, Occhipinti A, Angione C, Marles-Wright J, Koss DJ, Thomas AJ, Outeiro TF, Filippou PS, Khundakar AA. Alpha-synuclein aggregation induces prominent cellular lipid changes as revealed by Raman spectroscopy and machine learning analysis. Brain Commun 2025; 7:fcaf133. [PMID: 40226383 PMCID: PMC11992568 DOI: 10.1093/braincomms/fcaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
The aggregation of α-synuclein is a central neuropathological hallmark in neurodegenerative disorders known as Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. In the aggregation process, α-synuclein transitions from its native disordered/α-helical form to a β-sheet-rich structure, forming oligomers and protofibrils that accumulate into Lewy bodies, in a process that is thought to underlie neurodegeneration. Lipids are thought to play a critical role in this process by facilitating α-synuclein aggregation and contributing to cell toxicity, possibly through ceramide production. This study aimed to investigate biochemical changes associated with α-synuclein aggregation, focusing on lipid changes, using Raman spectroscopy coupled with machine learning. HEK293, Neuro2a and SH-SY5Y expressing increased levels of α-synuclein were treated with sonicated α-synuclein pre-formed fibrils, to model seeded aggregation. Raman spectroscopy, complemented by an in-house lipid spectral library, was used to monitor the aggregation process and its effects on cellular viability over 14 days. We detected α-synuclein aggregation by assessing β-sheet peaks at 1045 cm⁻1, in cells treated with α-synuclein pre-formed fibrils, using machine learning (principal component analysis and uniform manifold approximation and projection) analysis based on Raman spectral features. Changes in lipid profiles, and especially sphingolipids, including a decrease in sphingomyelin and increase in ceramides, were observed, consistent with oxidative stress and apoptosis. Altogether, our study informs on biochemical alterations that can be considered for the design of therapeutic strategies for Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Nathan P Coles
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Suzan Elsheikh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Lucy Butler
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Ojodomo Achadu
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Karunakaran Kalesh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Annalisa Occhipinti
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Jon Marles-Wright
- Biosciences Institute, Cookson Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David J Koss
- Division of Neuroscience, School of Medicine, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3a, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Straße 3A, 37075 Göttingen, Germany
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
2
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Juárez I, Naron A, Blank H, Polymenis M, Threadgill DW, Bailey RL, Stover PJ, Kurouski D. Noninvasive Optical Sensing of Aging and Diet Preferences Using Raman Spectroscopy. Anal Chem 2025; 97:969-975. [PMID: 39743337 PMCID: PMC11740184 DOI: 10.1021/acs.analchem.4c05853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context. RS is based on major differences in the intensities of vibrational bands that originate from collagen. Moreover, RS could be used to predict folate deficiency and identify the sex of the animals. Finally, we found that RS could be used to track the chronological age of the mice. Considering the hand-held nature of the utilized spectrometer, one can expect that RS could be used to monitor and, consequently, personalize effects of diet on the body composition.
Collapse
Affiliation(s)
- Isaac
D. Juárez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexandra Naron
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Heidi Blank
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Michael Polymenis
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - David W. Threadgill
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Regan L. Bailey
- Department
of Nutrition, Texas A&M University, College Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| | - Patrick J. Stover
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
for Advancing Health through Agriculture Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Sisó S, Kavirayani AM, Couto S, Stierstorfer B, Mohanan S, Morel C, Marella M, Bangari DS, Clark E, Schwartz A, Carreira V. Trends and Challenges of the Modern Pathology Laboratory for Biopharmaceutical Research Excellence. Toxicol Pathol 2025; 53:5-20. [PMID: 39673215 DOI: 10.1177/01926233241303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Pathology, a fundamental discipline that bridges basic scientific discovery to the clinic, is integral to successful drug development. Intrinsically multimodal and multidimensional, anatomic pathology continues to be empowered by advancements in molecular and digital technologies enabling the spatial tissue detection of biomolecules such as genes, transcripts, and proteins. Over the past two decades, breakthroughs in spatial molecular biology technologies and advancements in automation and digitization of laboratory processes have enabled the implementation of higher throughput assays and the generation of extensive molecular data sets from tissue sections in biopharmaceutical research and development research units. It is our goal to provide readers with some rationale, advice, and ideas to help establish a modern molecular pathology laboratory to meet the emerging needs of biopharmaceutical research. This manuscript provides (1) a high-level overview of the current state and future vision for excellence in research pathology practice and (2) shared perspectives on how to optimally leverage the expertise of discovery, toxicologic, and translational pathologists to provide effective spatial, molecular, and digital pathology data to support modern drug discovery. It captures insights from the experiences, challenges, and solutions from pathology laboratories of various biopharmaceutical organizations, including their approaches to troubleshooting and adopting new technologies.
Collapse
Affiliation(s)
- Sílvia Sisó
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | - Mathiew Marella
- Janssen Research & Development, LLC, La Jolla, California, USA
| | | | - Elizabeth Clark
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | |
Collapse
|
5
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
6
|
Krishnan Nambudiri MK, Sujadevi VG, Poornachandran P, Murali Krishna C, Kanno T, Noothalapati H. Artificial Intelligence-Assisted Stimulated Raman Histology: New Frontiers in Vibrational Tissue Imaging. Cancers (Basel) 2024; 16:3917. [PMID: 39682107 DOI: 10.3390/cancers16233917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Frozen section biopsy, introduced in the early 1900s, still remains the gold standard methodology for rapid histologic evaluations. Although a valuable tool, it is labor-, time-, and cost-intensive. Other challenges include visual and diagnostic variability, which may complicate interpretation and potentially compromise the quality of clinical decisions. Raman spectroscopy, with its high specificity and non-invasive nature, can be an effective tool for dependable and quick histopathology. The most promising modality in this context is stimulated Raman histology (SRH), a label-free, non-linear optical process which generates conventional H&E-like images in short time frames. SRH overcomes limitations of conventional Raman scattering by leveraging the qualities of stimulated Raman scattering (SRS), wherein the energy gets transferred from a high-power pump beam to a probe beam, resulting in high-energy, high-intensity scattering. SRH's high resolution and non-requirement of preprocessing steps make it particularly suitable when it comes to intrasurgical histology. Combining SRH with artificial intelligence (AI) can lead to greater precision and less reliance on manual interpretation, potentially easing the burden of the overburdened global histopathology workforce. We review the recent applications and advances in SRH and how it is tapping into AI to evolve as a revolutionary tool for rapid histologic analysis.
Collapse
Affiliation(s)
| | - V G Sujadevi
- Centre for Internet Studies and Artificial Intelligence, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - Prabaharan Poornachandran
- Centre for Internet Studies and Artificial Intelligence, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - C Murali Krishna
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Hemanth Noothalapati
- Department of Biomedical Engineering, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
- Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan
| |
Collapse
|
7
|
Lita A, Sjöberg J, Păcioianu D, Siminea N, Celiku O, Dowdy T, Păun A, Gilbert MR, Noushmehr H, Petre I, Larion M. Raman-based machine-learning platform reveals unique metabolic differences between IDHmut and IDHwt glioma. Neuro Oncol 2024; 26:1994-2009. [PMID: 38828478 PMCID: PMC11534323 DOI: 10.1093/neuonc/noae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) tissue slides are routinely used in cancer diagnosis, clinical decision-making, and stored in biobanks, but their utilization in Raman spectroscopy-based studies has been limited due to the background coming from embedding media. METHODS Spontaneous Raman spectroscopy was used for molecular fingerprinting of FFPE tissue from 46 patient samples with known methylation subtypes. Spectra were used to construct tumor/non-tumor, IDH1WT/IDH1mut, and methylation-subtype classifiers. Support vector machine and random forest were used to identify the most discriminatory Raman frequencies. Stimulated Raman spectroscopy was used to validate the frequencies identified. Mass spectrometry of glioma cell lines and TCGA were used to validate the biological findings. RESULTS Here, we develop APOLLO (rAman-based PathOLogy of maLignant gliOma)-a computational workflow that predicts different subtypes of glioma from spontaneous Raman spectra of FFPE tissue slides. Our novel APOLLO platform distinguishes tumors from nontumor tissue and identifies novel Raman peaks corresponding to DNA and proteins that are more intense in the tumor. APOLLO differentiates isocitrate dehydrogenase 1 mutant (IDH1mut) from wild-type (IDH1WT) tumors and identifies cholesterol ester levels to be highly abundant in IDHmut glioma. Moreover, APOLLO achieves high discriminative power between finer, clinically relevant glioma methylation subtypes, distinguishing between the CpG island hypermethylated phenotype (G-CIMP)-high and G-CIMP-low molecular phenotypes within the IDH1mut types. CONCLUSIONS Our results demonstrate the potential of label-free Raman spectroscopy to classify glioma subtypes from FFPE slides and to extract meaningful biological information thus opening the door for future applications on these archived tissues in other cancers.
Collapse
Affiliation(s)
- Adrian Lita
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Joel Sjöberg
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - David Păcioianu
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
| | - Nicoleta Siminea
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
| | - Orieta Celiku
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Tyrone Dowdy
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Andrei Păun
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
- SCORE Lab, I3US, Universidad de Sevilla, Sevilla, Spain
| | - Mark R Gilbert
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ion Petre
- Department of Bioinformatics, National Institute for Research and Development in Biological Sciences, Bucharest, Romania
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Mioara Larion
- National Cancer Institute, National Institutes of Health, Neuro-Oncology Branch, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Zeng Q, Peng Y, Zhou X, Zhang J, Yang Y, Xu X, Guan B, Zhang Y, Hu X, Chen X. Label-free Raman imaging for screening of anti-inflammatory function food. Food Chem X 2024; 22:101297. [PMID: 38544930 PMCID: PMC10966160 DOI: 10.1016/j.fochx.2024.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Natural bioactive compounds and plant constituents are considered to have a positive anti-inflammatory effect. This study aimed to establish a screening technique for anti-inflammatory function in foods based on label-free Raman imaging. A visible anti-inflammatory analysis method based on coherent anti-Stokes Raman scattering (CARS) was established with an LPS-induced RAW264.7 cell model. Dynamic changes in proteins and lipids were determined at laser pump light wavelengths of 2956 cm-1 and 2856 cm-1, respectively. The method was applied to a plant-based formula (JC) with anti-inflammatory activity. Q-TOF-MS and HPLC analyses revealed the main active constituents of JC as quercetin, kaempferol, l-glutamine, and sodium copper chlorophyllin. In in vitro and in vivo verification experiments, JC showed significant anti-inflammatory activity by regulating the TLR4/NF-κB pathway. In conclusion, this study successfully established a label-free and visible method for screening anti-inflammatory constituents in plant-based food products, which will facilitate the evaluation of functional foods.
Collapse
Affiliation(s)
- Qi Zeng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Yangyao Peng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xianzhen Zhou
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jiaojiao Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yuhang Yang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xinyi Xu
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Bin Guan
- Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi Fifth People's Hospital, Wuxi 214000, China
| | - Yuntian Zhang
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Xiaojia Hu
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
9
|
Dunnington EL, Wong BS, Fu D. Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging. Anal Chem 2024; 96:7926-7944. [PMID: 38625100 PMCID: PMC11108735 DOI: 10.1021/acs.analchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Sorrells JE, Yang L, Iyer RR, Chaney EJ, Renteria CA, Boppart SA. Programmable hyperspectral coherent anti-Stokes Raman scattering microscopy. OPTICS LETTERS 2024; 49:2513-2516. [PMID: 38691757 PMCID: PMC12013496 DOI: 10.1364/ol.521864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Hyperspectral coherent Raman scattering microscopy provides a significant improvement in acquisition time compared to spontaneous Raman scattering yet still suffers from the time required to sweep through individual wavenumbers. To address this, we present the use of a pulse shaper with a 2D spatial light modulator for phase- and amplitude-based shaping of the Stokes beam to create programmable spectrally tailored excitation envelopes. This enables collection of useful spectral information in a more rapid and efficient manner.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Interdisciplinary Health Science Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
11
|
Zhang W, Li Y, Fung AA, Li Z, Jang H, Zha H, Chen X, Gao F, Wu JY, Sheng H, Yao J, Skowronska-Krawczyk D, Jain S, Shi L. Multi-molecular hyperspectral PRM-SRS microscopy. Nat Commun 2024; 15:1599. [PMID: 38383552 PMCID: PMC10881988 DOI: 10.1038/s41467-024-45576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.
Collapse
Affiliation(s)
- Wenxu Zhang
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhi Li
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongje Jang
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Honghao Zha
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiaoping Chen
- Dept. of Neurology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Fangyuan Gao
- Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jane Y Wu
- Dept. of Neurology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Huaxin Sheng
- Dept. of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Dept. of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Sanjay Jain
- Dept. of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Dept. of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Dept. of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Dept. of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Meyer HJ, Mamani S, Li Z, Shi L, Alfano RR. Femtosecond optical Kerr effect in normal and grades of cancerous breast tissues as a new optical biopsy method. JOURNAL OF BIOPHOTONICS 2024; 17:e202300344. [PMID: 38010367 DOI: 10.1002/jbio.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
This study reports on the first use of the optical Kerr effect (OKE) in breast cancer tissue. This proposed optical biopsy method utilizes a Femtosecond Optical Kerr Gate to detect changes in dielectric relaxation and conductivity created by a cancerous infection. Here, the temporal behavior of the OKE is tracked in normal and cancerous samples of human and mouse breast. These tissues display a double peaked temporal structure and its decay rate changes depending on the tissue's infection status. The decay of the secondary peak, attributed to ultrafast plasma response, indicates that the tissue's conductivity has doubled once infected. A slower molecular contribution to the Kerr effect can also be observed in healthy tissues. These findings suggest two possible biomarkers for the use of OKE in optical biopsy. Both markers arise from alterations in the infected tissue's cellular structure, which changes the rate at which electronic and molecular processes occur.
Collapse
Affiliation(s)
- Henry J Meyer
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| | - Sandra Mamani
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| | - Zhi Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, San Diego, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, San Diego, USA
| | - Robert R Alfano
- Department of Physics and Electrical Engineering, Institute for Ultrafast Spectroscopy and Lasers, The City College of the City University of New York, New York, New York, USA
| |
Collapse
|
13
|
Papadoliopoulou M, Matiatou M, Koutsoumpos S, Mulita F, Giannios P, Margaris I, Moutzouris K, Arkadopoulos N, Michalopoulos NV. Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review. Cancers (Basel) 2023; 15:5438. [PMID: 38001697 PMCID: PMC10670418 DOI: 10.3390/cancers15225438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Assessment of regional lymph node status in breast cancer is of important staging and prognostic value. Even though formal histological examination is the currently accepted standard of care, optical imaging techniques have shown promising results in disease diagnosis. In the present article, we review six spectroscopic techniques and focus on their use as alternative tools for breast cancer lymph node assessment. Elastic scattering spectroscopy (ESS) seems to offer a simple, cost-effective, and reproducible method for intraoperative diagnosis of breast cancer lymph node metastasis. Optical coherence tomography (OCT) provides high-resolution tissue scanning, along with a short data acquisition time. However, it is relatively costly and experimentally complex. Raman spectroscopy proves to be a highly accurate method for the identification of malignant axillary lymph nodes, and it has been further validated in the setting of head and neck cancers. Still, it remains time-consuming. Near-infrared fluorescence imaging (NIRF) and diffuse reflectance spectroscopy (DFS) are related to significant advantages, such as deep tissue penetration and efficiency. Fourier-transform infrared spectroscopy (FTIR) is a promising method but has significant drawbacks. Nonetheless, only anecdotal reports exist on their clinical use for cancerous lymph node detection. Our results indicate that optical imaging methods can create informative and rapid tools to effectively guide surgical decision-making.
Collapse
Affiliation(s)
- Maria Papadoliopoulou
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Maria Matiatou
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Spyridon Koutsoumpos
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, 26504 Rio, Greece
| | - Panagiotis Giannios
- Barcelona Institute of Science and Technology, Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | - Ioannis Margaris
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of West Attica, 12244 Egaleo, Greece
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece (N.V.M.)
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece
| |
Collapse
|
14
|
Zhang C. Coherent Raman scattering microscopy of lipid droplets in cells and tissues. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2023; 54:988-1000. [PMID: 38076450 PMCID: PMC10707480 DOI: 10.1002/jrs.6540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 09/03/2024]
Abstract
Lipid droplets (LDs) play a key role as the hub for lipid metabolism to maintain cellular metabolic homeostasis. Understanding the functions and changes of LDs in different pathological conditions is crucial for identifying new markers for diagnosis and discovering new targets for treatment. In recent years, coherent Raman scattering (CRS) microscopy has been popularized for the imaging and quantification of LDs in live cells. Compared to spontaneous Raman scattering microscopy, CRS microscopy offers a much higher imaging speed while maintaining similar chemical information. Due to the high lipid density, LDs usually have strong CRS signals and therefore are the most widely studied organelle in the CRS field. In this review, we discuss recent achievements using CRS to study the quantity, distribution, composition, and dynamics of LDs in various systems.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University, West Lafayette, IN
| |
Collapse
|
15
|
Jain S, Pei L, Spraggins JM, Angelo M, Carson JP, Gehlenborg N, Ginty F, Gonçalves JP, Hagood JS, Hickey JW, Kelleher NL, Laurent LC, Lin S, Lin Y, Liu H, Naba A, Nakayasu ES, Qian WJ, Radtke A, Robson P, Stockwell BR, Van de Plas R, Vlachos IS, Zhou M, Börner K, Snyder MP. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat Cell Biol 2023; 25:1089-1100. [PMID: 37468756 PMCID: PMC10681365 DOI: 10.1038/s41556-023-01194-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology and the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Michael Angelo
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, USA
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Joana P Gonçalves
- Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - James S Hagood
- Department of Pediatrics (Pulmonology) and Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John W Hickey
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Neil L Kelleher
- Departments of Medicine, Chemistry and Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shin Lin
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Huiping Liu
- Departments of Pharmacology, Medicine (Hematology and Oncology), Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Andrea Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Ioannis S Vlachos
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katy Börner
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Bagheri P, Hoang K, Kuo CY, Trivedi H, Jang H, Shi L. Bioorthogonal Chemical Imaging of Cell Metabolism Regulated by Aromatic Amino Acids. J Vis Exp 2023:10.3791/65121. [PMID: 37246865 PMCID: PMC10725321 DOI: 10.3791/65121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Essential aromatic amino acids (AAAs) are building blocks for synthesizing new biomasses in cells and sustaining normal biological functions. For example, an abundant supply of AAAs is important for cancer cells to maintain their rapid growth and division. With this, there is a rising demand for a highly specific, noninvasive imaging approach with minimal sample preparation to directly visualize how cells harness AAAs for their metabolism in situ. Here, we develop an optical imaging platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) and integrates DO-SRS with two-photon excitation fluorescence (2PEF) into a single microscope to directly visualize the metabolic activities of HeLa cells under AAA regulation. Collectively, the DO-SRS platform provides high spatial resolution and specificity of newly synthesized proteins and lipids in single HeLa cell units. In addition, the 2PEF modality can detect autofluorescence signals of nicotinamide adenine dinucleotide (NADH) and Flavin in a label-free manner. The imaging system described here is compatible with both in vitro and in vivo models, which is flexible for various experiments. The general workflow of this protocol includes cell culture, culture media preparation, cell synchronization, cell fixation, and sample imaging with DO-SRS and 2PEF modalities.
Collapse
Affiliation(s)
- Pegah Bagheri
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Khang Hoang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Chan-Yu Kuo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Hetvi Trivedi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Hongje Jang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego;
| |
Collapse
|
17
|
Meyer H, Mamani S, Li Z, Shi L, Alfano R. Femtosecond Optical Kerr Gates in Cancerous Breast Tissue for a New Optical Biopsy Method. RESEARCH SQUARE 2023:rs.3.rs-2829849. [PMID: 37214848 PMCID: PMC10197745 DOI: 10.21203/rs.3.rs-2829849/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Optical Kerr Effect was demonstrated for the first time as a new optical biopsy method to detect normal and grades of cancer of human breast tissues. The technique works by temporally tracking the various electronic and molecular processes that give rise to the nonlinear index of refraction (n2). The rate at which these processes populate and dissipate varies depending on the internal properties of the sample. It is shown here that in tissues, the variances in the ultrafast plasma Kerr responses that relates to the dielectric relaxation can be used as a biomarker for cancer. The relaxation of this response changes significantly between healthy and different grades of triple negative breast cancer tissues. This change can be attributed to a doubling or tripling of the tissue's conductivity depending on the cancer grade.
Collapse
Affiliation(s)
- Henry Meyer
- The City College of the City University of New York
| | | | - Zhi Li
- University of California San Diego
| | | | | |
Collapse
|
18
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Label-free live microalgal starch screening via Raman flow cytometry. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Depciuch J, Jakubczyk P, Paja W, Pancerz K, Wosiak A, Kula-Maximenko M, Yaylım İ, Gültekin Gİ, Tarhan N, Hakan MT, Sönmez D, Sarıbal D, Arıkan S, Guleken Z. Correlation between human colon cancer specific antigens and Raman spectra. Attempting to use Raman spectroscopy in the determination of tumor markers for colon cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102657. [PMID: 36646194 DOI: 10.1016/j.nano.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is the second most common cause of cancer-related deaths worldwide. To follow up on the progression of the disease, tumor markers are commonly used. Here, we report serum analysis based on Raman spectroscopy to provide a rapid cancer diagnosis with tumor markers and two new cell adhesion molecules measured using the ELİSA method. Raman spectra showed higher Raman intensities at 1447 cm-1 1560 cm-1, 1665 cm-1, and 1769 cm-1, which originated from CH2 proteins and lipids, amide II and amide I, and CO lipids vibrations. Furthermore, the correlation test showed, that only the CEA colon cancer marker correlated with the Raman spectra. Importantly, machine learning methods showed, that the accuracy of the Raman method in the detection of colon cancer was around 95 %. Obtained results suggest, that Raman shifts at 1302 cm-1 and 1306 cm-1 can be used as spectroscopy markers of colon cancer.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| | | | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Poland
| | - Krzysztof Pancerz
- Institute of Philosophy, John Paul II Catholic University of Lublin, Poland
| | - Agnieszka Wosiak
- Institute of Information Technology, Lodz University of Technology, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| | - İlhan Yaylım
- Istanbul University, Aziz Sancar Institute of Molecular Medicine, Istanbul, Turkey
| | | | | | | | - Dilara Sönmez
- Istanbul University, Aziz Sancar Institute of Molecular Medicine, Istanbul, Turkey
| | - Devrim Sarıbal
- Department of Biophysics, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Soykan Arıkan
- Istanbul Education and Research Hospital, Department of General Surgery, Istanbul, Turkey; Cam and Sakura City Hospital, Istanbul, Turkey
| | - Zozan Guleken
- Uskudar University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
21
|
Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy. J Struct Biol 2022; 214:107909. [PMID: 36309120 DOI: 10.1016/j.jsb.2022.107909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the ν1 calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals.
Collapse
|
22
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
23
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
24
|
Leszczenko P, Borek-Dorosz A, Nowakowska AM, Adamczyk A, Kashyrskaya S, Jakubowska J, Ząbczyńska M, Pastorczak A, Ostrowska K, Baranska M, Marzec KM, Majzner K. Towards Raman-Based Screening of Acute Lymphoblastic Leukemia-Type B (B-ALL) Subtypes. Cancers (Basel) 2021; 13:cancers13215483. [PMID: 34771646 PMCID: PMC8582787 DOI: 10.3390/cancers13215483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy originating from abnormal lymphoid progenitor cells. Since ALL is genetically highly heterogenous, more sensitive and rapid methods for identifying the molecular subtype of ALL are still being searched, and Raman spectroscopy (RS) has a chance of becoming a valuable tool for this purpose. Herein, the RS was applied to analyze normal B cells and three subtypes of B-ALL, characterized by the presence of the product of gene fusion, i.e., BCR-ABL1, TEL-AML1, and TCF3-PBX1. The classification and discrimination of normal and neoplastic cells were carried out with the chemometric approach. Normal B cells were characterized mostly by bands assigned to nucleic acids and proteins, whereas three subtypes of ALL appeared to contain a higher lipid content. Spectral differences between particular ALL subtypes were modest. The results lead to the conclusion that RS has the potential as a diagnostic tool in clinical practice. Abstract Acute lymphoblastic leukemia (ALL) is the most common type of malignant neoplasms in the pediatric population. B-cell precursor ALLs (BCP-ALLs) are derived from the progenitors of B lymphocytes. Traditionally, risk factors stratifying therapy in ALL patients included age at diagnosis, initial leukocytosis, and the response to chemotherapy. Currently, treatment intensity is modified according to the presence of specific gene alterations in the leukemic genome. Raman imaging is a promising diagnostic tool, which enables the molecular characterization of cells and differentiation of subtypes of leukemia in clinical samples. This study aimed to characterize and distinguish cells isolated from the bone marrow of patients suffering from three subtypes of BCP-ALL, defined by gene rearrangements, i.e., BCR-ABL1 (Philadelphia-positive, t(9;22)), TEL-AML1 (t(12;21)) and TCF3-PBX1 (t(1;19)), using single-cell Raman imaging combined with multivariate statistical analysis. Spectra collected from clinical samples were compared with single-cell spectra of B-cells collected from healthy donors, constituting the control group. We demonstrated that Raman spectra of normal B cells strongly differ from spectra of their malignant counterparts, especially in the intensity of bands, which can be assigned to nucleic acids. We also showed that the identification of leukemia subtypes could be automated with the use of chemometric methods. Results prove the clinical suitability of Raman imaging for the identification of spectroscopic markers characterizing leukemia cells.
Collapse
Affiliation(s)
- Patrycja Leszczenko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Aleksandra Borek-Dorosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Anna Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Adriana Adamczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Sviatlana Kashyrskaya
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Marta Ząbczyńska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Kinga Ostrowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Maria Marzec
- Lukasiewicz Research Network—Krakow Institute of Technology, Zakopiańska 73, 30-418 Krakow, Poland
- Correspondence: (K.M.M.); (K.M.)
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Correspondence: (K.M.M.); (K.M.)
| |
Collapse
|
25
|
Lima C, Muhamadali H, Goodacre R. The Role of Raman Spectroscopy Within Quantitative Metabolomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:323-345. [PMID: 33826853 DOI: 10.1146/annurev-anchem-091420-092323] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering-based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.
Collapse
Affiliation(s)
- Cassio Lima
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| |
Collapse
|
26
|
Zhang C, Aldana-Mendoza JA. Coherent Raman scattering microscopy for chemical imaging of biological systems. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/abfd09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Coherent Raman scattering (CRS) processes, including both the coherent anti-Stokes Raman scattering and stimulated Raman scattering, have been utilized in state-of-the-art microscopy platforms for chemical imaging of biological samples. The key advantage of CRS microscopy over fluorescence microscopy is label-free, which is an attractive characteristic for modern biological and medical sciences. Besides, CRS has other advantages such as higher selectivity to metabolites, no photobleaching, and narrow peak width. These features have brought fast-growing attention to CRS microscopy in biological research. In this review article, we will first briefly introduce the history of CRS microscopy, and then explain the theoretical background of the CRS processes in detail using the classical approach. Next, we will cover major instrumentation techniques of CRS microscopy. Finally, we will enumerate examples of recent applications of CRS imaging in biological and medical sciences.
Collapse
|