1
|
Vandooren J, Itoh Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Front Immunol 2022; 12:803244. [PMID: 34970276 PMCID: PMC8712716 DOI: 10.3389/fimmu.2021.803244] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Alpha-2-macroglobulin is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor. By presenting itself as an optimal substrate for endopeptidases of all catalytic types, alpha-2-macroglobulin lures active proteases into its molecular cage and subsequently ‘flags’ their complex for elimination. In addition to its role as a regulator of extracellular proteolysis, alpha-2-macroglobulin also has other functions such as switching proteolysis towards small substrates, facilitating cell migration and the binding of cytokines, growth factors and damaged extracellular proteins. These functions appear particularly important in the context of immune-cell function. In this review manuscript, we provide an overview of all functions of alpha-2-macroglobulin and place these in the context of inflammation, immunity and infections.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ. beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 2009; 119:1312-21. [PMID: 19349687 DOI: 10.1172/jci36806] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/18/2009] [Indexed: 12/21/2022] Open
Abstract
Nicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Misra UK, Kaczowka S, Pizzo SV. The cAMP-activated GTP exchange factor, Epac1 upregulates plasma membrane and nuclear Akt kinase activities in 8-CPT-2-O-Me-cAMP-stimulated macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages. Cell Signal 2008; 20:1459-70. [PMID: 18495429 PMCID: PMC2519236 DOI: 10.1016/j.cellsig.2008.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 03/11/2008] [Accepted: 04/01/2008] [Indexed: 11/16/2022]
Abstract
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.
Collapse
Affiliation(s)
- Uma K. Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Steven Kaczowka
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
4
|
Weinstein JR, Swarts S, Bishop C, Hanisch UK, Möller T. Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. Glia 2008; 56:16-26. [PMID: 17910052 PMCID: PMC2926344 DOI: 10.1002/glia.20585] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipopolysaccharide (LPS/endotoxin) is a potent immunologic stimulant. Many commercial-grade reagents used in research are not screened for LPS contamination. LPS induces a wide spectrum of proinflammatory responses in microglia, the immune cells of the brain. Recent studies have demonstrated that a broad range of endogenous factors including plasma-derived proteins and bioactive phospholipids can also activate microglia. However, few of these studies have reported either the LPS levels found in the preparations used or the effect of LPS inhibitors such as polymyxin B (PMX) on factor-induced responses. Here, we used the Limulus amoebocyte lysate assay to screen a broad range of commercial- and pharmaceutical-grade proteins, peptides, lipids, and inhibitors commonly used in microglia research for contamination with LPS. We then characterized the ability of PMX to alter a representative set of factor-induced microglial activation parameters including surface antigen expression, metabolic activity/proliferation, and NO/cytokine/chemokine release in both the N9 microglial cell line and primary microglia. Significant levels of LPS contamination were detected in a number of commercial-grade plasma/serum- and nonplasma/serum-derived proteins, phospholipids, and synthetic peptide preparations, but not in pharmaceutical-grade recombinant proteins or pharmacological inhibitors. PMX had a significant inhibitory effect on the microglia-activating potential of a number of commercial-, but not pharmaceutical-grade, protein preparations. Novel PMX-resistant responses to alpha(2)-macroglobulin and albumin were incidentally observed. Our results indicate that LPS is a frequent and significant contaminant in commercial-grade preparations of previously reported microglia-activating factors. Careful attention to LPS levels and appropriate controls are necessary for future studies in the neuroinflammation field.
Collapse
Affiliation(s)
- Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
5
|
Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. ACTA ACUST UNITED AC 2004; 45:179-95. [PMID: 15210303 DOI: 10.1016/j.brainresrev.2004.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid modulates a wide variety of biological processes including proliferation, differentiation, and apoptosis. It interacts with specific receptors in the nucleus, the retinoic acid receptors (RARs). The molecular mechanism by which retinoic acid mediates cellular differentiation and growth suppression in neural cells remains unknown. However, retinoic acid-induced release of arachidonic acid and its metabolites may play an important role in cell proliferation, differentiation, and apoptosis. In brain tissue, arachidonic acid is mainly released by the action of phospholipase A2 (PLA2) and phospholipase C (PLC)/diacylglycerol lipase pathways. We have used the model of differentiation in LA-N-1 cells induced by retinoic acid. The treatment of LA-N-1 cells with retinoic acid produces an increase in phospholipase A2 activity in the nuclear fraction. The pan retinoic acid receptor antagonist, BMS493, can prevent this increase in phospholipase A2 activity. This suggests that retinoic acid-induced stimulation of phospholipase A2 activity is a retinoic acid receptor-mediated process. LA-N-1 cell nuclei also have phospholipase C and phospholipase D (PLD) activities that are stimulated by retinoic acid. Selective phospholipase C and phospholipase D inhibitors block the stimulation of phospholipase C and phospholipase D activities. Thus, both direct and indirect mechanisms of arachidonic acid release exist in LA-N-1 cell nuclei. Arachidonic acid and its metabolites markedly affect the neurite outgrowth and neurotransmitter release in cells of neuronal and glial origin. We propose that retinoic acid receptors coupled with phospholipases A2, C and D in the nuclear membrane play an important role in the redistribution of arachidonic acid in neuronal and non-nuclear neuronal membranes during differentiation and growth suppression. Abnormal retinoid metabolism may be involved in the downstream transcriptional regulation of phospholipase A2-mediated signal transduction in schizophrenia and Alzheimer disease (AD). The development of new retinoid analogs with diminished toxicity that can cross the blood-brain barrier without harm and can normalize phospholipase A2-mediated signaling will be important in developing pharmacological interventions for these neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
6
|
Antony P, Freysz L, Horrocks LA, Farooqui AA. Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a specific receptor activation mediated with retinoic acid. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:187-95. [PMID: 12877989 DOI: 10.1016/s0169-328x(03)00207-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The LA-N-1 cell nucleus contains Ca2+-independent phospholipase A2 (PLA2) activity hydrolyzing plasmenylethanolamine (PlsEtn) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (PtdEtn). These enzymes hydrolyze glycerophospholipids to produce arachidonic acid and lysoglycerophospholipids. The treatment of LA-N-1 cell cultures with all-trans retinoic acid (atRA) results in time- and dose-dependent stimulation of PlsEtn-PLA2 and PtdEtn-PLA2 activities in the nuclear fraction. PLA2 activities in the non-nuclear fraction (microsomes) are not affected by atRA, whilst the pan retinoic acid receptor (RAR) antagonist, BMS493, blocks the PLA2 activities in the nuclear fraction. This indicates that the stimulation of PLA2 activities is a receptor-mediated process. Treatment of LA-N-1 cell cultures with cycloheximide has no effect on basal PLA2 activities. However, atRA-mediated stimulation of PLA2 activities in LA-N-1 cell nuclei is partially inhibited by cycloheximide indicating that this decrease in PLA2 activity is due to a general decreased protein synthesis. Our results also support earlier studies in which atRA induces morphologic differentiation through the stimulation of PLA2-generated second messengers such as arachidonic acid and eicosanoids.
Collapse
Affiliation(s)
- Pierre Antony
- Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, Institut de Chimie Biologique, Faculté de Médecine, 11 rue Humann, Strasbourg, France
| | | | | | | |
Collapse
|
7
|
Misra UK, Pizzo SV. Regulation of cytosolic phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of alpha 2-macroglobulin: role in mitogenesis and cell proliferation. J Biol Chem 2002; 277:4069-78. [PMID: 11733496 DOI: 10.1074/jbc.m109764200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages exposed to receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) demonstrate increased DNA synthesis and cell division. In the current study, we have probed the role of cytosolic phospholipase A(2) (cPLA(2)) activity in the cellular response to alpha(2)M*. Ligation of the alpha(2)M* signaling receptor by alpha(2)M*, or its receptor binding fragment, increased cPLA(2) activity 2-3-fold in a concentration and time-dependent manner. This activation required a pertussis toxin-insensitive G protein. Cellular binding of alpha(2)M* also induced transient translocation of cPLA(2) activity to nuclei and membrane fractions. Inhibition of protein kinase C activity or chelation of Ca(2+) inhibited alpha(2)M*-induced increased cPLA(2) activity. Binding of alpha(2)M* to macrophages, moreover, increased phosphorylation of MEK 1/2, ERK 1/2, p38 MAPK, and JNK. Incubation of macrophages with inhibitors of MEK 1/2 or p38 MAPK before stimulation with alpha(2)M* profoundly decreased phosphorylation of MAPKs, blocking cPLA(2) activation. alpha(2)M*-induced increase in [(3)H]thymidine uptake and cell proliferation was completely abolished if activation of cPLA(2) was prevented. The response of macrophages to alpha(2)M* requires transcription factors nuclear factor kappaB, and cAMP-responsive element-binding protein as well as expression of the proto-oncogenes c-fos and c-myc. These studies indicate that the activation of cPLA(2) plays a crucial role in alpha(2)M*-induced mitogenesis and cell proliferation.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 2771, USA
| | | |
Collapse
|
8
|
Antony P, Freysz L, Horrocks LA, Farooqui AA. Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem Res 2001; 26:83-8. [PMID: 11358286 DOI: 10.1023/a:1007636801035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
LA-N-1 neuroblastoma cell cultures contain Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and ethanolamine plasmalogens. These enzymes differ from each other in their molecular mass, substrate specificity, and kinetic properties. Subcellular distribution studies have indicated that the activity of these phospholipases is not only localized in the cytosol but also in non-nuclear membranes and in nuclei. The treatment of LA-N-1 neuroblastoma cell cultures with retinoic acid results in a marked stimulation of Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and plasmenylethanolamine. The increase of the activities of both enzymes was first observed in nuclei followed by those present in the cytosol. No effect of retinoic acid on either phospholipase activity could be observed in non-nuclear membranes. The stimulation of these enzymes may be involved in the generation and regulation of arachidonic acid and its metabolites during differentiation.
Collapse
Affiliation(s)
- P Antony
- Laboratoire de Neurobiologie Moléculaire des Interactions Cellulaires, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | |
Collapse
|
9
|
Misra UK, Pizzo SV. Ligation of the α2M* Signaling Receptor Regulates Synthesis of Cytosolic Phospholipase A2. Arch Biochem Biophys 2001; 386:227-32. [PMID: 11368346 DOI: 10.1006/abbi.2000.2199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the regulation of cytosolic phospholipase A2 (cPLA2) synthesis in macrophages stimulated with receptor-recognized forms of alpha2-macroglobulin (alpha2M*). [35S]methionine-labeled cells were stimulated with alpha2M* and [35S]cPLA2 was immunoprecipitated with a monoclonal antibody directed against cPLA2. The precipitates were electrophoresed, immunoblotted, cPLA2 detected by Enhanced Chemifluorescence, and its radioactivity determined. Stimulation of cells with alpha2M* caused a two- to threefold increase in cPLA2 synthesis compared to buffer-treated cells which was consistently maximal at 200 pM of alpha2M*. Actinomycin D or cycloheximide treatment of cells drastically reduced alpha2M*-induced cPLA2 synthesis. Likewise, inhibition of protein kinase C with chelerythrin, farnesyl transferase with manumycin A, MEK kinase with U0126, Erk1/2 kinases with PD98059, p38MAPK with SB203580, PI 3-kinase with wortmannin or LY294002, p70s6k with rapamycin, or depletion of [Ca2+]i with either BAPTA/AM or EGTA drastically reduced alpha2M* induction of cPLA2. Inhibition of NFKB activation with BAY11-7182 or PGA1 also abolished alpha2M* induction of cPLA2. We conclude that alpha2M*-induced cPLA2 synthesis is controlled by [Ca2+]i levels, tyrosine kinase activity, the p21ras-dependent MAPK and PI 3-kinase downstream signaling pathways, and regulation of NFkappaB.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|