1
|
Pengfei S, Yifan Y, Linhui L, Yimin L, Dan X, Shaowei G, Guanqing H, Yong W. Novel antibiotics against Staphylococcus aureus without detectable resistance by targeting proton motive force and FtsH. MedComm (Beijing) 2025; 6:e70046. [PMID: 39781293 PMCID: PMC11707430 DOI: 10.1002/mco2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
The increased prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and its biofilms poses a great threat to human health. Especially, S. aureus-related osteomyelitis was hardly cured even by conventional antibiotics combined with surgical treatment. The development of novel structural antibiotics is urgently needed. By high-throughput screening and rational design, we identified a small molecule C218-0546 and its optimized analog STK848198 with great antimicrobial potential against MRSA avoiding resistance occurrence. And significant synergistical antimicrobial effects were found between the molecules and conventional antibiotics. Mechanisms studies by transcriptomics, fluorescent probes, molecule dynamics, and plasma surface resonance indicated that the proton motive force as well as FtsH are the main potential targets of these molecules. The compounds exhibited excellent in vivo pharmacokinetics, toxicity profiles, and antimicrobial activities in the abscess model as well as the peritonitis-sepsis model. In addition, STK848198 was found to be effective against MRSA biofilms by interacting with the quorum sensing system. STK848198 also showed in vivo efficacy in the periprosthetic joint infection model. In all, our study identified a class of antimicrobials with novel scaffolds that could be potential alternatives for the treatment of MRSA and its biofilm-related infections.
Collapse
Affiliation(s)
- She Pengfei
- Department of Laboratory MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yang Yifan
- Department of Laboratory MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Li Linhui
- Department of Laboratory MedicineThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Li Yimin
- Department of Laboratory MedicineThe Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha)Central South UniversityChangshaHunanChina
| | - Xiao Dan
- Department of Laboratory MedicineThe Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha)Central South UniversityChangshaHunanChina
| | - Guo Shaowei
- Department of Laboratory MedicineThe Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha)Central South UniversityChangshaHunanChina
| | - Huang Guanqing
- Department of Laboratory MedicineThe Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha)Central South UniversityChangshaHunanChina
| | - Wu Yong
- Department of Laboratory MedicineThe Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha)Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Wang J, Liu L, Luo R, Zhang Q, Wang X, Ling F, Wang P. Genome-wide analysis of filamentous temperature-sensitive H protease (ftsH) gene family in soybean. BMC Genomics 2024; 25:524. [PMID: 38802777 PMCID: PMC11131285 DOI: 10.1186/s12864-024-10389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The filamentous temperature-sensitive H protease (ftsH) gene family belongs to the ATP-dependent zinc metalloproteins, and ftsH genes play critical roles in plant chloroplast development and photosynthesis. RESULTS In this study, we performed genome-wide identification and a systematic analysis of soybean ftsH genes. A total of 18 GmftsH genes were identified. The subcellular localization was predicted to be mainly in cell membranes and chloroplasts, and the gene structures, conserved motifs, evolutionary relationships, and expression patterns were comprehensively analyzed. Phylogenetic analysis of the ftsH gene family from soybean and various other species revealed six distinct clades, all of which showed a close relationship to Arabidopsis thaliana. The members of the GmftsH gene family were distributed on 13 soybean chromosomes, with intron numbers ranging from 3 to 15, 13 pairs of repetitive segment. The covariance between these genes and related genes in different species of Oryza sativa, Zea mays, and Arabidopsis thaliana was further investigated. The transcript expression data revealed that the genes of this family showed different expression patterns in three parts, the root, stem, and leaf, and most of the genes were highly expressed in the leaves of the soybean plants. Fluorescence-based real-time quantitative PCR (qRT-PCR) showed that the expression level of GmftsH genes varied under different stress treatments. Specifically, the genes within this family exhibited various induction levels in response to stress conditions of 4℃, 20% PEG-6000, and 100 mmol/L NaCl. These findings suggest that the GmftsH gene family may play a crucial role in the abiotic stress response in soybeans. It was also found that the GmftsH7 gene was localized on the cell membrane, and its expression was significantly upregulated under 4 ℃ treatment. In summary, by conducting a genome-wide analysis of the GmftsH gene family, a strong theoretical basis is established for future studies on the functionality of GmftsH genes. CONCLUSIONS This research can potentially serve as a guide for enhancing the stress tolerance characteristics of soybean.
Collapse
Affiliation(s)
- Jiabao Wang
- JiLin Agricultural University, Changchun, China
| | - Lu Liu
- JiLin Agricultural University, Changchun, China
| | - Rui Luo
- East China Normal University, Shanghai, China
| | - Qi Zhang
- JiLin Agricultural University, Changchun, China
| | - Xinyu Wang
- JiLin Agricultural University, Changchun, China
| | - Fenglou Ling
- JiLin Agricultural University, Changchun, China.
| | - Piwu Wang
- JiLin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Mettlach JA, Cian MB, Chakraborty M, Dalebroux ZD. Signaling through the Salmonella PbgA-LapB regulatory complex activates LpxC proteolysis and limits lipopolysaccharide biogenesis during stationary-phase growth. J Bacteriol 2024; 206:e0030823. [PMID: 38534107 PMCID: PMC11025326 DOI: 10.1128/jb.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB's ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.
Collapse
Affiliation(s)
- Joshua A. Mettlach
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Melina B. Cian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Medha Chakraborty
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Shan Q, Zhou B, Wang Y, Hao F, Zhu L, Liu Y, Wang N, Wang F, Li X, Dong Y, Xu K, Zhou Y, Li H, Liu W, Gao H. Genome-Wide Identification and Comprehensive Analysis of the FtsH Gene Family in Soybean ( Glycine max). Int J Mol Sci 2023; 24:16996. [PMID: 38069319 PMCID: PMC10707429 DOI: 10.3390/ijms242316996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The filamentation temperature-sensitive H (FtsH) gene family is critical in regulating plant chloroplast development and photosynthesis. It plays a vital role in plant growth, development, and stress response. Although FtsH genes have been identified in a wide range of plants, there is no detailed study of the FtsH gene family in soybean (Glycine max). Here, we identified 34 GmFtsH genes, which could be categorized into eight groups, and GmFtsH genes in the same group had similar structures and conserved protein motifs. We also performed intraspecific and interspecific collinearity analysis and found that the GmFtsH family has large-scale gene duplication and is more closely related to Arabidopsis thaliana. Cis-acting elements analysis in the promoter region of the GmFtsH genes revealed that most genes contain developmental and stress response elements. Expression patterns based on transcriptome data and real-time reverse transcription quantitative PCR (qRT-PCR) showed that most of the GmFtsH genes were expressed at the highest levels in leaves. Then, GO enrichment analysis indicated that GmFtsH genes might function as a protein hydrolase. In addition, the GmFtsH13 protein was confirmed to be localized in chloroplasts by a transient expression experiment in tobacco. Taken together, the results of this study lay the foundation for the functional determination of GmFtsH genes and help researchers further understand the regulatory network in soybean leaf development.
Collapse
Affiliation(s)
- Qi Shan
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Baihui Zhou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanxin Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Feiyu Hao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Lin Zhu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuhan Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Fawei Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Xiaowei Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanyuan Dong
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Keheng Xu
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Yonggang Zhou
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Haiyan Li
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Weican Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Hongtao Gao
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| |
Collapse
|
5
|
Taylor S, Walther D, Fernando DD, Swe-Kay P, Fischer K. Investigating the Antibacterial Properties of Prospective Scabicides. Biomedicines 2022; 10:biomedicines10123287. [PMID: 36552044 PMCID: PMC9776028 DOI: 10.3390/biomedicines10123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Scabies is a dermatological disease found worldwide. Mainly in tropical regions, it is also the cause of significant morbidity and mortality due to its association with potentially severe secondary bacterial infections. Current treatment strategies for scabies do not consider the role of opportunistic bacteria, and here we investigate whether current and emerging scabicides can offer any anti-bacterial protection. Using the broth microdilution method, we examined antimicrobial potential of the current scabicide ivermectin and emerging scabies treatments: abametapir, mānuka oil, and its individual β-triketones. Our results demonstrate that the two novel scabicides abametapir and mānuka oil have antimicrobial properties against common scabies-associated bacteria, specifically Staphylococcus aureus, Streptococcus pyogenes, Streptococcus dysgalactiae subsp. equisimilis and Acinetobacter baumannii. The current scabicide ivermectin offers some antimicrobial activity and is capable of inhibiting the growth aforementioned bacteria. This research is important as it could help to inform future best treatment options of scabies, and scabies-related impetigo.
Collapse
|
6
|
Shu S, Mi W. Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli. Nat Commun 2022; 13:4576. [PMID: 35931690 PMCID: PMC9356133 DOI: 10.1038/s41467-022-32277-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid and forms a protective permeability barrier for most Gram-negative bacteria. In E. coli, LPS levels are under feedback control, achieved by FtsH-mediated degradation of LpxC, which catalyzes the first committed step in LPS synthesis. FtsH is a membrane-bound AAA+ protease, and its protease activity toward LpxC is regulated by essential membrane proteins LapB and YejM. However, the regulatory mechanisms are elusive. We establish an in vitro assay to analyze the kinetics of LpxC degradation and demonstrate that LapB is an adaptor protein that utilizes its transmembrane helix to interact with FtsH and its cytoplasmic domains to recruit LpxC. Our YejM/LapB complex structure reveals that YejM is an anti-adaptor protein, competing with FtsH for LapB to inhibit LpxC degradation. Structural analysis unravels that LapB and LPS have overlapping binding sites in YejM. Thus, LPS levels control formation of the YejM/LapB complex to determine LpxC protein levels.
Collapse
Affiliation(s)
- Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Interactions Screenings Unearth Potential New Divisome Components in the Chlamydia-Related Bacterium, Waddlia chondrophila. Microorganisms 2019; 7:microorganisms7120617. [PMID: 31779160 PMCID: PMC6956297 DOI: 10.3390/microorganisms7120617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Chlamydiales order members are obligate intracellular bacteria, dividing by binary fission. However, Chlamydiales lack the otherwise conserved homologue of the bacterial division organizer FtsZ and certain division protein homologues. FtsZ might be functionally replaced in Chlamydiales by the actin homologue MreB. RodZ, the membrane anchor of MreB, localizes early at the division septum. In order to better characterize the organization of the chlamydial divisome, we performed co-immunoprecipitations and yeast-two hybrid assays to study the interactome of RodZ, using Waddlia chondrophila, a potentially pathogenic Chlamydia-related bacterium, as a model organism. Three potential interactors were further investigated: SecA, FtsH, and SufD. The gene and protein expression profiles of these three genes were measured and are comparable with recently described division proteins. Moreover, SecA, FtsH, and SufD all showed a peripheral localization, consistent with putative inner membrane localization and interaction with RodZ. Notably, heterologous overexpression of the abovementioned proteins could not complement E. coli mutants, indicating that these proteins might play different functions in these two bacteria or that important regulators are not conserved. Altogether, this study brings new insights to the composition of the chlamydial divisome and points to links between protein secretion, degradation, iron homeostasis, and chlamydial division.
Collapse
|
8
|
Huang F, Niu Y, Liu Z, Liu W, Li X, Tan H, Yang Y. An E3 ubiquitin ligase from Brassica napus induces a typical heat-shock response in its own way in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2017; 49:262-269. [PMID: 28399214 DOI: 10.1093/abbs/gmx004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 11/14/2022] Open
Abstract
Previously, we have identified a novel E3 ubiquitin ligase, BNTR1, which plays a key role in heat stress response in Brassica napus. In this study, we accidentally found that BNTR1 can also improve thermal tolerance and reduce growth inhibition at 42°C in Escherichia coli, in a manner different from that in plant. We show that BNTR1 activates E. coli heat-shock response at low concentration in soluble form instead of in inclusion body, but BNTR1 is not functioning as a heat-shock protein (HSP) because deficient temperature-sensitive mutants of HSP genes display unconspicuous thermal tolerance in the presence of BNTR1. Our further studies show that BNTR1 triggers heat-shock response by competing with σ32 (σ32, heat-shock transcription factor) to its binding proteins DnaJ (HSP40) and DnaK (HSP70), which results in the release and accumulation of σ32, thereby promoting the heat-shock response, even under the non-heat-shock conditions. At 37°C, accumulation of the HSPs induced by BNTR1 could make cells much more tolerant than those without BNTR1 at 42°C. Thus, our results suggest that BNTR1 may potentially be a promising target in fermentation industry for reducing impact from temperature fluctuation, where E. coli works as bioreactors.
Collapse
Affiliation(s)
- Fei Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xufeng Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Arends J, Thomanek N, Kuhlmann K, Marcus K, Narberhaus F. In vivo trapping of FtsH substrates by label-free quantitative proteomics. Proteomics 2016; 16:3161-3172. [DOI: 10.1002/pmic.201600316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Arends
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| | - Nikolas Thomanek
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katja Kuhlmann
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katrin Marcus
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Franz Narberhaus
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| |
Collapse
|
10
|
An ensemble-guided approach identifies ClpP as a major regulator of transcript levels in nitric oxide-stressed Escherichia coli. Metab Eng 2015; 31:22-34. [DOI: 10.1016/j.ymben.2015.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/21/2015] [Accepted: 06/15/2015] [Indexed: 11/23/2022]
|
11
|
Emiola A, George J, Andrews SS. A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli. PLoS One 2015; 10:e0121216. [PMID: 25919634 PMCID: PMC4412817 DOI: 10.1371/journal.pone.0121216] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often.
Collapse
Affiliation(s)
- Akintunde Emiola
- School of Health, Sports and Bioscience, University of East London, London, United Kingdom
- * E-mail:
| | - John George
- School of Health, Sports and Bioscience, University of East London, London, United Kingdom
| | - Steven S. Andrews
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Zhao X, Han F, Shen S. Proteomics study of the effects of high pigment-1 on plastid differentiation during the ripening of tomato fruits. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum. PLoS One 2013; 8:e74408. [PMID: 24058559 PMCID: PMC3772908 DOI: 10.1371/journal.pone.0074408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/01/2013] [Indexed: 11/19/2022] Open
Abstract
The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1) that exhibits ATP- and Zn(2+)-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.
Collapse
|
14
|
Suno R, Shimoyama M, Abe A, Shimamura T, Shimodate N, Watanabe YH, Akiyama Y, Yoshida M. Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH. FEBS Lett 2012; 586:3117-21. [DOI: 10.1016/j.febslet.2012.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Tanthanuch W, Tittabutr P, Mohammed S, Matthiesen R, Yamabhai M, Manassila M, Jensen ON, Boonkerd N, Teaumroong N. Identification of Salt-Tolerant Sinorhizobium sp. Strain BL3 Membrane Proteins Based on Proteomics. Microbes Environ 2010; 25:275-80. [DOI: 10.1264/jsme2.me09185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University
| | - Rune Matthiesen
- Bioinformatics Unit—CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio
| | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Monchai Manassila
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | | | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
16
|
Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 2008; 190:7117-22. [PMID: 18776015 DOI: 10.1128/jb.00871-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, FtsH (HflB) is a membrane-bound, ATP-dependent metalloendoprotease belonging to the AAA family (ATPases associated with diverse cellular activities). FtsH has a limited spectrum of known substrates, including the transcriptional activator sigma32. FtsH is the only known E. coli protease that is essential, as it regulates the concentration of LpxC, which carries out the first committed step in the synthesis of lipid A. Here we identify a new FtsH substrate--3-deoxy-D-manno-octulosonate (KDO) transferase--which carries out the attachment of two KDO residues to the lipid A precursor (lipid IVA) to form the minimal essential structure of the lipopolysaccharide (LPS) (KDO2-lipid A). Thus, FtsH regulates the concentration of the lipid moiety of LPS (lipid A) as well as the sugar moiety (KDO-based core oligosaccharides), ensuring a balanced synthesis of LPS.
Collapse
|
17
|
Führer F, Müller A, Baumann H, Langklotz S, Kutscher B, Narberhaus F. Sequence and Length Recognition of the C-terminal Turnover Element of LpxC, a Soluble Substrate of the Membrane-bound FtsH Protease. J Mol Biol 2007; 372:485-96. [PMID: 17651755 DOI: 10.1016/j.jmb.2007.06.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/06/2007] [Accepted: 06/26/2007] [Indexed: 11/17/2022]
Abstract
The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Simionato MR, Tucker CM, Kuboniwa M, Lamont G, Demuth DR, Tribble GD, Lamont RJ. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun 2006; 74:6419-28. [PMID: 16923784 PMCID: PMC1695522 DOI: 10.1128/iai.00639-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, develops biofilm microcolonies on substrata of Streptococcus gordonii but not on Streptococcus mutans. P. gingivalis genome microarrays were used to identify genes differentially regulated during accretion of P. gingivalis in heterotypic biofilms with S. gordonii. Thirty-three genes showed up- or downregulation by array analysis, and differential expression was confirmed by quantitative reverse transcription-PCR. The functions of the regulated genes were predominantly related to metabolism and energy production. In addition, many of the genes have no current known function. The roles of two upregulated genes, ftsH (PG0047) encoding an ATP-dependent zinc metallopeptidase and ptpA (PG1641) encoding a putative tyrosine phosphatase, were investigated further by mutational analysis. Strains with mutations in these genes developed more abundant biofilms with S. gordonii than the parental strain developed. ftsH and ptpA may thus participate in a regulatory network that constrains P. gingivalis accumulation in heterotypic biofilms. This study provided a global analysis of P. gingivalis transcriptional responses in an oral microbial community and also provided insight into the regulation of heterotypic biofilm development.
Collapse
Affiliation(s)
- M Regina Simionato
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Suno R, Niwa H, Tsuchiya D, Zhang X, Yoshida M, Morikawa K. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol Cell 2006; 22:575-85. [PMID: 16762831 DOI: 10.1016/j.molcel.2006.04.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 02/17/2006] [Accepted: 04/18/2006] [Indexed: 11/25/2022]
Abstract
An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.
Collapse
Affiliation(s)
- Ryoji Suno
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Bieniossek C, Schalch T, Bumann M, Meister M, Meier R, Baumann U. The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A 2006; 103:3066-71. [PMID: 16484367 PMCID: PMC1413944 DOI: 10.1073/pnas.0600031103] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent integral membrane protease FtsH is universally conserved in bacteria. Orthologs exist in chloroplasts and mitochondria, where in humans the loss of a close FtsH-homolog causes a form of spastic paraplegia. FtsH plays a crucial role in quality control by degrading unneeded or damaged membrane proteins, but it also targets soluble signaling factors like sigma(32) and lambda-CII. We report here the crystal structure of a soluble FtsH construct that is functional in caseinolytic and ATPase assays. The molecular architecture of this hexameric molecule consists of two rings where the protease domains possess an all-helical fold and form a flat hexagon that is covered by a toroid built by the AAA domains. The active site of the protease classifies FtsH as an Asp-zincin, contrary to a previous report. The different symmetries of protease and AAA rings suggest a possible translocation mechanism of the target polypeptide chain into the interior of the molecule where the proteolytic sites are located.
Collapse
Affiliation(s)
- Christoph Bieniossek
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Thomas Schalch
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Hoenggerberg, HPK Building, CH-8093 Zurich, Switzerland
| | - Mario Bumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Markus Meister
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Reto Meier
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Ulrich Baumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Abstract
A gene with significant similarity to bacterial Lon proteases was identified during the sequencing of the genome of the thermoacidophilic archaeon Thermoplasma acidophilum. Protein sequence comparison revealed that Thermoplasma Lon protease (TaLon) is more similar to the LonB proteases restricted to Gram-positive bacteria than to the widely distributed bacterial LonA. However, the active site residues of the protease and ATPase domain are highly conserved in all Lon proteases. Using site-directed mutagenesis we show here that TaLon and EcLon, and probably all other Lon proteases, contain a Ser-Lys dyad active site. The TaLon active site mutants were fully assembled and, similar to TaLon wild-type, displayed an apparent molar mass of 430 kDa upon gelfiltration. This would be consistent with a hexameric complex and indeed electron micrographs of TaLon revealed ring-shaped particles, although of unknown symmetry. Comparison of the ATPase activity of Lon wild-type from Thermoplasma or Escherichia coli with respective protease active site mutants revealed differences in Km and V values. This suggests that in the course of protein degradation by wild-type Lon the protease domain might influence the activity of the ATPase domain.
Collapse
Affiliation(s)
- Henrike Besche
- Department of Structural Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
22
|
Anilkumar G, Srinivasan R, Ajitkumar P. Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2. Microbiology (Reading) 2004; 150:2629-2639. [PMID: 15289559 DOI: 10.1099/mic.0.27090-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TheftsHgene ofMycobacterium smegmatisSN2 (MsftsH) was cloned from two independent partial genomic DNA libraries and characterized, along with the identification ofephAandfolEas the neighbouring upstream and downstream genes respectively. The genomic organization of the MsftsHlocus was found to be identical to that of theMycobacterium tuberculosis ftsHgene (MtftsH) and similar to that of other bacterial genera, but with divergence in the upstream region. The MsftsHgene is 2·3 kb in size and encodes the AAA (ATPasesAssociated with diverse cellularActivities) family Zn2+-metalloprotease FtsH (MsFtsH) of 85 kDa molecular mass. This was demonstrated from the expression of the full-length recombinant gene inEscherichia coliJM109 cells and from the identification of native MsFtsH inM. smegmatisSN2 cell lysates by Western blotting with anti-MtFtsH and anti-EcFtsH antibodies respectively. The recombinant and the native MsFtsH proteins were found localized to the membrane ofE. coliandM. smegmatiscells respectively. Expression of MsFtsH protein inE. coliwas toxic and resulted in growth arrest and filamentation of cells. The MsftsHgene did not complement lethality of a ΔftsH3 : : kan mutation inE. coli, but when expressed inE. colicells, it efficiently degraded conventional FtsH substrates, namelyσ32protein and the protein translocase subunit SecY, ofE. colicells.
Collapse
Affiliation(s)
| | - Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Niwa H, Tsuchiya D, Makyio H, Yoshida M, Morikawa K. Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure 2002; 10:1415-23. [PMID: 12377127 DOI: 10.1016/s0969-2126(02)00855-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore.
Collapse
Affiliation(s)
- Hajime Niwa
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|