1
|
Narke D, Moorthy B. The Central Role of Cytochrome P450 Reductase (CPR) in Hyperoxic Lung Injury. Expert Opin Drug Metab Toxicol 2025; 21:589-598. [PMID: 39992710 DOI: 10.1080/17425255.2025.2470808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Hyperoxic lung injury results from excessive supplemental oxygen therapy in conditions such as bronchopulmonary dysplasia (BPD) in preterm infants and acute respiratory distress syndrome (ARDS) in adults. This review explores the role of cytochrome P450 reductase (CPR) in hyperoxic lung injury. AREAS COVERED Hyperoxia induces the production of reactive oxygen species in excessive amounts, overwhelming the body's antioxidant defenses and exacerbating lung injury in ARDS/BPD. This review examines the differential roles of CPR-dependent enzymes in the context of hyperoxic lung injury. Additionally, we highlight the potential of targeting CPR to study mechanisms of lung injury and leverage gene-editing technologies to deepen our understanding of CPR-mediated pathways. This review consolidates existing knowledge on CPR-dependent processes and their roles in hyperoxic lung injury, based on a literature search conducted in the PubMed database for studies published between 1988 and 2024. EXPERT OPINION This review emphasizes the need for a deeper understanding of disease mechanisms, particularly CPR-mediated pathways. As a regulatory hub for ROS modulation and enzyme activity, CPR represents a promising target, offering a unified strategy to mitigate hyperoxic lung injury and improve outcomes in BPD/ARDS.
Collapse
Affiliation(s)
- Deven Narke
- Department of Pediatrics-Newborn, Baylor College of Medicine, Houston, TX, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics-Newborn, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Mol Cell Neurosci 2015; 68:303-13. [PMID: 26320681 DOI: 10.1016/j.mcn.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/16/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.
Collapse
|
3
|
Kunne C, Acco A, Hohenester S, Duijst S, de Waart DR, Zamanbin A, Oude Elferink RPJ. Defective bile salt biosynthesis and hydroxylation in mice with reduced cytochrome P450 activity. Hepatology 2013. [PMID: 23184615 DOI: 10.1002/hep.26133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED The difference in bile salt (BS) composition between rodents and humans is mainly caused by formation of muricholate in rodents as well as by efficient rehydroxylation of deoxycholic acid. The aim of this study was to characterize bile formation in a mouse model (Hrn mice) with hepatic disruption of the cytochrome p450 (CYP) oxidoreductase gene, encoding the single electron donor for all CYPs. Bile formation was studied after acute BS infusion or after feeding a BS-supplemented diet for 3 weeks. Fecal BS excretion in Hrn mice was severely reduced to 7.6% ± 1.8% of wild-type (WT), confirming strong reduction of (CYP-mediated) BS synthesis. Hrn bile contained 48% ± 18% dihydroxy BS, whereas WT bile contained only 5% ± 1% dihydroxy BS. Upon tauroursodeoxycholate infusion, biliary BS output was equal in WT versus Hrn, indicating that canalicular secretion capacity was normal. In contrast, taurodeoxycholic acid (TDC) infusion led to markedly impaired bile flow and BS output, suggesting onset of cholestasis. Feeding a cholate-supplemented diet (0.1%) resulted in a completely restored bile salt pool in Hrn mice, with 50% ± 9% TDC and 42% ± 10% taurocholic acid in bile, as opposed to 2% ± 1% and 80% ± 3% in WT mice, respectively. Under these conditions, biliary cholesterol secretion was strongly increased in Hrn mice, whereas serum alanine aminotransferase levels were decreased. CONCLUSION Hrn mice have strongly impaired bile salt synthesis and (re)hydroxylation capacity and are more susceptible to acute TDC-induced cholestasis. In this mouse model, a more-human BS pool can be instilled by BS feeding, without hepatic damage, which makes Hrn mice an attractive model to study the effects of human BS.
Collapse
Affiliation(s)
- Cindy Kunne
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
4
|
Tee MK, Huang N, Damm I, Miller WL. Transcriptional regulation of the human P450 oxidoreductase gene: hormonal regulation and influence of promoter polymorphisms. Mol Endocrinol 2011; 25:715-31. [PMID: 21393444 DOI: 10.1210/me.2010-0236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at -325/-1 bp from the untranslated exon. Common human POR polymorphisms at -208 and -173 had little influence on transcription, but the polymorphism at -152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between -249 and -261 and binding of thyroid hormone receptor-β (TRβ) at -240/-245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between -374 and -149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T(3) exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T(3) also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at -152 may play a role in genetic variation in steroid biosynthesis and drug metabolism.
Collapse
Affiliation(s)
- Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143-0978, USA
| | | | | | | |
Collapse
|
5
|
Inaoka Y, Yazawa T, Mizutani T, Kokame K, Kangawa K, Uesaka M, Umezawa A, Miyamoto K. Regulation of P450 oxidoreductase by gonadotropins in rat ovary and its effect on estrogen production. Reprod Biol Endocrinol 2008; 6:62. [PMID: 19077323 PMCID: PMC2647926 DOI: 10.1186/1477-7827-6-62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND P450 oxidoreductase (POR) catalyzes electron transfer to microsomal P450 enzymes. Its deficiency causes Antley-Bixler syndrome (ABS), and about half the patients with ABS have ambiguous genitalia and/or impaired steroidogenesis. POR mRNA expression is up-regulated when mesenchymal stem cells (MSCs) differentiate into steroidogenic cells, suggesting that the regulation of POR gene expression is important for steroidogenesis. In this context we examined the regulation of POR expression in ovarian granulosa cells by gonadotropins, and its possible role in steroidogenesis. METHODS Changes in gene expression in MSCs during differentiation into steroidogenic cells were examined by DNA microarray analysis. Changes in mRNA and protein expression of POR in the rat ovary or in granulosa cells induced by gonadotropin treatment were examined by reverse transcription-polymerase chain reaction and western blotting. Effects of transient expression of wild-type or mutant (R457H or V492E) POR proteins on the production of estrone in COS-7 cells were examined in vitro. Effects of POR knockdown were also examined in estrogen producing cell-line, KGN cells. RESULTS POR mRNA was induced in MSCs following transduction with the SF-1 retrovirus, and was further increased by cAMP treatment. Expression of POR mRNA, as well as Cyp19 mRNA, in the rat ovary were induced by equine chorionic gonadotropin and human chorionic gonadotropin. POR mRNA and protein were also induced by follicle stimulating hormone in primary cultured rat granulosa cells, and the induction pattern was similar to that for aromatase. Transient expression of POR in COS-7 cells, which expressed a constant amount of aromatase protein, greatly increased the rate of conversion of androstenedione to estrone, in a dose-dependent manner. The expression of mutant POR proteins (R457H or V492E), such as those found in ABS patients, had much less effect on aromatase activity than expression of wild-type POR proteins. Knockdown of endogenous POR protein in KGN human granulosa cells led to reduced estrone production, indicating that endogenous POR affected aromatase activity. CONCLUSION We demonstrated that the expression of POR, together with that of aromatase, was regulated by gonadotropins, and that its induction could up-regulate aromatase activity in the ovary, resulting in a coordinated increase in estrogen production.
Collapse
Affiliation(s)
- Yoshihiko Inaoka
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Koichi Kokame
- National Cardiovascular Research Center, Osaka 565-8565, Japan
| | - Kenji Kangawa
- National Cardiovascular Research Center, Osaka 565-8565, Japan
| | - Miki Uesaka
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Akihiro Umezawa
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
6
|
Gonzalez-Kristeller DC, Farage L, Fiorini LC, Loomis WF, da Silva AM. The P450 oxidoreductase, RedA, controls development beyond the mound stage in Dictyostelium discoideum. BMC DEVELOPMENTAL BIOLOGY 2008; 8:8. [PMID: 18218133 PMCID: PMC2257935 DOI: 10.1186/1471-213x-8-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/24/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND NADPH-cytochrome-P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect. RESULTS Annotation of the sequenced genome of D. discoideum revealed the presence of three genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein family. redA transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. redB transcripts are present in the same levels during growth and development while redC expression was detected only in vegetative growing cells. We isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling. CONCLUSION The developmental arrest due to disruption of redA implicates CPR in the metabolism of compounds that control cell differentiation.
Collapse
Affiliation(s)
- Daniela C Gonzalez-Kristeller
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av, Prof, Lineu Prestes 748, 05508-000, São Paulo, Brasil.
| | | | | | | | | |
Collapse
|
7
|
Weng Y, Fang C, Turesky RJ, Behr M, Kaminsky LS, Ding X. Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res 2007; 67:7825-32. [PMID: 17699788 DOI: 10.1158/0008-5472.can-07-1006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Critical to mechanisms of chemical carcinogenesis and the design of chemopreventive strategies is whether procarcinogen bioactivation in an extrahepatic target tissue (e.g., the lung) is essential for tumor formation. This study aims to develop a mouse model capable of revealing the role of pulmonary microsomal cytochrome P450 (P450)-mediated metabolic activation in xenobiotic-induced lung cancer. A novel triple transgenic mouse model, with the NADPH-P450 reductase (Cpr) gene deleted in a lung-specific and doxycycline-inducible fashion (lung-Cpr-null), was generated. CPR, the obligate electron donor for microsomal P450 enzymes, is essential for the bioactivation of many procarcinogens. The lung-Cpr-null mouse was studied to resolve whether pulmonary P450 plays a major role in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung cancer by producing carcinogenic metabolites in the target tissue. A liver-Cpr-null mouse was also studied to test whether hepatic P450 contributes predominantly to systemic clearance of NNK, thereby decreasing NNK-induced lung cancer. The numbers of NNK-induced lung tumors were reduced in the lung-Cpr-null mice but were increased in the liver-Cpr-null mice, relative to wild-type control mice. Decreased lung tumor multiplicity in the lung-Cpr-null mice correlated with reduced lung O6-methylguanine adduct levels, without decreases in NNK bioavailability, consistent with decreased NNK bioactivation in the lung. Moreover, lung tumors in lung-Cpr-null mice were positive for CPR expression, indicating that the tumors did not originate from Cpr-null cells. Thus, we have confirmed the essential role of pulmonary P450-mediated metabolic activation in NNK-induced lung cancer, and our mouse models should be applicable to studies on other procarcinogens that require P450-mediated metabolic activation.
Collapse
Affiliation(s)
- Yan Weng
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
8
|
Scott RR, Gomes LG, Huang N, Van Vliet G, Miller WL. Apparent manifesting heterozygosity in P450 oxidoreductase deficiency and its effect on coexisting 21-hydroxylase deficiency. J Clin Endocrinol Metab 2007; 92:2318-22. [PMID: 17389698 DOI: 10.1210/jc.2006-2345] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT P450 oxidoreductase (POR) deficiency is a disorder of steroidogenesis affecting the microsomal P450 enzymes that use POR as an electron donor. The clinical presentation is variable; patients can be asymptomatic or can present with genital anomalies and the Antley-Bixler syndrome, characterized by craniosynostosis and other bony anomalies. Obligately heterozygous parents are normal. Combined POR and 21-hydroxylase deficiencies have not been reported. OBJECTIVE The aim was to explore the manifestations of combined deficiencies of 21-hydroxylase and POR and to search for lesions in apparent manifesting POR heterozygotes. PATIENTS AND METHODS A newborn female had craniosynostosis, severe salt wasting, minimal virilization, grossly elevated 17OH-progesterone, and minimally elevated androgens. DNA encoding 21-hydroxylase, POR, and fibroblast growth factor receptor 2 was sequenced. For POR, the first untranslated exon (exon 1U), 5' flanking DNA, and most introns were sequenced in five apparent manifesting POR heterozygotes. RESULTS CYP21B mutations were found on both alleles, proving classical 21-hydroxylase deficiency. Fibroblast growth factor receptor 2 exons 8 and 10 were normal. A POR mutation, A287P, was found only on the maternal allele. Five previously reported patients had POR mutations found on only one allele, but their clinical characteristics were indistinguishable from patients with mutations on both alleles. Sequencing of exon 1U, 274 bp of POR 5' flanking DNA, and 12 of the 15 POR introns did not identify additional mutations affecting gene expression or splicing. CONCLUSION Manifesting heterozygosity is a possible feature of POR deficiency and may ameliorate the findings in coexisting 21-hydroxylase deficiency.
Collapse
Affiliation(s)
- Rachel R Scott
- Pediatric Endocrinology, 672-S, University of California San Francisco, San Francisco, CA 94143-0434, USA
| | | | | | | | | |
Collapse
|
9
|
Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, Volsky DJ, Fisher PB. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 2007; 114:155-70. [PMID: 17397930 PMCID: PMC2039930 DOI: 10.1016/j.pharmthera.2007.01.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Tumor progression and metastasis are complex processes involving intricate interplay among multiple gene products. Astrocyte elevated gene (AEG)-1 was cloned as an human immunodeficiency virus (HIV)-1-inducible and tumor necrosis factor-alpha (TNF-alpha)-inducible transcript in primary human fetal astrocytes (PHFA) by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2; thus, it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells, and AEG-1 cooperates with Ha-ras to augment the transformed phenotype of normal immortal cells. Moreover, AEG-1 is overexpressed in >95% of human malignant glioma samples when compared with normal human brain. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells, respectively. AEG-1 contains a lung-homing domain facilitating breast tumor metastasis to lungs. These findings indicate that AEG-1 might play a pivotal role in the pathogenesis, progression and metastasis of diverse cancers. Our recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-kappaB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These provocative findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration. In this review, we discuss the cloning, structure and function(s) of AEG-1 and provide recent insights into the diverse actions and intriguing properties of this molecule.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Devanand Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Zao-Zhong Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Seok-Geun Lee
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Dong-chul Kang
- Ilsong Institute of Life Science, Hallym University, Republic of Korea
| | - Jeffrey N. Bruce
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - David J. Volsky
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- St. Luke's Roosevelt Medical Center, New York, NY
| | - Paul B. Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
10
|
Lee SG, Su ZZ, Emdad L, Sarkar D, Fisher PB. Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc. Proc Natl Acad Sci U S A 2006; 103:17390-5. [PMID: 17088530 PMCID: PMC1859939 DOI: 10.1073/pnas.0608386103] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well established that Ha-ras and c-myc genes collaborate in promoting transformation, tumor progression, and metastasis. However, the precise mechanism underlying this cooperation remains unclear. In the present study, we document that astrocyte elevated gene-1 (AEG-1) is a downstream target molecule of Ha-ras and c-myc, mediating their tumor-promoting effects. AEG-1 expression is elevated in diverse neoplastic states, it cooperates with Ha-ras to promote transformation, and its overexpression augments invasion of transformed cells, demonstrating its functional involvement in Ha-ras-mediated tumorigenesis. We now document that AEG-1 expression is markedly induced by oncogenic Ha-ras, activating the phosphatidylinositol 3-kinase signaling pathway that augments binding of c-Myc to key E-box elements in the AEG-1 promoter, thereby regulating AEG-1 transcription. In addition, Ha-ras-mediated colony formation is inhibited by AEG-1 siRNA. This is a demonstration that Ha-ras activation of a tumor-promoting gene is regulated directly by c-Myc DNA binding via phosphatidylinositol 3-kinase signaling, thus revealing a previously uncharacterized mechanism of Ha-ras-mediated oncogenesis through AEG-1.
Collapse
Affiliation(s)
| | | | | | | | - Paul B. Fisher
- Departments of *Urology
- Pathology, and
- Neurosurgery
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Goerttler PS, Kreutz C, Donauer J, Faller D, Maiwald T, März E, Rumberger B, Sparna T, Schmitt-Gräff A, Wilpert J, Timmer J, Walz G, Pahl HL. Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 2005; 129:138-50. [PMID: 15801966 DOI: 10.1111/j.1365-2141.2005.05416.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Summary The molecular aetiology of polycythaemia vera (PV) remains unknown and the differential diagnosis between PV and secondary erythrocytosis (SE) can be challenging. Gene expression profiling can identify candidates involved in the pathophysiology of PV and generate a molecular signature to aid in diagnosis. We thus performed cDNA microarray analysis on 40 PV and 12 SE patients. Two independent data sets were obtained: using a two-step training/validation design, a set of 64 genes (class predictors) was determined, which correctly discriminated PV from SE patients. Separately 253 genes were identified to be upregulated and 391 downregulated more than 1.5-fold in PV compared with healthy controls (P < 0.01). Of the genes overexpressed in PV, 27 contained Sp1 sites: we therefore propose that altered activity of Sp1-like transcription factors may contribute to the molecular aetiology of PV. One Sp1 target, the transcription factor NF-E2 [nuclear factor (erythroid-derived 2)], is overexpressed 2- to 40-fold in PV patients. In PV bone marrow, NF-E2 is overexpressed in megakaryocytes, erythroid and granulocytic precursors. It has been shown that overexpression of NF-E2 leads to the development of erythropoietin-independent erythroid colonies and that ectopic NF-E2 expression can reprogram monocytic cells towards erythroid and megakaryocytic differentiation. Transcription factor concentration may thus control lineage commitment. We therefore propose that elevated concentrations of NF-E2 in PV patients lead to an overproduction of erythroid and, in some patients, megakaryocytic cells/platelets. In this model, the level of NF-E2 overexpression determines both the severity of erythrocytosis and the concurrent presence or absence of thrombocytosis.
Collapse
Affiliation(s)
- Philipp S Goerttler
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, Okuyama T, Nakai H, Soneda S, Tachibana K, Matsuo N, Sato S, Homma K, Nishimura G, Hasegawa T, Ogata T. Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 2005; 90:414-26. [PMID: 15483095 DOI: 10.1210/jc.2004-0810] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report on molecular and clinical findings in 10 Japanese patients (four males and six females) from eight families (two pairs of siblings and six isolated cases) with Antley-Bixler syndrome accompanied by abnormal genitalia and/or impaired steroidogenesis. Direct sequencing was performed for all the 15 exons of cytochrome P450 oxidoreductase gene (POR), showing two missense mutations (R457H and Y578C), a 24-bp deletion mutation resulting in loss of nine amino acids and creation of one amino acid (L612_W620delinsR), a single bp insertion mutation leading to frameshift (I444fsX449), and a silent mutation (G5G). R457H has previously been shown to be a pathologic mutation, and computerized modeling analyses indicated that the 15A>G for G5G could disturb an exonic splicing enhancer motif, and the remaining three mutations should affect protein conformations. Six patients were compound heterozygotes, and three patients were R457H homozygotes; no mutation was identified on one allele of the remaining one patient. Clinical findings included various degrees of skeletal features, such as brachycephaly, radiohumeral synostosis, and digital joint contractures in patients of both sexes, normal-to-poor masculinization during fetal and pubertal periods in male patients, virilization during fetal life and poor pubertal development without worsening of virilization in female patients, and relatively large height gain and delayed bone age from the pubertal period in patients of both sexes, together with maternal virilization during pregnancy. Blood cholesterol was grossly normal, and endocrine studies revealed defective CYP17A1 and CYP21A2 activities. The results suggest that Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis is caused by POR mutations, and that clinical features are variable and primarily explained by impaired activities of POR-dependent CYP51A1, CYP17A1, CYP21A2, and CYP19A1.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, 3-35-31 Taishido, Setagaya, Tokyo 154-8567, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maclean KN, Kraus E, Kraus JP. The dominant role of Sp1 in regulating the cystathionine beta-synthase -1a and -1b promoters facilitates potential tissue-specific regulation by Kruppel-like factors. J Biol Chem 2003; 279:8558-66. [PMID: 14670973 DOI: 10.1074/jbc.m310211200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS) catalyzes the condensation of serine with homocysteine to form cystathionine and occupies a crucial regulatory position between the methionine cycle and transsulfuration. The human cystathionine beta-synthase gene promoters -1a and -1b are expressed in a limited number of tissues and are coordinately regulated with proliferation through a redox-sensitive mechanism. Site-directed mutagenesis, DNase I footprinting and deletion analysis of 5276 bp of 5' proximal -1b flanking sequence revealed that this region does not confer tissue-specific expression and that 210 bp of proximal sequence is sufficient for maximal promoter activity. As little as 32 bp of the -1b proximal promoter region is capable of driving transcription in HepG2 cells, and this activity is entirely dependent upon the presence of a single overlapping Sp1/Egr1 binding site. Co-transfection studies in Drosophila SL2 cells indicated that both promoters are transactivated by Sp1 and Sp3 but only the -1b promoter is subject to a site-specific synergistic regulatory interaction between Sp1 and Sp3. Sp1-deficient fibroblasts expressing both Sp3 and NF-Y were negative for CBS activity. Transfection of these cells with a mammalian Sp1 expression construct induced high levels of CBS activity indicating that Sp1 has a critical and indispensable role in the regulation of cystathionine beta-synthase. Sp1 binding to both CBS promoters is sensitive to proliferation status and is negatively regulated by Kruppel-like factors in co-transfection experiments suggesting a possible mechanism for the tissue specific regulation of cystathionine beta-synthase.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
14
|
Wu L, Gu J, Weng Y, Kluetzman K, Swiatek P, Behr M, Zhang QY, Zhuo X, Xie Q, Ding X. Conditional knockout of the mouse NADPH-cytochrome p450 reductase gene. Genesis 2003; 36:177-81. [PMID: 12929087 DOI: 10.1002/gene.10214] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
NADPH-cytochrome P450 reductase (CPR or POR) is the obligatory electron donor for all microsomal cytochrome P450 (CYP or P450)-catalyzed monooxygenase reactions. Disruption of the mouse Cpr gene has been reported to cause prenatal developmental defects and embryonic lethality. In this study, we generated a mouse model with a floxed Cpr allele (termed Cpr(lox)). Homozygous Cpr(lox) mice are fertile and without any histological abnormality or any change in CPR expression. The floxed Cpr allele was subsequently deleted efficiently by crossing Cpr(lox) mice with transgenic mice having liver-specific Cre expression (Alb-Cre); the result was a decrease in the level of CPR protein in liver microsomes. The Cpr(lox) strain will be valuable for conditional Cpr gene deletion and subsequent determination of the impact of CPR loss on the metabolism of endogenous and xenobiotic compounds, as well as on postnatal development and other biological functions.
Collapse
Affiliation(s)
- Lin Wu
- Wadsworth Center, New York State Department of Health; and School of Public Health, State University of New York at Albany, Albany, New York 12001, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gu J, Weng Y, Zhang QY, Cui H, Behr M, Wu L, Yang W, Zhang L, Ding X. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J Biol Chem 2003; 278:25895-901. [PMID: 12697746 DOI: 10.1074/jbc.m303125200] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mouse model with liver-specific deletion of the NADPH-cytochrome P450 reductase (Cpr) gene (designated Alb-Cre/Cprlox mice) was generated and characterized in this study. Hepatic microsomal CPR expression was significantly reduced at 3 weeks and was barely detectable at 2 months of age in the Alb-Cre+/-/Cprlox+/+ (homozygous) mice, with corresponding decreases in liver microsomal cytochrome P450 (CYP) and heme oxygenase (HO) activities, in pentobarbital clearance, and in total plasma cholesterol level. Nevertheless, the homozygous mice are fertile and are normal in gross appearance and growth rate. However, at 2 months, although not at 3 weeks, the homozygotes had significant increases in liver weight, accompanied by hepatic lipidosis and other pathologic changes. Intriguingly, total microsomal CYP content was increased in the homozygotes about 2-fold at 3 weeks and about 3-fold at 2 months of age; at 2 months, there were varying degrees of induction in protein (1-5-fold) and mRNA expression (0-67-fold) for all CYPs examined. There was also an induction of HO-1 protein (nearly 9-fold) but no induction of HO-2. These data indicate the absence of significant alternative redox partners for liver microsomal CYP and HO, provide in vivo evidence for the significance of hepatic CPR-dependent enzymes in cholesterol homeostasis and systemic drug clearance, and reveal novel regulatory pathways of CYP expression associated with altered cellular homeostasis. The Alb-Cre/Cprlox mouse represents a unique model for studying the in vivo function of hepatic HO and microsomal CYP-dependent pathways in the biotransformation of endogenous and xenobiotic compounds.
Collapse
Affiliation(s)
- Jun Gu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moran FM, Ford JJ, Corbin CJ, Mapes SM, Njar VC, Brodie AM, Conley AJ. Regulation of microsomal P450, redox partner proteins, and steroidogenesis in the developing testes of the neonatal pig. Endocrinology 2002; 143:3361-9. [PMID: 12193548 DOI: 10.1210/en.2002-220329] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testicular growth and plasma androgen concentrations increase markedly in the first weeks of neonatal life of pigs. The regulation of steroidogenesis through this period was examined by measuring total microsomal cytochromes P450 (P450), 17alpha-hydroxylase/17,20-lyase P450 (P450c17) and aromatase P450 (P450arom) enzyme activities, and the redox partner proteins nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-cytochrome P450 reductase (reductase) and cytochrome b(5) in testicular microsomes. Testes were collected from 1-24 d of age, and testicular development was suppressed by a GnRH antagonist in some animals from d 1-14. Both 17/20-lyase and aromatase activities increased from d 1-7 but not thereafter, and 17-20-lyase activity was always at least 200-fold higher than aromatase activity. Reductase decreased in wk 1, then increased to d 24. No changes were seen in cytochrome b(5) expression. GnRH antagonist treatment suppressed plasma LH, testosterone and testes growth to d 14. 17,20-Lyase and aromatase activities in testicular microsomes were reduced by 20% and 50%, respectively. Total microsomal P450 concentration was reduced by 50% on d 7, but there was no effect of treatment on reductase or cytochrome b(5) expression. These data support the hypothesis that the rise in neonatal testicular androgen secretion is more likely due to gonadotropin-stimulated gonadal growth, rather than specific P450c17 expression. Neither P450c17 nor P450arom can account for the decline in total microsomal P450. Reductase and cytochrome b(5) expression appears to be constitutive, but reductase levels saturate both P450c17 and P450arom.
Collapse
Affiliation(s)
- F M Moran
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616-8743, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ogura K, Choudhuri S, Klaassen CD. Genomic organization and tissue-specific expression of splice variants of mouse organic anion transporting polypeptide 2. Biochem Biophys Res Commun 2001; 281:431-9. [PMID: 11181066 DOI: 10.1006/bbrc.2001.4387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cDNAs that code for mouse organic anion transporting polypeptide 2 (oatp2) have been cloned. At least three forms of mouse oatp2 cDNAs containing the same coding sequence were isolated. The common coding sequence is for a protein of 670 amino acids with 12 putative transmembrane domains. The deduced amino acid sequence of the mouse oatp2 shares 89% identity with the reported rat oatp2. Cloning and analysis of mouse oatp2 gene indicates that these isoforms are alternatively spliced products from the same gene. Heterogeneity was observed in the 5'-untranslated region of the cDNAs. Two of the three isoforms lacked the noncoding exon 3 sequence. Northern-blot hybridization analysis using the exon 3-specific probes demonstrated that mouse oatp2 mRNA containing exon 3 sequence is expressed in heart and lung, whereas exon 1-, 2-, and 17-specific probes detected mRNA only in brain and liver. The mouse oatp2 gene consists of 17 exons, including three noncoding exons, and 16 introns. All of the introns are flanked by GT-AG splice sequences except for intron 10 that is flanked by GC-AG splice sequence.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Anion Transport Proteins
- Base Sequence
- Blotting, Northern
- Carrier Proteins/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression Regulation
- Genes/genetics
- Introns
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- K Ogura
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | |
Collapse
|