1
|
Ng IHW, Jans DA, Bogoyevitch MA. Hyperosmotic stress sustains cytokine-stimulated phosphorylation of STAT3, but slows its nuclear trafficking and impairs STAT3-dependent transcription. Cell Signal 2014; 26:815-24. [PMID: 24394455 DOI: 10.1016/j.cellsig.2013.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
Abstract
Persistent STAT3 phosphorylation and nuclear retention are hallmarks of a range of pathologies suggesting the importance of STAT3 transcriptional responses in disease progression. Since hyperosmotic stress (HOS) is a hallmark of diseases such as diabetes and asthma, we analysed the impact of HOS on cytokine-stimulated STAT3 signalling. In contrast to transient STAT3 Y705 and S727 phosphorylation in murine embryonic fibroblasts (MEFs) stimulated by the interleukin-6 family cytokine, leukemia inhibitory factor (LIF), under non-stress conditions, HOS induced by sorbitol treatment increased STAT3 S727 but not Y705 phosphorylation. Strikingly, combined LIF+HOS treatment stimulated persistent STAT3 Y705 and S727 phosphorylation and nuclear localisation, but STAT3 nuclear accumulation was slowed during HOS, likely reflecting the mislocalisation of Ran and importin-α3 during HOS that also reduced the nuclear localisation of classical importin-α/β-recognised nuclear import cargoes. Strikingly, combined LIF+HOS exposure, even though stimulating STAT3 phosphorylation and nuclear accumulation did not elicit a transcriptional output, as demonstrated by qPCR analyses of its target genes SOCS3 and c-Fos. Our analysis thus shows for the first time that HOS can disconnect nuclear, phosphorylated STAT3 from transcriptional outcomes, and emphasizes the importance of assessing STAT3 target gene changes in addition to STAT3 phosphorylation status and localisation.
Collapse
Affiliation(s)
- Ivan H W Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
2
|
Schröder E, Gebel L, Eremeev AA, Morgner J, Grum D, Knauer SK, Bayer P, Mueller JW. Human PAPS synthase isoforms are dynamically regulated enzymes with access to nucleus and cytoplasm. PLoS One 2012; 7:e29559. [PMID: 22242175 PMCID: PMC3252339 DOI: 10.1371/journal.pone.0029559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/30/2011] [Indexed: 11/19/2022] Open
Abstract
In higher eukaryotes, PAPS synthases are the only enzymes producing the essential sulphate-donor 3'-phospho-adenosine-5'-phosphosulphate (PAPS). Recently, PAPS synthases have been associated with several genetic diseases and retroviral infection. To improve our understanding of their pathobiological functions, we analysed the intracellular localisation of the two human PAPS synthases, PAPSS1 and PAPSS2. For both enzymes, we observed pronounced heterogeneity in their subcellular localisation. PAPSS1 was predominantly nuclear, whereas PAPSS2 localised mainly within the cytoplasm. Treatment with the nuclear export inhibitor leptomycin B had little effect on their localisation. However, a mutagenesis screen revealed an Arg-Arg motif at the kinase interface exhibiting export activity. Notably, both isoforms contain a conserved N-terminal basic Lys-Lys-Xaa-Lys motif indispensable for their nuclear localisation. This nuclear localisation signal was more efficient in PAPSS1 than in PAPSS2. The activities of the identified localisation signals were confirmed by microinjection studies. Collectively, we describe unusual localisation signals of both PAPS synthase isoforms, mobile enzymes capable of executing their function in the cytoplasm as well as in the nucleus.
Collapse
Affiliation(s)
- Elisabeth Schröder
- Department of Molecular Biology II, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lena Gebel
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrey A. Eremeev
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jessica Morgner
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grum
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jonathan W. Mueller
- Department of Structural and Medicinal Biochemistry, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Abstract
Trafficking of proteins between the cytoplasm and nucleus occurs exclusively across the nuclear pore complex of eucaryotic cells. Fundamental aspects of this process affect temporal and spatial parameters, the latter carried out by specific import [nuclear localization sequence (NLS)] and export [nuclear export sequence (NES)] sequences. In this study, we focused on the adaptation of a protein heterodimerization assay to kinetically measure Crm1-mediated nuclear export in living cells using the rapalog AP21967, a heterodimerizing agent and NLS- and NES-containing fusion proteins equipped with distinct AP21967-specific binding motifs. In HeLa cells, we observed rapid nuclear export of the NLS-containing fusion protein in the presence of AP21967, with the extent of this process being a function of the number of AP21967-binding motifs. AP21967-induced nuclear export was specifically inhibited by the Crm1-binding molecule leptomycin B. Half maximal export was achieved after approximately 10 min. We further applied protein heterodimerization in HeLa cells to study induced NLS-mediated nuclear import. Only in the presence of heterodimerizer AP21967 nuclear import of a cytoplasmically localizing fusion protein was observed. Induced protein heterodimerization is thus a valuable tool to quantitatively study nucleocytoplasmic protein trafficking in cultured cells, in a non-invasive, time-saving manner.
Collapse
Affiliation(s)
- Albert Busch
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | | | | |
Collapse
|
4
|
De Ganck A, Hubert T, Van Impe K, Geelen D, Vandekerckhove J, De Corte V, Gettemans J. A monopartite nuclear localization sequence regulates nuclear targeting of the actin binding protein myopodin. FEBS Lett 2005; 579:6673-80. [PMID: 16309678 DOI: 10.1016/j.febslet.2005.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Abstract
Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.
Collapse
Affiliation(s)
- Ariane De Ganck
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
5
|
Sunn K, Eisman J, Gardiner E, Jans D. FRAP analysis of nucleocytoplasmic dynamics of the vitamin D receptor splice variant VDRB1: preferential targeting to nuclear speckles. Biochem J 2005; 388:509-14. [PMID: 15689185 PMCID: PMC1138958 DOI: 10.1042/bj20042040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the key components of the cellular nuclear transport machinery have largely been characterized through extensive efforts in recent years, in vivo measurements of the kinetics of nuclear protein import/export are patently few. The present study applies the approach of FRAP (fluorescence recovery after photobleaching) to examine the nucleocytoplasmic flux of a novel human VDRB1 (vitamin D receptor B1) isoform in living cells. Through an N-terminal extension containing a consensus nuclear targeting sequence, VDRB1 is capable of localizing in nuclear speckles adjacent to SC-35 (35 kDa splicing component)-containing speckles as well as in the nucleoplasm, dependent on ligand. Investigation of VDRB1 nucleocytoplasmic transport using FRAP indicates for the first time that the VDRB1 has a serum-modulated, active nuclear import mechanism. There is no evidence of an efficient, active export mechanism for VDRB1, probably as a result of nuclear retention. VDRB1 nuclear import in the absence of serum occurred more rapidly and to a greater extent to nuclear speckles compared with import to other nuclear sites. This preferential transport from the cytoplasm to and accumulation within nuclear speckles is consistent with the idea that the latter represent dynamic centres of VDRB1 interaction with other nuclear proteins. The results are consistent with the existence of specialized pathways to target proteins to nuclear subdomains.
Collapse
Affiliation(s)
- Kathryn L. Sunn
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- †Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia
| | - John A. Eisman
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Edith M. Gardiner
- *Bone and Mineral Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David A. Jans
- †Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia
- ‡Department for Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
- To whom correspondence should be addressed, at Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Box 13D, Monash University, Clayton, VIC 3168, Australia (email )
| |
Collapse
|
6
|
Chen X, Dai JC, Orellana SA, Greenfield EM. Endogenous protein kinase inhibitor gamma terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 2004; 280:2700-7. [PMID: 15557275 DOI: 10.1074/jbc.m412558200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of many genes induced by cAMP-dependent protein kinase (PKA) signaling is rapidly terminated. Although many mechanisms contribute to regulation of PKA signaling, members of the endogenous protein kinase inhibitor (PKI) family may be particularly important for terminating nuclear PKA activity and gene expression. Here we used both siRNA and antisense knockdown strategies to examine PKA signaling activated by parathyroid hormone or the beta-adrenergic agonist, isoproterenol. We found that endogenous PKIgamma is required for efficient termination of nuclear PKA activity, transcription factor phosphorylation, and immediate-early genes. Moreover, PKIgamma is required for export of PKA catalytic subunits from the nucleus back to the cytoplasm following activation of PKA signaling because this is also inhibited by PKIgamma knockdown. Leptomycin B blocks PKA nuclear export but has little or no effect on nuclear PKA activity or immediate-early gene expression. Thus, inactivation of PKA activity in the nucleus is sufficient to terminate signaling, and nuclear export is not required. These results were the first in any cell type showing that endogenous levels of PKI regulate PKA signaling.
Collapse
Affiliation(s)
- Xin Chen
- Orthopaedics, Pediatrics, Physiology and Biophysics, and Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-5000, USA
| | | | | | | |
Collapse
|
7
|
Jans DA, Thomas RJ, Gillespie MT. Parathyroid hormone-related protein (PTHrP): a nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. VITAMINS AND HORMONES 2003; 66:345-84. [PMID: 12852260 DOI: 10.1016/s0083-6729(03)01010-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) was first discovered as a circulating factor secreted by certain cancers responsible for the syndrome of humoral hypercalcemia of malignancy. PTHrP possesses distinct paracrine and intracrine signaling roles. The similarity of its N-terminus to that of parathyroid hormone (PTH) enables it to share PTH's paracrine signaling properties, whereas the rest of the molecule possesses other functions, largely relating to an intracrine signaling role in the nucleus/nucleolus in regulating apoptosis and cell proliferation. Recent advances have shown that intracellularly expressed PTHrP is able to shuttle in cell-cycle- and signal-dependent fashion between nucleus and cytoplasm through the action of the distinct intracellular transport receptors importin beta 1 and exportin 1 (Crm1) mediating nuclear import and export of PTHrP, respectively. Together, the import and export pathways constitute an integrated system for PTHrP subcellular localization. Intriguingly, PTHrP nuclear/nucleolar import is dependent on microtubule integrity, transport to the nucleus appearing to occur in vectorial fashion along microtubules, mediated in part by the action of importin beta 1. PTHrP has recently been shown to be able to bind to RNA, meaning that PTHrP's nucleocytoplasmic shuttling ability may relate to a specific role within the nucleus/nucleolus to regulate RNA synthesis and/or transport.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash University 3800, Australia
| | | | | |
Collapse
|
8
|
Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 2001; 98:13710-5. [PMID: 11698644 PMCID: PMC61106 DOI: 10.1073/pnas.231370798] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently we purified and identified a previously uncharacterized transcription factor from rat liver binding to the carbohydrate responsive element of the L-type pyruvate kinase (L-PK) gene. This factor was named carbohydrate responsive element binding protein (ChREBP). ChREBP, essential for L-PK gene transcription, is activated by high glucose and inhibited by cAMP. Here, we demonstrated that (i) nuclear localization signal and basic helix-loop-helix/leucine-zipper domains of ChREBP were essential for the transcription, and (ii) these domains were the targets of regulation by cAMP and glucose. Among three cAMP-dependent protein kinase phosphorylation sites, Ser(196) and Thr(666) were the target sites. Phosphorylation of the former resulted in inactivation of nuclear import, and that of the latter resulted in loss of the DNA-binding activity and L-PK transcription. On the other hand, glucose activated the nuclear import by dephosphorylation of Ser(196) in the cytoplasm and also stimulated the DNA-binding activity by dephosphorylation of Thr(666) in the nucleus. These results thus reveal mechanisms for regulation of ChREBP and the L-PK transcription by excess carbohydrate and cAMP.
Collapse
Affiliation(s)
- T Kawaguchi
- Department of Biochemistry, Dallas Veterans Affairs Medical Center and University of Texas Southwestern Medical Center at Dallas, 4500 South Lancaster Road, Dallas, TX 75223, USA
| | | | | | | |
Collapse
|
9
|
Lam MH, Henderson B, Gillespie MT, Jans DA. Dynamics of leptomycin B-sensitive nucleocytoplasmic flux of parathyroid hormone-related protein. Traffic 2001; 2:812-9. [PMID: 11733048 DOI: 10.1034/j.1600-0854.2001.21110.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone-related protein is responsible for hypercalcemia induced by various tumors. The similarity of its N-terminus to that of parathyroid hormone enables parathyroid hormone-related protein to share parathyroid hormone's signaling properties, but the rest of the molecule possesses distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. We have previously shown that parathyroid hormone-related protein nuclear import is mediated by importin beta1. Here we use fluorescence recovery after photobleaching for the first time to show that, in living cells, parathyroid hormone-related protein is exported from the nucleus in a leptomycin B-sensitive manner, implicating CRM1 as the parathyroid hormone-related protein nuclear export receptor. Leptomycin B treatment significantly reduced the rate of nuclear export 4 -10-fold, thereby increasing parathyroid hormone-related protein concentration in the nucleus/nucleolus about 2-fold. Intriguingly, this also led to a 2-fold reduced nuclear import rate. Inhibiting the nuclear export of a protein able to shuttle between nucleus and cytoplasm through distinct receptors thus can also affect nuclear import, indicating that the subcellular localization of a protein containing distinct nuclear import and export signals is the product of an integrated system. Although there have been several recent studies examining the dynamics of intranuclear transport using fluorescence recovery after photobleaching, this represents, to our knowledge, the first use of the technique to examine the kinetics of nucleocytoplasmic flux in living cells.
Collapse
Affiliation(s)
- M H Lam
- Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia
| | | | | | | |
Collapse
|
10
|
Lixin R, Efthymiadis A, Henderson B, Jans DA. Novel properties of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 2001; 284:185-93. [PMID: 11374889 DOI: 10.1006/bbrc.2001.4953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polypeptide ligand angiogenin, a potent inducer of angiogenesis, localizes in the nucleus/nucleolus subsequent to endocytosis by relevant cell types. This study examines the kinetic properties of the nucleolar targeting signal (NTS) of angiogenin (IMRRRGL(35)) at the single cell level. We show that the NTS is sufficient to target green fluorescent protein (GFP), but not beta-galactosidase, to the nucleolus of rat hepatoma cells. Mutation of Arg(33) to Ala within the NTS abolishes targeting activity. Nuclear/nucleolar import conferred by the NTS of angiogenin is reduced by cytosolic factors as well as ATP and is independent of importins and Ran. The NTS also confers the ability to bind to nuclear/nucleolar components which is inhibited by ATP hydrolysis; nonhydrolysable GTP analogs prevent nuclear accumulation in the absence of an intact nuclear envelope through an apparent cytoplasmic retention mechanism. Since the lectin wheat germ agglutinin does not inhibit transport, we postulate a mechanism for angiogenin nuclear/nucleolar import involving passive diffusion of angiogenin through the nuclear pore and NTS-mediated nuclear/nucleolar retention, and with cytoplasmic retention modulating the process. This pathway is clearly distinct from that of conventional signal-mediated nuclear protein import.
Collapse
Affiliation(s)
- R Lixin
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | |
Collapse
|
11
|
Stevenson AS, Cartin L, Wellman TL, Dick MH, Nelson MT, Lounsbury KM. Membrane depolarization mediates phosphorylation and nuclear translocation of CREB in vascular smooth muscle cells. Exp Cell Res 2001; 263:118-30. [PMID: 11161711 DOI: 10.1006/excr.2000.5107] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diverse signals have the potential to modulate gene transcription through the Ca2+ and cAMP response element binding protein (CREB) in vascular smooth muscle cells (VSMCs). A key step in the transmission of these signals is import into the nucleus. Here, we provide evidence that the Ran GTPase, which regulates nuclear import, exerts different regulation over PDGF-BB, Ca2+, and cAMP signaling to CREB in VSMCs. PDGF-BB, membrane depolarization, and forskolin increased levels of activated CREB (P-CREB) and c-fos in VSMCs and intact aorta. The calcium channel antagonist nimodipine reduced the level of P-CREB stimulated by membrane depolarization, but not by PDGF-BB or forskolin. Block of Ran-mediated nuclear import, by wheat germ agglutinin or an inactivating Ran mutant (T24N Ran), significantly reduced nuclear P-CREB in response to PDGF-BB or membrane depolarization, but enhanced levels of P-CREB in response to forskolin. Contrary to expectation, block of nuclear import led to the appearance of P-CREB in the cytoplasm after depolarization. Furthermore, blocking nuclear export with leptomycin B reduced P-CREB stimulation by both depolarization and PDGF-BB. These results suggest that translocation of CREB between the nucleus and the cytoplasm provides an important role in CREB activating pathways in VSMCs.
Collapse
Affiliation(s)
- A S Stevenson
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chan CK, Jans DA. Enhancement of polylysine-mediated transferrinfection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum Gene Ther 1999; 10:1695-702. [PMID: 10428214 DOI: 10.1089/10430349950017699] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polylysine (pLy) has been used successfully as a DNA carrier in receptor-mediated gene transfer, enhancement of transfection having been proposed to be in part through efficient nuclear targeting stemming from the resemblance of pLy to the nuclear localization sequence (NLS) from simian virus SV40 large tumor antigen (T-ag). In this study we test whether pLy carrying covalently attached peptides comprising the T-ag NLS (the pLyP101 derivative) can enhance transferrin-pLy-mediated transfection ("transferrinfection"). Unlike pLy itself or a pLy derivative (pLyP101T) carrying cross-linked T-ag NLS mutant peptides, pLyP101 significantly enhanced transferrinfection of a beta-galactosidase-expressing reporter plasmid. The basis of this was shown to be the ability of the pLyP101-plasmid DNA complex to be recognized with high affinity by the NLS-binding importin subunits, in contrast to pLyP101T- and pLy-plasmid complexes. Confocal laser scanning microscopy was used to determine the nuclear import kinetics of fluorescently labeled pLyP101 and pLyP101T in the presence of complexed plasmid, indicating that pLyP101 and not pLyP101T complexes accumulated rapidly in the nucleus. We conclude that pLy itself does not function as an NLS and that the addition of exogenous NLSs conferring interaction with the cellular nuclear import machinery can increase transferrinfection by enhancing the nuclear targeting of pLy-DNA complexes.
Collapse
Affiliation(s)
- C K Chan
- Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, ACT, Australia
| | | |
Collapse
|
13
|
Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG. The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun 1999; 257:731-7. [PMID: 10208852 DOI: 10.1006/bbrc.1999.0370] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dengue virus NS5 RNA-dependent RNA polymerase has been detected in the nucleus of virus-infected mammalian cells. We demonstrate here for the first time using in vitro and in vivo assay systems that the 37-amino-acid linker interdomain of NS5 (residues 369 to 405) contains a nuclear localization sequence (NLS) which is capable of targeting b-galactosidase to the nucleus. Further, we show that the linker is recognized by subunits of the NLS-binding importin complex with an affinity similar to that of the bipartite NLS of the retinoblastoma protein and, in analogous fashion to proteins such as the SV40 large tumor antigen, contains a functional protein kinase CK2 phosphorylation site (threonine 395). Interestingly, this site appears to inhibit NS5 nuclear targeting, probably through a cytoplasmic retention mechanism. The linker may have an important role in targeting NS5 to the nucleus in a regulated manner during the dengue virus infectious cycle.
Collapse
Affiliation(s)
- J K Forwood
- Department of Biochemistry and Molecular Biology, James Cook University of North Queensland, Townsville, Australia
| | | | | | | | | | | |
Collapse
|