1
|
Shih CY, Jiang RS, Wang CP, Wang CC, Liu SA. Dysgeusia After Comprehensive Treatment for Oral Cavity Cancer. Laryngoscope 2025. [PMID: 40248976 DOI: 10.1002/lary.32208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Gustatory function is a crucial component of human physiology, yet it is usually overlooked by the physician. We aimed to determine risk factors for dysgeusia in oral cavity cancer patients after comprehensive treatment. METHODS We prospectively enrolled oral cavity cancer patients scheduled to undergo surgical intervention from August 2017 until December 2023. A solution-based taste test was used to examine patients' taste sensation before and 6 months after comprehensive treatment. Demographic data, along with treatment-related features, were collected and analyzed. RESULTS In total, 104 patients with oral cavity cancer were included in the final analysis. The average age was 55.0 ± 9.0 years and males accounted for 83.7% (n = 87) of all participants. In addition, 21 patients (20.2%) received total glossectomy and 46 patients (44.2%) underwent partial glossectomy. Furthermore, 65 patients (62.5%) received postoperative radiotherapy and 53 patients (51.0%) had induction or postoperative chemotherapy. After adjusting for other variables, radiotherapy was shown to be a risk factor for dysgeusia after comprehensive treatment (relative risk [RR], 13.90; 95% confidence interval [CI], 1.57-122.85), followed by total glossectomy (RR, 6.20; 95% CI, 1.49-25.75). Chemotherapy had a marginal effect on dysgeusia in oral cavity cancer patients after comprehensive treatment (RR, 3.40; 95% CI, 0.95-12.14). CONCLUSION Taste disorders are not life-threatening events, but they still deserve the physician's attention. Patients with oral cavity cancer should be made aware that their sensation of taste may be affected during and after comprehensive treatment. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Chien-Yueh Shih
- Department of Oto-Rhino-Laryngology Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Ping Wang
- Department of Oto-Rhino-Laryngology Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chen-Chi Wang
- Department of Oto-Rhino-Laryngology Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Shih-An Liu
- Department of Oto-Rhino-Laryngology Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Zhu R, Wang R, He J, Zhang L, An P, Li K, Ren F, Xu W, Guo J. Perceived Taste Loss From Early Adulthood to Mid to Late Adulthood and Mortality. JAMA Otolaryngol Head Neck Surg 2025; 151:335-343. [PMID: 39946118 PMCID: PMC11826429 DOI: 10.1001/jamaoto.2024.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025]
Abstract
Importance Evidence on the associations of taste function changes from early adulthood to mid to late adulthood with all-cause mortality is limited. Objective To investigate the associations between subjective perception of taste loss from early adulthood to mid to late adulthood and all-cause mortality. Design, Setting, and Participants This population-based cohort study used data from the US National Health and Nutrition Examination Survey (2011-2014) and linked mortality information from the National Death Index (NDI) and included adults aged 40 years and older. Data analyses were conducted between May 6, 2024, and July 22, 2024. Exposures Subjective decline in taste function and ability to detect basic tastes (ie, salt, sourness, sweetness, or bitterness) since the age of 25 years. Main Outcomes and Measures All-cause mortality was ascertained via linkage to the NDI with follow-up until December 31, 2019. Results Among 7340 participants (52.8% female), 662 (weighted, 8.9%) reported subjective perception of taste loss from early adulthood to mid to late adulthood. During a median (IQR) follow-up of 6.67 (5.67-7.83) years, 1011 deaths occurred. Subjective perception of taste loss was associated with a 47% higher risk of mortality (multiadjusted hazard ratio [HR], 1.47; 95% CI, 1.06-2.03). Specifically, self-reported loss in ability to taste salt (multivariable adjusted HR [aHR], 1.65; 95% CI, 1.21-2.26) and sourness (aHR, 1.69; 95% CI, 1.19-2.40) was associated with increased mortality. Self-reported decline in ability to taste bitterness was associated with increased mortality only in female participants (aHR, 1.63; 95% CI, 1.05-2.53), whereas decline in ability to taste sourness was associated with increased mortality only in male participants (aHR, 1.69; 95% CI, 1.03-2.75). Moreover, among all and female participants without perceived smell function loss, those with perceived taste function loss still had increased mortality (all participants: aHR, 1.64; 95% CI, 1.12-2.40; female participants: aHR, 1.71; 95% CI, 1.14-2.56; male participants: aHR, 1.44; 95% CI, 0.80-2.59). Conclusions and Relevance In this population-based cohort study, subjective perception of taste loss from early adulthood to mid to late adulthood, particularly perception of salt and sourness, was associated with increased all-cause mortality. The mortality risk associated with perceived taste loss could not be mitigated by undeteriorated smell function. These findings suggest that subjective perception of taste loss may serve as a simple and valuable indicator for screening high-risk populations in clinic and public health practice.
Collapse
Affiliation(s)
- Ruixin Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Liwei Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Keji Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Weili Xu
- Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
| | - Jie Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Department of Neurobiology, Care Sciences & Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
3
|
Şeref B, Yıldıran H. A new perspective on obesity: perception of fat taste and its relationship with obesity. Nutr Rev 2025; 83:e486-e492. [PMID: 38497969 DOI: 10.1093/nutrit/nuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Obesity, which results from a long-term positive energy balance, is affected by many factors, especially nutrition. The sensory properties of foods are associated with increased food intake through hedonic appetite. Taste perception, a component of flavor, is also responsible for increased consumption, through reward and hedonic mechanisms. Foods with high fat and energy content are among the foods that create the reward perception. The perception of fat taste, the primary taste that has recently entered the literature, may also be associated with increased food consumption and body weight. Therefore, in this review, the relationship between fat taste and obesity is examined, using the latest literature. RESULTS Different hypotheses have been proposed regarding the mechanism of the relationship between fat-taste perception and obesity, such as hedonic appetite, microbiota, decreased taste perception, and increased taste threshold level. In addition, some studies examining this relationship reported significant associations between the level of fat-taste perception and obesity, whereas others did not find a significant difference. CONCLUSION Considering the prevalence and contribution to obesity of Western-style nutrition, characterized by high amounts of fat and sugar consumption, elucidating this relationship may be an essential solution for preventing and treating obesity.
Collapse
Affiliation(s)
- Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
4
|
Bigiani A, Tirindelli R, Rhyu M, Mapelli J. Functional characterization of Type IV basal cells in rat fungiform taste buds. Chem Senses 2025; 50:bjaf005. [PMID: 39949040 DOI: 10.1093/chemse/bjaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Taste buds, the end organs of taste, consist of a diverse population of sensory cells that is constantly renewed. Cell differentiation begins with Type IV basal cells, which are ovoid elements located inside the taste bud near its base. These cells are postmitotic precursors that give rise to all other cell types, including glial-like cells (Type I cells) and chemoreceptors (Type II and Type III cells). Despite their critical role in cell turnover, Type IV basal cells are relatively unknown in terms of functional features. Here, we used Lucifer yellow labeling and patch-clamp technique to investigate their electrophysiological properties in the rat fungiform taste buds. All Type IV basal cells showed voltage-gated sodium currents (INa), albeit at a far lower density (17 pA/pF) than chemoreceptors (444 pA/pF), which fire action potentials during sensory transduction. Furthermore, they lacked calcium homeostasis modulator currents, which are required for neurotransmitter release by some chemoreceptor types. Amiloride-sensitive epithelial sodium channel (ENaC) was found to be only present in a subset of Type IV basal cells. Interestingly, Type IV basal cells shared some membrane features with glial-like cells, such as high cell capacitance and low INa density; however, input resistance was greater in Type IV basal cells than in glial-like cells. Thus, although Type IV basal cells may eventually differentiate into distinct cell lineages, our findings indicate that they are quite homogeneous in terms of the electrophysiological characteristics, with the exception of functional ENaCs, which appear to be only expressed in one subset.
Collapse
Affiliation(s)
- Albertino Bigiani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - MeeRa Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jonathan Mapelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Wang K, Mitoh Y, Horie K, Yoshida R. Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds. J Neurochem 2025; 169:e16291. [PMID: 39709613 DOI: 10.1111/jnc.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions.
Collapse
Affiliation(s)
- Kuanyu Wang
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kengo Horie
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Walters BN, Whiddon ZD, McGee AW, Krimm RF. Longitudinal imaging of the taste bud in vivo with two-photon laser scanning microscopy. PLoS One 2024; 19:e0309366. [PMID: 39671398 PMCID: PMC11642993 DOI: 10.1371/journal.pone.0309366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/11/2024] [Indexed: 12/15/2024] Open
Abstract
Taste bud cells in the tongue transduce taste information from chemicals in food and transmit this information to gustatory neurons in the geniculate ganglion that innervate taste buds. The peripheral taste system is a dynamic environment where taste bud cells are continuously replaced, but further understanding of this phenomenon has been limited by the inability to directly observe this process. To overcome this challenge, we combined chronic in vivo two-photon laser scanning microscopy with genetic labeling of gustatory neurons and taste buds to observe how cells within the taste bud change over time. This method expands the investigative possibilities beyond those offered by fixed-tissue methods. This method permits direct observation of taste bud cell entry, cell differentiation, cell loss, and arbor plasticity. We demonstrate that a few stains/dyes can be used to observe nuclei and organelles in the taste bud in vivo. We also describe a workflow for reconstructing composite z-stacks with grayscale data of both cells and arbors using ImageJ, Neurolucida 360, and Neurolucida Explorer software. Together, the methodology and software options for analyses presented here provide a novel approach for longitudinally observing taste bud cells and arbors in the taste bud in vivo.
Collapse
Affiliation(s)
- Brittany N. Walters
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Zachary D. Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
- Department of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Robin F. Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| |
Collapse
|
7
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024; 89:8128-8155. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Rhyu MR, Ozdener MH, Lyall V. Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli. Nutrients 2024; 16:3858. [PMID: 39599644 PMCID: PMC11597080 DOI: 10.3390/nu16223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Minoretti P, Fortuna G, D'Acquino D, Lavdas K. Comparative Analysis of Taste Perception Among Airline Pilots, Construction Workers, and Office Employees. Cureus 2024; 16:e69361. [PMID: 39398755 PMCID: PMC11471285 DOI: 10.7759/cureus.69361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Occupational exposures may influence gustatory sensations through mechanisms such as fatigue, acute or chronic stress, circadian rhythm disruptions, and exposure to various chemicals. In this cross-sectional study, we sought to compare taste perception across three professional groups, namely airline pilots, construction workers, and office employees, by assessing taste identification times for sweet, salty, sour, and bitter flavors, alongside salivary pH levels. Methods The study cohort consisted of 90 healthy male participants, with 30 individuals in each occupational group, matched for age and professional experience. Salivary pH was measured using pH meter paper, whereas taste identification times were assessed using aqueous solutions applied to dissolvable strips for each taste. Results There were no significant differences in salivary pH among the study groups. However, airline pilots exhibited a significantly longer identification time for sweet taste (9.8 ± 3.9 seconds) compared to construction workers (7.0 ± 3.1 seconds, P < 0.05) and office employees (7.1 ± 3.3 seconds, P < 0.05). Conversely, construction workers demonstrated a significantly prolonged identification time for sour taste (6.1 ± 2.9 seconds) compared to pilots (4.2 ± 2.6 seconds, P < 0.05) and office employees (4.6 ± 2.5 seconds, P < 0.05). No significant differences were observed in the identification times for salty and bitter tastes across the groups. Conclusion We found significant differences in taste perception among airline pilots, construction workers, and office employees, particularly concerning sweet and sour tastes. These findings suggest that occupational factors may influence gustatory function in a complex manner. Further research is warranted to explore the underlying mechanisms and potential implications for dietary habits and health within specific occupational groups.
Collapse
|
10
|
Li S, Gao L, Liu C, Guo H, Yu J. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4915. [PMID: 39123962 PMCID: PMC11314768 DOI: 10.3390/s24154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
Collapse
Affiliation(s)
| | | | | | | | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
11
|
Meto A, Sula A, Peppoloni S, Meto A, Blasi E. Leveraging Dental Stem Cells for Oral Health during Pregnancy: A Concise Review. Dent J (Basel) 2024; 12:127. [PMID: 38786525 PMCID: PMC11120089 DOI: 10.3390/dj12050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pregnancy induces significant changes in oral health because of hormonal fluctuations, making it a crucial period for preventive measures. Dental stem cells (DSCs), particularly those derived from the dental pulp and periodontal ligaments, offer promising avenues for regenerative therapies and, possibly, preventive interventions. While the use of DSCs already includes various applications in regenerative dentistry in the general population, their use during pregnancy requires careful consideration. This review explores recent advancements, challenges, and prospects in using DSCs to address oral health issues, possibly during pregnancy. Critical aspects of the responsible use of DSCs in pregnant women are discussed, including safety, ethical issues, regulatory frameworks, and the need for interdisciplinary collaborations. We aimed to provide a comprehensive understanding of leveraging DSCs to improve maternal oral health.
Collapse
Affiliation(s)
- Aida Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
- Department of Conservative Dentistry and Endodontics, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Ana Sula
- Department of Obstetrics and Gynecology, American Hospital, 1060 Tirana, Albania;
| | - Samuele Peppoloni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| | - Agron Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania;
| | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (E.B.)
| |
Collapse
|
12
|
Wang P, Ye X, Liu J, Xiao Y, Tan M, Deng Y, Yuan M, Luo X, Zhang D, Xie X, Han X. Recent advancements in the taste transduction mechanism, identification, and characterization of taste components. Food Chem 2024; 433:137282. [PMID: 37696093 DOI: 10.1016/j.foodchem.2023.137282] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
In the realm of human nutrition, the phenomenon known as taste refers to a distinctive sensation elicited by the consumption of food and various compounds within the oral cavity and on the tongue. Moreover, taste affects the overall comfort in the oral cavity, and is a fundamental attribute for the assessment of food items. Accordingly, clarifying the material basis of taste would be conducive to deepening the cognition of taste, investigating the mechanism of taste presentation, and accurately covering up unpleasant taste. In this paper, the basic biology and physiology of transduction of bitter, umami, sweet, sour, salty, astringent, as well as spicy tastes are reviewed. Furthermore, the detection process of taste components is summarized. Particularly, the applications, advantages, and distinctions of various isolation, identification, and evaluation methods are discussed in depth. In conclusion, the future of taste component detection is discussed.
Collapse
Affiliation(s)
- Pinhu Wang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xiang Ye
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yao Xiao
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Min Tan
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Yue Deng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Mulan Yuan
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xingmei Luo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xingliang Xie
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xue Han
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China.
| |
Collapse
|
13
|
Landon SM, Baker K, Macpherson LJ. Give-and-take of gustation: the interplay between gustatory neurons and taste buds. Chem Senses 2024; 49:bjae029. [PMID: 39078723 PMCID: PMC11315769 DOI: 10.1093/chemse/bjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Mammalian taste buds are highly regenerative and can restore themselves after normal wear and tear of the lingual epithelium or following physical and chemical insults, including burns, chemotherapy, and nerve injury. This is due to the continual proliferation, differentiation, and maturation of taste progenitor cells, which then must reconnect with peripheral gustatory neurons to relay taste signals to the brain. The turnover and re-establishment of peripheral taste synapses are vital to maintain this complex sensory system. Over the past several decades, the signal transduction and neurotransmitter release mechanisms within taste cells have been well delineated. However, the complex dynamics between synaptic partners in the tongue (taste cell and gustatory neuron) are only partially understood. In this review, we highlight recent findings that have improved our understanding of the mechanisms governing connectivity and signaling within the taste bud and the still-unresolved questions regarding the complex interactions between taste cells and gustatory neurons.
Collapse
Affiliation(s)
- Shannon M Landon
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
| | - Kimberly Baker
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- 59th Medical Wing: Surgical and Technological Advancements for Traumatic Injuries in Combat: 204 Wagner Ave, San Antonio, TX 78211, United States
| | - Lindsey J Macpherson
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Aragona M, Porcino C, Briglia M, Mhalhel K, Abbate F, Levanti M, Montalbano G, Laurà R, Lauriano ER, Germanà A, Guerrera MC. Vimentin Localization in the Zebrafish Oral Cavity: A Potential Role in Taste Buds Regeneration. Int J Mol Sci 2023; 24:15619. [PMID: 37958598 PMCID: PMC10648301 DOI: 10.3390/ijms242115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.B.); (K.M.); (F.A.); (M.L.); (G.M.); (R.L.); (A.G.)
| |
Collapse
|
15
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
16
|
Zhu Y, Thaploo D, Han P, Hummel T. Processing of Sweet, Astringent and Pungent Oral Stimuli in the Human Brain. Neuroscience 2023; 520:144-155. [PMID: 36966878 DOI: 10.1016/j.neuroscience.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Taste and oral somatosensation are intimately related to each other from peripheral receptors to the central nervous system. Oral astringent sensation is thought to contain both gustatory and somatosensory components. In the present study, we compared the cerebral response to an astringent stimulus (tannin), with the response to one typical taste stimulus (sweet - sucrose) and one typical somatosensory stimulus (pungent - capsaicin) using functional magnetic resonance imaging (fMRI) of 24 healthy subjects. Three distributed brain sub-regions responded significantly different to the three types of oral stimulations: lobule IX of the cerebellar hemisphere, right dorsolateral superior frontal gyrus, and left middle temporal gyrus. This suggests that these regions play a major role in the discrimination of astringency, taste, and pungency.
Collapse
Affiliation(s)
- Yunmeng Zhu
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Divesh Thaploo
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Birdal G, D'Gama PP, Jurisch-Yaksi N, Korsching SI. Expression of taste sentinels, T1R, T2R, and PLCβ2, on the passageway for olfactory signals in zebrafish. Chem Senses 2023; 48:bjad040. [PMID: 37843175 DOI: 10.1093/chemse/bjad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 10/17/2023] Open
Abstract
The senses of taste and smell detect overlapping sets of chemical compounds in fish, e.g. amino acids are detected by both senses. However, so far taste and smell organs appeared morphologically to be very distinct, with a specialized olfactory epithelium for detection of odors and taste buds located in the oral cavity and lip for detection of tastants. Here, we report dense clusters of cells expressing T1R and T2R receptors as well as their signal transduction molecule PLCβ2 in nostrils of zebrafish, i.e. on the entrance funnel through which odor molecules must pass to be detected by olfactory sensory neurons. Quantitative evaluation shows the density of these chemosensory cells in the nostrils to be as high or higher than that in the established taste organs oral cavity and lower lip. Hydrodynamic flow is maximal at the nostril rim enabling high throughput chemosensation in this organ. Taken together, our results suggest a sentinel function for these chemosensory cells in the nostril.
Collapse
Affiliation(s)
- Günes Birdal
- Institute for Genetics, Department of Biology, University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Sigrun I Korsching
- Institute for Genetics, Department of Biology, University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| |
Collapse
|