1
|
Guodong R, Jianguo Z, Xiaoxia L, Ying L. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Food Chem 2019; 300:125246. [PMID: 31357017 DOI: 10.1016/j.foodchem.2019.125246] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Olive (Olea europaea) is a rich source of valuable bioactive polyphenols, which has attracted widespread interest. In this study, we combined targeted metabolome, Pacbio ISOseq transcriptome, and Illumina RNA-seq transcriptome to investigate the association between polyphenols and gene expression in the developing olive fruits and leaves. A total of 12 main polyphenols were measured, and 122 transcripts of 17 gene families, 101 transcripts of 9 gene families, and 106 transcripts of 6 gene families that encode for enzymes involved in flavonoid, oleuropein, and hydroxytyrosol biosynthesis were separately identified. Additionally, 232 alternative splicing events of 18 genes related to polyphenol synthesis were analyzed. This is the first time that the third generations of full-length transcriptome technology were used to study the gene expression pattern of olive fruits and leaves. The results of transcriptome combined with targeted metabolome can help us better understand the polyphenol biosynthesis pathways in the olive.
Collapse
Affiliation(s)
- Rao Guodong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhang Jianguo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Liu Xiaoxia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luo Ying
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
2
|
Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G, Esposto S, Taticchi A, Rosati A, Rao R, Perrotta G, Servili M, Baldoni L. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC PLANT BIOLOGY 2012; 12:162. [PMID: 22963618 PMCID: PMC3480905 DOI: 10.1186/1471-2229-12-162] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/30/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. RESULTS The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3-4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d'Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. CONCLUSIONS Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality.
Collapse
Affiliation(s)
| | | | | | - Silvia Caporali
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | - Stefania Urbani
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | - Gianluca Veneziani
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | - Sonia Esposto
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | - Agnese Taticchi
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | | | - Rosa Rao
- Dept. of Soil, Plant, Environment and Animal Production Sciences, University of Naples 'Federico II', 80055, Portici, NA, Italy
| | | | - Maurizio Servili
- Dept. of Economical and Food Science, University of Perugia, 06126, Perugia, Italy
| | | |
Collapse
|
3
|
Zhang G, Zhang RL, Zhao JS, Gao X, Wang SK, He SY. Synthesis and crystal structure of a New Diamine complex CuCl4(H2tn). CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20040220905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Adámková Ŝ, Frébort I, ŜEbela M, Peĉ P. Probing the Active Site of Pea Seedlings Amine Oxidase with Optical Antipodes of Sedamine Alkaloids. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/14756360109162385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ŝárka Adámková
- Department of Biochemistry, Faculty of Science, Palackú University, Ŝlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Ivo Frébort
- Department of Biochemistry, Faculty of Science, Palackú University, Ŝlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Marek ŜEbela
- Department of Biochemistry, Faculty of Science, Palackú University, Ŝlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Pavel Peĉ
- Department of Biochemistry, Faculty of Science, Palackú University, Ŝlechtitelů 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
5
|
Lamplot Z, Sebela M, Frycák P, Longu S, Padiglia A, Medda R, Floris G, Pec P. Reactions of plant copper/topaquinone amine oxidases with N6-aminoalkyl derivatives of adenine. J Enzyme Inhib Med Chem 2005; 20:143-51. [PMID: 15968819 DOI: 10.1080/14756360400021866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Plant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.6) are enzymes oxidising various amines. Here we report a study on the reactions of CAOs from grass pea (Lathyrus sativus), lentil (Lens esculenta) and Euphorbia characias, a Mediterranean shrub, with N6-aminoalkyl adenines representing combined analogues of cytokinins and polyamines. The following compounds were synthesised: N6-(3-aminopropyl)adenine, N6-(4-aminobutyl)adenine, N6-(4-amino-trans-but-2-enyl) adenine, N6-(4-amino-cis-but-2-enyl) adenine and N6-(4-aminobut-2-ynyl) adenine. From these, N6-(4-aminobutyl) adenine and N6-(4-amino-trans-but-2-enyl)adenine were found to be substrates for all three enzymes (Km approximately 10(-4)M). Absorption spectroscopy demonstrated such an interaction with the cofactor topaquinone, which is typical for common diamine substrates. However, only the former compound provided a regular reaction stoichiometry. Anaerobic absorption spectra of N6-(3-aminopropyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine reactions revealed a similar kind of initial interaction, although the compounds finally inhibited the enzymes. Kinetic measurements allowed the determination of both inhibition type and strength; N6-(3-aminopropyl)adenine and N6-(4-amino-cis-but-2-enyl)adenine produced reversible inhibition (Ki approximately 10(-5) - 10(-4) M) whereas, N6-(4-aminobut-2-ynyl)adenine could be considered a powerful inactivator.
Collapse
Affiliation(s)
- Zbynĕk Lamplot
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lamplot Z, Sebela M, Malon M, Lenobel R, Lemr K, Havlis J, Pec P, Qiao C, Sayre LM. 1,5-Diamino-2-pentyne is both a substrate and inactivator of plant copper amine oxidases. ACTA ACUST UNITED AC 2004; 271:4696-708. [PMID: 15606757 DOI: 10.1111/j.1432-1033.2004.04434.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,5-diamino-2-pentyne (DAPY) was found to be a weak substrate of grass pea (Lathyrus sativus, GPAO) and sainfoin (Onobrychis viciifolia, OVAO) amine oxidases. Prolonged incubations, however, resulted in irreversible inhibition of both enzymes. For GPAO and OVAO, rates of inactivation of 0.1-0.3 min(-1) were determined, the apparent KI values (half-maximal inactivation) were of the order of 10(-5) m. DAPY was found to be a mechanism-based inhibitor of the enzymes because the substrate cadaverine significantly prevented irreversible inhibition. The N1-methyl and N5-methyl analogs of DAPY were tested with GPAO and were weaker inactivators (especially the N5-methyl) than DAPY. Prolonged incubations of GPAO or OVAO with DAPY resulted in the appearance of a yellow-brown chromophore (lambda(max) = 310-325 nm depending on the working buffer). Excitation at 310 nm was associated with emitted fluorescence with a maximum at 445 nm, suggestive of extended conjugation. After dialysis, the color intensity was substantially decreased, indicating the formation of a low molecular mass secondary product of turnover. The compound provided positive reactions with ninhydrin, 2-aminobenzaldehyde and Kovacs' reagents, suggesting the presence of an amino group and a nitrogen-containing heterocyclic structure. The secondary product was separated chromatographically and was found not to irreversibly inhibit GPAO. MS indicated an exact molecular mass (177.14 Da) and molecular formula (C10H15N3). Electrospray ionization- and MALDI-MS/MS analyses yielded fragment mass patterns consistent with the structure of a dihydropyridine derivative of DAPY. Finally, N-(2,3-dihydropyridinyl)-1,5-diamino-2-pentyne was identified by means of 1H- and 13C-NMR experiments. This structure suggests a lysine modification chemistry that could be responsible for the observed inactivation.
Collapse
Affiliation(s)
- Zbynek Lamplot
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jeon HB, Lee Y, Qiao C, Huang H, Sayre LM. Inhibition of bovine plasma amine oxidase by 1,4-diamino-2-butenes and -2-butynes. Bioorg Med Chem 2003; 11:4631-41. [PMID: 14527560 DOI: 10.1016/s0968-0896(03)00521-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bovine plasma amine oxidase (BPAO) was previously shown to be irreversibly inhibited by propargylamine and 2-chloroallylamine. 1,4-Diamine versions of these two compounds are here shown to be highly potent inactivators, with IC50 values near 20 microM. Mono-N-alkylation or N,N-dialkylation greatly lowered the inactivation potency in every case, whereas the mono-N-acyl derivatives were also weaker inhibitors and enzyme activity was recoverable. The finding that the bis-primary amines 1,4-diamino-2-butyne (a known potent inhibitor of diamine oxidases) and Z-2-chloro-1,4-diamino-2-butene are potent inactivators of BPAO is suggestive of unexpected similarities between plasma amine oxidase and the diamine oxidases and implies that it may be unwise to attempt to develop selective inhibitors of diamine oxidase using a diamine construct.
Collapse
Affiliation(s)
- Heung-Bae Jeon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
8
|
Sebela M, Lamplot Z, Petrivalský M, Kopecný D, Lemr K, Frébort I, Pec P. Recent news related to substrates and inhibitors of plant amine oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:355-60. [PMID: 12686157 DOI: 10.1016/s1570-9639(03)00094-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reactions of pea diamine oxidase (PSAO) and maize polyamine oxidase (MPAO) with 1,4-bis(3-aminopropyl)-piperazine (BAPP), diethylenetriamine (DETA), dipropylenetriamine (DPTA), dehydrospermine (DHSP) and 3-oxapentane-1,5-diamine (OPD) were studied and compared. These reactions were characterised by kinetic measurements (kinetic constants, stoichiometry) and by measurements of absorption spectra (reaction mechanisms). In the case of oxidised polyamine compounds, the corresponding reaction products were determined using analytical methods (coloured trapping reactions, mass spectrometry, IR spectroscopy, thin layer chromatography). Some of the compounds were found to be substrates of PSAO and relatively potent inhibitors of MPAO (and vice versa) all at once. The others showed the same effect on both enzymes. This may have an importance for designing of experiments in physiological studies in plants.
Collapse
Affiliation(s)
- Marek Sebela
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc-Holice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Christophersen C, Struve C. Structural Equilibrium and Ring-Chain Tautomerism of Aqueous Solutions of 4-Aminobutyraldehyde. HETEROCYCLES 2003. [DOI: 10.3987/com-03-9802] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Mlícková K, Sebela M, Cibulka R, Frébort I, Pec P, Liska F, Tanizawa K. Inhibition of copper amine oxidases by pyridine-derived aldoximes and ketoximes. Biochimie 2001; 83:995-1002. [PMID: 11879727 DOI: 10.1016/s0300-9084(01)01345-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reactions of pea diamine oxidase (PSAO) and 2-phenylethylamine oxidase from Arthrobacter globiformis (AGAO) with pyridine-derived oximes were studied. Pyridine carbaldoximes and alkyl pyridyl ketoximes act as strong non-competitive inhibitors of the enzymes. The inhibition constants K(i) of these compounds vary between 10(-4) and 10(-5) M, for AGAO and some of the studied oximes were found even micromolar K(i) values. The presence of pyridine moiety in the studied compounds has remarkable influence on the inhibition potency. Elementary oximes lacking the heterocyclic ring, i.e., aliphatic (acetone oxime), alicyclic (cyclohexanone oxime) and aromatic (benzaldoxime), are considerably weaker non-competitive inhibitors (K(i) similar to 10(-3) or 10(-2) M). The position of the pyridine ring substitution by -C(R)=NOH group does not play a significant role for the inhibition potency of the studied oxime compounds. If the pyridine nitrogen is quaternised (in hydroxyiminomethyl-1-methylpyridinium iodides), the compound looses its inhibitory properties. Extended length of alkyl substituents on the ketoxime group of alkyl pyridyl ketoximes increases the K(i) value. The enzyme-bound copper represents one of possible target sites for pyridine-derived oxime inhibitors. The addition of an alkyl pyridyl ketoxime or a pyridine carbaldoxime to a native PSAO sample perturbs the absorption spectrum of the enzyme (by an absorption increase in the region 300-400 nm) that is not observed in the spectrum of reacted PSAO apoenzyme. However, an additional formation of hydrogen bonds with amino acid side-chains at the active site should be considered, namely for 3- and 4-substituted pyridine derivatives.
Collapse
Affiliation(s)
- K Mlícková
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|