1
|
Li C, Allai L, Liang J, Lv C, Zhao X, Ni X, Wu G, Deng W, Badaoui B, Quan G. The antioxidant effects of butylated hydroxytoluene on cryopreserved goat sperm from a proteomic perspective. PeerJ 2024; 12:e17580. [PMID: 38978759 PMCID: PMC11229688 DOI: 10.7717/peerj.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/25/2024] [Indexed: 07/10/2024] Open
Abstract
At present, there are few reports about the proteomics changes provoked by butylated hydroxytoluene (BHT) supplementation on cryopreserved semen in mammals. Thus, we aimed to evaluate the effects of different concentrations of BHT on goat sperm and to investigate the proteomics changes of adding BHT to cryopreserved goat (Capra hircus) sperm. Firstly, semen samples were collected from four goats, and frozen in the basic extenders containing different concentrations of BHT (0.5 mM, 1.0 mM, 2.0 mM) and a control without BHT, respectively. After thawing, the protective effects of dose-dependent replenished BHT to the freezing medium on post-thaw sperm motility, integrities of plasma membrane and acrosome, reactive oxygen species levels were confirmed, with 0.5 mM BHT being the best (B group) as compared to the control (without BHT, C group). Afterwards, TMT-based quantitative proteomic technique was performed to profile proteome of the goat sperm between C group and B group. Parallel reaction monitoring was used to confirm reliability of the data. Overall, 2,476 proteins were identified and quantified via this approach. Comparing the C and B groups directly (C vs. B), there were 17 differentially abundant proteins (DAPs) po-tentially associated with sperm characteristics and functions were identified, wherein three were upregulated and 14 were downregulated, respectively. GO annotation analysis demonstrated the potential involvement of the identified DAPs in metabolic process, multi-organism process, reproduction, reproductive process, and cellular process. KEGG enrichment analysis further indicated their potential roles in renin-angiotensin system and glutathione metabolism pathways. Together, this novel study clearly shows that BHT can effectively improve quality parameters and fertility potential of post-thawed goat sperm at the optimal concentration, and its cryoprotection may be realized through regulation of sperm metabolism and antioxidative capability from the perspective of sperm proteomic modification.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Larbi Allai
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Weidong Deng
- School of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| |
Collapse
|
2
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
3
|
Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H. The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 2021; 14:691363. [PMID: 34421537 PMCID: PMC8375295 DOI: 10.3389/fnmol.2021.691363] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Exocytosis is a Ca2+-regulated process that requires the participation of Ca2+ sensors. In the 1980s, two classes of Ca2+-binding proteins were proposed as putative Ca2+ sensors: EF-hand protein calmodulin, and the C2 domain protein synaptotagmin. In the next few decades, numerous studies determined that in the final stage of membrane fusion triggered by a micromolar boost in the level of Ca2+, the low affinity Ca2+-binding protein synaptotagmin, especially synaptotagmin 1 and 2, acts as the primary Ca2+ sensor, whereas calmodulin is unlikely to be functional due to its high Ca2+ affinity. However, in the meantime emerging evidence has revealed that calmodulin is involved in the earlier exocytotic steps prior to fusion, such as vesicle trafficking, docking and priming by acting as a high affinity Ca2+ sensor activated at submicromolar level of Ca2+. Calmodulin directly interacts with multiple regulatory proteins involved in the regulation of exocytosis, including VAMP, myosin V, Munc13, synapsin, GAP43 and Rab3, and switches on key kinases, such as type II Ca2+/calmodulin-dependent protein kinase, to phosphorylate a series of exocytosis regulators, including syntaxin, synapsin, RIM and Ca2+ channels. Moreover, calmodulin interacts with synaptotagmin through either direct binding or indirect phosphorylation. In summary, calmodulin and synaptotagmin are Ca2+ sensors that play complementary roles throughout the process of exocytosis. In this review, we discuss the complementary roles that calmodulin and synaptotagmin play as Ca2+ sensors during exocytosis.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao Meng
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiaxiang Yin
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jingyao Xia
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Leclerc P, Goupil S, Rioux J, Lavoie‐Ouellet C, Clark M, Ruiz J, Saindon A. Study on the role of calmodulin in sperm function through the enrichment and identification of calmodulin‐binding proteins in bovine ejaculated spermatozoa. J Cell Physiol 2020; 235:5340-5352. [DOI: 10.1002/jcp.29421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Leclerc
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Serge Goupil
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Jean‐François Rioux
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Camille Lavoie‐Ouellet
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Marie‐Ève Clark
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Juliana Ruiz
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Andrée‐Anne Saindon
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| |
Collapse
|
5
|
Kawashima A, Kigoshi T, Katoh Y, Ishikawa Y, Shawki HH, Inoue N, Tamba M, Matsuda M, Okamura N. CABCOCO1, a novel coiled-coil protein With calcium-binding activity, is localized in the sperm flagellum. Mol Reprod Dev 2016; 83:912-926. [PMID: 26990073 DOI: 10.1002/mrd.22639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
The gene 1700040L02Rik (GenBank accession number NM_028491, NP_082767.1) was selected by in silico screening as candidate that encodes a calcium-binding protein in sperm from a database of predicted mouse cilia-related genes. The predicted amino acid sequence revealed the presence of coiled-coil domain at the C-terminus and a CLAMP motif containing a leucine zipper domain in the middle of the protein. Assessment of a recombinant version of this protein by Stains-all and ruthenium red staining and by direct measurement of terbium binding revealed its calcium-binding activities. We therefore named this protein CABCOCO1 for calcium-binding coiled-coil protein-1. Immunohistochemical analyses showed its localization in spermatogenic cells of mouse testis. CABCOCO1 was first observed in the cytoplasm of murine spermatocytes, concentrated around centrioles of spermatids and co-localized with the centrosomal protein pericentrin. During the stage when centrosome number is reduced, CABCOCO1 relocalized to the murine sperm flagellum. On the other hand, in porcine sperm, whose proximal centriole remains intact while the distal centriole degenerates during spermiogenesis, CABCOCO1 localized both in the basal body and the flagellum. These results suggested that CABCOCO1 is involved in the control of sperm flagellar movement. Mol. Reprod. Dev. 83: 912-926, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Kigoshi
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Katoh
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Yu Ishikawa
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Inoue
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiko Tamba
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Matsuda
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naomichi Okamura
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
6
|
Nguyen TMD, Combarnous Y, Praud C, Duittoz A, Blesbois E. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions. PLoS One 2016; 11:e0147559. [PMID: 26808520 PMCID: PMC4726612 DOI: 10.1371/journal.pone.0147559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca2+, or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca2+. Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca2+ entry in sperm through the Ca2+/CaM/CaMKKs/CaMKI pathway. The Ca2+/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca2+ entry in the cells.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR7247, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37000 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Yves Combarnous
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR7247, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37000 Tours, France
- IFCE, F-37380 Nouzilly, France
| | | | - Anne Duittoz
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR7247, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37000 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Elisabeth Blesbois
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR7247, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37000 Tours, France
- IFCE, F-37380 Nouzilly, France
- * E-mail:
| |
Collapse
|
7
|
Gonzalez-Arto M, Luna C, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. New evidence of melatonin receptor contribution to ram sperm functionality. Reprod Fertil Dev 2016; 28:924-935. [DOI: 10.1071/rd14302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
The present study analysed the involvement of melatonin, acting via its receptors (MT1 and MT2), in ram sperm functionality. Indirect immunofluorescence assays revealed no changes in the distribution or intensity of MT1 receptors, whereas different subpopulations were established for MT2 receptors in control, in vitro capacitated and acrosome-reacted ram spermatozoa. Chlortetracycline staining revealed the following correlations between the pattern of staining for MT2 receptors in: (1) non-capacitated (NC) sperm rate and the proportion of spermatozoa with equal immunostaining intensity in the acrosome and post-acrosome (r = 0.59, P < 0.001); (2) in capacitated (C) sperm rate and the proportion of spermatozoa with stronger reactivity in the acrosome (r = 0.60, P < 0.001); and (3) in acrosome-reacted (AR) sperm rate and the proportion of spermatozoa with more intense staining on the post-acrosome (r = 0.67, P < 0.001). Incubation of swim-up-selected samples with either 1 μM melatonin or MT1 and MT2 receptor agonists (2-phenylmelatonin 1 µM and 8-Methoxy-2-propionamidotetralin (8M-PDOT) 1 µM and 10 nM) at 39°C and 5% CO2 for 3 h resulted in a higher proportion of the NC pattern compared with the control group (P < 0.05), whereas treatment with MT1 and MT2 receptor antagonists (luzindole 1 µM and 4-phenyl-2-propionamidotetralin (4P-PDOT) 1 µM and 10 nM) decreased the proportion of spermatozoa exhibiting the NC pattern (P < 0.001) concomitant with an increase in those exhibiting the C pattern (P < 0.01). In conclusion, melatonin exerts a modulating effect on ram sperm functionality, primarily via activation of the MT2 receptor.
Collapse
|
8
|
Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res 2015; 363:105-127. [DOI: 10.1007/s00441-015-2289-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/26/2015] [Indexed: 01/28/2023]
|
9
|
Cebrián-Pérez JA, Casao A, González-Arto M, dos Santos Hamilton TR, Pérez-Pé R, Muiño-Blanco T. Melatonin in sperm biology: breaking paradigms. Reprod Domest Anim 2015; 49 Suppl 4:11-21. [PMID: 25277428 DOI: 10.1111/rda.12378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Melatonin is a ubiquitous molecule, present in a wide range of organisms, and involved in multiple functions. Melatonin relays the information about the photoperiod to the tissues that express melatonin-binding sites in both central and peripheral nervous systems. This hormone has a complex mechanism of action. It can cross the cell plasma membrane and exert its actions in all cells of the body. Certain melatonin actions are mediated by receptors that belong to the superfamily of G-protein-coupled receptors (GPCRs), the MT1 and MT2 membrane. Melatonin can also bind to calmodulin as well as to nuclear receptors of the retinoic acid receptor family, RORα1, RORα2 and RZRβ. The purpose of this review is to report on recent developments in the physiological role of melatonin and its receptors. Specific issues concerning the biological function of melatonin in mammalian seasonal reproduction and spermatozoa are considered. The significance of the continuous presence of melatonin in seminal plasma with a fairly constant concentration is also discussed.
Collapse
Affiliation(s)
- J A Cebrián-Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, Pang MG. Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol Cell Proteomics 2015; 14:1230-40. [PMID: 25693803 DOI: 10.1074/mcp.m114.045369] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
Conventional semen analysis has been used for prognosis and diagnosis of male fertility. Although this tool is essential for providing initial quantitative information about semen, it remains a subject of debate. Therefore, development of new methods for the prognosis and diagnosis of male fertility should be seriously considered for animal species of economic importance as well as for humans. In the present study, we applied a comprehensive proteomic approach to identify global protein biomarkers in boar spermatozoa in order to increase the precision of male fertility prognoses and diagnoses. We determined that l-amino acid oxidase, mitochondrial malate dehydrogenase 2, NAD (MDH2), cytosolic 5'-nucleotidase 1B, lysozyme-like protein 4, and calmodulin (CALM) were significantly and abundantly expressed in high-litter size spermatozoa. We also found that equatorin, spermadhesin AWN, triosephosphate isomerase (TPI), Ras-related protein Rab-2A (RAB2A), spermadhesin AQN-3, and NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2) were significantly and abundantly expressed in low-litter size spermatozoa (>3-fold). Moreover, RAB2A, TPI, and NDUFS2 were negatively correlated with litter size, whereas CALM and MDH2 were positively correlated. This study provides novel biomarkers for the prediction of male fertility. To the best of our knowledge, this is the first work that shows significantly increased litter size using male fertility biomarkers in a field trial. Moreover, these protein markers may provide new developmental tools for the selection of superior sires as well as for the prognosis and diagnosis of male fertility.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Saidur Rahman
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - June-Sub Lee
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sung-Jae Yoon
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Yoo-Jin Park
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Myung-Geol Pang
- From the ‡Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
11
|
Fang P, Xu W, Li D, Zhao X, Dai J, Wang Z, Yan X, Qin M, Zhang Y, Xu C, Wang L, Qiao Z. A novel acrosomal protein, IQCF1, involved in sperm capacitation and the acrosome reaction. Andrology 2014; 3:332-44. [PMID: 25380116 DOI: 10.1111/andr.296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/08/2014] [Accepted: 09/20/2014] [Indexed: 12/11/2022]
Abstract
On the basis of the unknown tags in the mature human sperm serial analysis of gene expression library constructed by our laboratory, some transcripts were cloned, including Iqcf1 (IQ motif containing F1). To investigate the function of sperm-retained Iqcf1 in spermatogenesis and fertilization of mice, we investigated the spatial and temporal expression of IQCF1. By using the (transcription activator-like effector nuclease) strategy, Iqcf1-knockout mice were produced, and the phenotypes of the Iqcf1(-/-) mice were analyzed. The results showed that IQCF1 was localized in the acrosome of spermatozoa and spermatids; the expression of IQCF1 in testes was associated with spermatogenic capacity. The Iqcf1(-/-) mice were significantly less fertile than the wild-type mice (p = 0.0057) because of reduced sperm motility (p = 0.0094) and the acrosome reaction (AR) (p = 0.0093). In spermatozoa, IQCF1 interacted with calmodulin (CaM) and possibly participated in the tyrosine phosphorylation of sperm proteins during capacitation. In conclusion, a newly identified acrosomal protein, IQCF1, is closely related to sperm capacitation and AR; in particular, it is involved in tyrosine phosphorylation of sperm proteins through interaction with CaM. Research into the function of IQCF1 during fertilization could facilitate the investigation of the molecular mechanism of capacitation, which is unclear.
Collapse
Affiliation(s)
- P Fang
- School of Life Sciences and Biotechnology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics 2014; 6:691-705. [DOI: 10.1586/epr.09.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Shang Y, Chen L, Liu Z, Wang X, Ma X, Miao L. Cytosolic Ca(2+) as a multifunctional modulator is required for spermiogenesis in Ascaris suum. Protein Cell 2013; 4:456-66. [PMID: 23686736 DOI: 10.1007/s13238-013-3019-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022] Open
Abstract
The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca(2+) oscillations induced by the Ca(2+) release from intracellular Ca(2+) store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca(2+) suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca(2+) into sperm cells. Ca(2+) promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca(2+) promotes MSP disassembly by activating Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca(2+)/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca(2+) plays multifunctional roles during sperm activation in Ascaris suum.
Collapse
Affiliation(s)
- Yunlong Shang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
14
|
Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci 2013; 14:7231-72. [PMID: 23549263 PMCID: PMC3645684 DOI: 10.3390/ijms14047231] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
Melatonin has a wide variety of beneficial actions at the level of the gonads and their adnexa. Some actions are mediated via its classic membrane melatonin receptors while others seem to be receptor-independent. This review summarizes many of the published reports which confirm that melatonin, which is produced in the ovary, aids in advancing follicular maturation and preserving the integrity of the ovum prior to and at the time of ovulation. Likewise, when ova are collected for in vitro fertilization-embryo transfer, treating them with melatonin improves implantation and pregnancy rates. Melatonin synthesis as well as its receptors have also been identified in the placenta. In this organ, melatonin seems to be of particular importance for the maintenance of the optimal turnover of cells in the villous trophoblast via its ability to regulate apoptosis. For male gametes, melatonin has also proven useful in protecting them from oxidative damage and preserving their viability. Incubation of ejaculated animal sperm improves their motility and prolongs their viability. For human sperm as well, melatonin is also a valuable agent for protecting them from free radical damage. In general, the direct actions of melatonin on the gonads and adnexa of mammals indicate it is an important agent for maintaining optimal reproductive physiology.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA; E-Mails: (S.A.R.-C.); (L.C.M.); (D.-X.T.)
| | - Sergio A. Rosales-Corral
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA; E-Mails: (S.A.R.-C.); (L.C.M.); (D.-X.T.)
| | - Lucien C. Manchester
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA; E-Mails: (S.A.R.-C.); (L.C.M.); (D.-X.T.)
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA; E-Mails: (S.A.R.-C.); (L.C.M.); (D.-X.T.)
| |
Collapse
|
15
|
Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation. J Proteomics 2013; 82:64-80. [DOI: 10.1016/j.jprot.2013.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 01/23/2023]
|
16
|
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis, Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Kennett Square, USA
| |
Collapse
|
17
|
Tulsiani DRP, Abou-Haila A. Biological Processes that Prepare Mammalian Spermatozoa to Interact with an Egg and Fertilize It. SCIENTIFICA 2012; 2012:607427. [PMID: 24278720 PMCID: PMC3820447 DOI: 10.6064/2012/607427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/10/2012] [Indexed: 05/15/2023]
Abstract
In the mouse and other mammals studied, including man, ejaculated spermatozoa cannot immediately fertilize an egg. They require a certain period of residence in the female genital tract to become functionally competent cells. As spermatozoa traverse through the female genital tract, they undergo multiple biochemical and physiological changes collectively referred to as capacitation. Only capacitated spermatozoa interact with the extracellular egg coat, the zona pellucida. The tight irreversible binding of the opposite gametes triggers a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane and the underlying outer acrosomal membrane at multiple sites that causes the release of acrosomal contents at the site of sperm-egg adhesion. The hydrolytic action of the acrosomal enzymes released, along with the hyperactivated beat pattern of the bound spermatozoon, is important factor that directs the sperm to penetrate the egg coat and fertilize the egg. The sperm capacitation and the induction of the acrosomal reaction are Ca(2+)-dependent signaling events that have been of wide interest to reproductive biologists for over half a century. In this paper, we intend to discuss data from this and other laboratories that highlight the biological processes which prepare spermatozoa to interact with an egg and fertilize it.
Collapse
Affiliation(s)
- Daulat R. P. Tulsiani
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aïda Abou-Haila
- UFR Biomédicale, Université Paris Descartes, 75270 Paris Cedex 06, France
| |
Collapse
|
18
|
Lasko J, Schlingmann K, Klocke A, Mengel GA, Turner R. Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion. Anim Reprod Sci 2012; 132:169-77. [PMID: 22687341 DOI: 10.1016/j.anireprosci.2012.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 01/01/2023]
Abstract
In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility.
Collapse
Affiliation(s)
- Jodi Lasko
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Rd., Kennett Square, PA 19348, USA
| | | | | | | | | |
Collapse
|
19
|
Zhuang XJ, Hou XJ, Liao SY, Wang XX, Cooke HJ, Zhang M, Han C. SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice. PLoS One 2011; 6:e20866. [PMID: 21698294 PMCID: PMC3115956 DOI: 10.1371/journal.pone.0020866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/12/2011] [Indexed: 11/19/2022] Open
Abstract
Background Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated) family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1) is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. Methodology/Principal Findings The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1), which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. Conclusions/Significance SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.
Collapse
Affiliation(s)
- Xin-jie Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, People's Republic of China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao-jun Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shang-Ying Liao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiu-Xia Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Howard J. Cooke
- Institute of Genetic and Molecular Medicine MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Chunsheng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Olson SD, Fauci LJ, Suarez SS. Mathematical modeling of calcium signaling during sperm hyperactivation. Mol Hum Reprod 2011; 17:500-10. [PMID: 21606121 DOI: 10.1093/molehr/gar040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mammalian sperm must hyperactivate in order to fertilize oocytes. Hyperactivation is characterized by highly asymmetrical flagellar bending. It serves to move sperm out of the oviductal reservoir and to penetrate viscoelastic fluids, such as the cumulus matrix. It is absolutely required for sperm penetration of the oocyte zona pellucida. In order for sperm to hyperactivate, cytoplasmic Ca(2+) levels in the flagellum must increase. The major mechanism for providing Ca(2+) to the flagellum, at least in mice, are CatSper channels in the plasma membrane of the principal piece of the flagellum, because sperm from CatSper null males are unable to hyperactivate. There is some evidence for the existence of other types of Ca(2+) channels in sperm, but their roles in hyperactivation have not been clearly established. Another Ca(2+) source for hyperactivation is the store in the redundant nuclear envelope of sperm. To stabilize levels of cytoplasmic Ca(2+), sperm contain Ca(2+) ATPase and exchangers. The interactions between channels, Ca(2+) ATPases, and exchangers are poorly understood; however, mathematical modeling can help to elucidate how they work together to produce the patterns of changes in Ca(2+) levels that have been observed in sperm. Mathematical models can reveal interesting and unexpected relationships, suggesting experiments to be performed in the laboratory. Mathematical analysis of Ca(2+) dynamics has been used to develop a model for Ca(2+) clearance and for CatSper-mediated Ca(2+) dynamics. Models may also be used to understand how Ca(2+) patterns produce flagellar bending patterns of sperm in fluids of low and high viscosity and elasticity.
Collapse
Affiliation(s)
- S D Olson
- Department of Mathematics, Tulane University, New Orleans, LA 70115 USA
| | | | | |
Collapse
|
21
|
Moura AA, Souza CE, Stanley BA, Chapman DA, Killian GJ. Proteomics of cauda epididymal fluid from mature Holstein bulls. J Proteomics 2010; 73:2006-20. [DOI: 10.1016/j.jprot.2010.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/03/2010] [Accepted: 06/15/2010] [Indexed: 11/28/2022]
|
22
|
Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia JA, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48:39-46. [PMID: 19919602 DOI: 10.1111/j.1600-079x.2009.00722.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We recently demonstrated the presence of melatonin in ram seminal plasma and differences in its concentration in this fluid between the breeding and nonbreeding season. In this study, we investigate the hypothesis that in vitro treatment with melatonin affects ram sperm quality, and that this is reflected in the in vitro fertilization (IVF) results. Semen from nine rams was collected during the nonreproductive season and treated with 1 mum, 10 nm and 100 pm melatonin. Samples were incubated at 39 degrees C and 5% CO2, and motility, viability, capacitation status and phosphatidylserine (PS) translocation were assessed before and after melatonin addition, either 1 or 3 hr of incubation. Fertility rate of the melatonin-treated samples was determined by means of IVF. Although melatonin failed to affect both sperm kinematic parameters and viability, the exposure of ram spermatozoa to melatonin has a direct effect, decreasing capacitation and PS translocation at 1 mum, and increasing short-term capacitation at 100 pm, which caused an increased oocyte fertilization rate following IVF. Furthermore, cleavage rate of oocytes fertilized with 100 pm melatonin-treated spermatozoa was higher than that with 1 mum melatonin and control samples (P < 0.1). These results prove that melatonin has a direct effect on ram spermatozoa in the nonreproductive season, which can be explained, at least in part, by the melatonin capacity as a reactive oxygen species scavenger and antioxidant. These findings might help to select the optimal experimental conditions for IVF and to improve sperm preservation protocols.
Collapse
Affiliation(s)
- Adriana Casao
- Grupo Biología y Fisiología de la Reproducción, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I. CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 2009; 122:4547-57. [PMID: 19934217 DOI: 10.1242/jcs.058263] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The success of acrosomal exocytosis, a complex process with a variety of inter-related steps, relies on the coordinated interaction of participating signaling molecules. Since the acrosome reaction resembles Ca(2+)-regulated exocytosis in neurons, we investigated whether cognate neuronal binding partners of the multi-PDZ domain protein MUPP1, which recruits molecules that control the initial tethering and/or docking between the acrosomal vesicle and the plasma membrane, are also expressed in spermatozoa, and whether they contribute to the regulation of acrosomal secretion. We observed that CaMKIIalpha colocalizes with MUPP1 in the acrosomal region of epididymal spermatozoa where the kinase selectively binds to a region encompassing PDZ domains 10-11 of MUPP1. Furthermore, we found that pre-treating mouse spermatozoa with a CaMKII inhibitor that directly blocks the catalytic region of the kinase, as well as a competitive displacement of CaMKIIalpha from PDZ domains 10-11, led to a significant increase in spontaneous acrosomal exocytosis. Since Ca(2+)-calmodulin releases CaMKIIalpha from the PDZ scaffolding protein, MUPP1 represents a central signaling platform to dynamically regulate the assembly and disassembly of binding partners pertinent to acrosomal secretion, thereby precisely adjusting an increase in Ca(2+) to synchronized fusion pore formation.
Collapse
Affiliation(s)
- Frauke Ackermann
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 2009; 485:72-81. [DOI: 10.1016/j.abb.2009.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 01/28/2023]
|
25
|
Colás C, Grasa P, Casao A, Gallego M, Abecia JA, Forcada F, Cebrián-Pérez JA, Muiño-Blanco T. Changes in calmodulin immunocytochemical localization associated with capacitation and acrosomal exocytosis of ram spermatozoa. Theriogenology 2008; 71:789-800. [PMID: 19081128 DOI: 10.1016/j.theriogenology.2008.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 01/22/2023]
Abstract
The aim of this study was to determine the localization of calmodulin (CaM) in ram sperm and the possible changes during in vitro capacitation (CA) and the ionophore-induced acrosome reaction (AR). Likewise, changes in intracellular calcium levels ([Ca(2+)](i)) were also analysed by using flow cytometry. CA was induced in vitro in a medium containing BSA, CaCl(2), NaHCO(3), and AR by the addition of the calcium ionophore A23187. The acrosomal status was assessed by the chlortetracycline-fluorescence (CTC) assay. Flow cytometry (FC) analyses were performed by loading samples with Fluo-3 AM, that emits fluorescence at a high [Ca(2+)](i), combined with propidium iodide (PI) that allowed us to discriminate sperm with/without an integral plasma membrane both with high/low [Ca(2+)](i). Immunocytochemistry localized CaM to the flagellum, and some sperm also contained CaM in the head (equatorial and post-acrosomal regions). CA and AR resulted in a slight increase in the post-acrosomal labelling. The treatment of sperm with increasing concentrations of two CaM antagonists, W7 and calmidazolium (CZ), accounted for an increase in capacitated and acrosome-reacted CTC-sperm patterns. CZ induced a significant reduction in the content of three protein tyrosine-phosphorylated bands of approximately of 30, 40 and 45kDa. However, W7 showed no significant effect at any of the studied concentrations. Neither of them significantly influenced protein serine and threonine phosphorylation. FC analysis revealed that the main subpopulation in the control samples contained 70% of the total sperm with integral plasma membrane and a medium [Ca(2+)](i). After CA, 67.1% of the sperm preserved an integral membrane with a higher [Ca(2+)](i). After AR, only 7.2% of the total sperm preserved intact membranes with a very high [Ca(2+)](i). These results imply that CaM appears to be involved in ram sperm capacitation, and both treatments increased its localization in the post-acrosomal region.
Collapse
Affiliation(s)
- C Colás
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ignotz GG, Suarez SS. Calcium/Calmodulin and Calmodulin Kinase II Stimulate Hyperactivation in Demembranated Bovine Sperm1. Biol Reprod 2005; 73:519-26. [PMID: 15878888 DOI: 10.1095/biolreprod.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.
Collapse
Affiliation(s)
- George G Ignotz
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
27
|
Marín-Briggiler CI, Jha KN, Chertihin O, Buffone MG, Herr JC, Vazquez-Levin MH, Visconti PE. Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. J Cell Sci 2005; 118:2013-22. [PMID: 15840651 DOI: 10.1242/jcs.02326] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in the regulation of mammalian sperm motility are not well understood. Calcium ions (Ca(2+)) have been suggested to play a key role in the maintenance of motility; nevertheless, how Ca(2+) modulates this process has not yet been completely characterized. Ca(2+) can bind to calmodulin and this complex regulates the activity of multiple enzymes, including Ca(2+)/calmodulin-dependent protein kinases (CaM kinases). Results from this study confirmed that the presence of Ca(2+) in the incubation medium is essential for maintaining human sperm motility. The involvement of CaM kinases in Ca(2+) regulation of human sperm motility was evaluated using specific inhibitors (KN62 and KN93) or their inactive analogues (KN04 and KN92 respectively). Sperm incubation in the presence of KN62 or KN93 led to a progressive decrease in the percentage of motile cells; in particular, incubation with KN62 also reduced sperm motility parameters. These inhibitors did not alter sperm viability, protein tyrosine phosphorylation or the follicular fluid-induced acrosome reaction; however, KN62 decreased the total amount of ATP in human sperm. Immunological studies showed that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is present and localizes to the human sperm flagellum. Moreover, CaMKIV activity increases during capacitation and is inhibited in the presence of KN62. This report is the first to demonstrate the presence of CaMKIV in mammalian sperm and suggests the involvement of this kinase in the regulation of human sperm motility.
Collapse
Affiliation(s)
- Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME) CONICET, Vuelta de Obligado 2490, (1428) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Hanna WF, Kerr CL, Shaper JH, Wright WW. Lewis X-Containing Neoglycoproteins Mimic the Intrinsic Ability of Zona Pellucida Glycoprotein ZP3 to Induce the Acrosome Reaction in Capacitated Mouse Sperm1. Biol Reprod 2004; 71:778-89. [PMID: 15128591 DOI: 10.1095/biolreprod.103.023820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The binding of zona pellucida (ZP) glycoprotein ZP3 to mouse sperm surface receptors is mediated by protein-carbohydrate interactions. Subsequently, ZP3 induces sperm to undergo the acrosome reaction, an obligatory step in fertilization. We have previously identified Lewis X (Le(x); Gal beta 4[Fuc alpha 3]GlcNAc) as a potent inhibitor of in vitro sperm-ZP binding (Johnston et al. J Biol Chem 1998; 273:1888-1895). This glycan is recognized by approximately 70% of the ZP3 binding sites on capacitated, acrosome-intact mouse sperm, whereas Lewis A (Le(a); Gal beta 3[Fuc alpha 4]GlcNAc) is recognized by most of the remaining sites (Kerr et al. Biol Reprod 2004; 71:770-777). Herein, we test the hypothesis that Le(x)- and Le(a)-containing glycans, when clustered on a neoglycoprotein, bind ZP3 receptors on sperm and induce sperm to undergo the acrosome reaction via the same signaling pathways as ZP3. Results show that a Le(x)-containing neoglycoprotein induced the acrosome reaction in a dose-dependent and capacitation-dependent manner. A Le(a)-containing neoglycoprotein also induced sperm to undergo the acrosome reaction but was less potent than Le(x)-containing neoglycoproteins. In contrast, neoglycoproteins containing beta4-lactosamine (Gal beta 4GlcNAc), Lewis B (Fuc alpha 2Gal beta 3[Fuc alpha 4]GlcNAc), and sialyl-Le(x) glycans were inactive, as were four other neoglycoproteins with different nonfucosylated glycans. Consistent with these results, unconjugated Le(x)- and Le(a)-capped glycans were dose-dependent inhibitors, which at saturation, reduced the ZP-induced acrosome reaction by about 60% and 30%, respectively. Experiments utilizing pharmacological inhibitors suggest that induction of the acrosome reaction by solubilized ZP and Le(x)- and Le(a)-containing neoglycoproteins require the same calcium-dependent pathway. However, only the ZP-induced acrosome reaction requires a functional G(i) protein. Thus, Le(x)-containing neoglycoproteins bind to a major class of ZP3 receptors on capacitated sperm. A Le(a)-containing neoglycoprotein binds a second ZP3 receptor but is a less-potent inducer of the acrosome reaction.
Collapse
Affiliation(s)
- William F Hanna
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
29
|
Tulsiani DRP, Abou-Haila A. Is sperm capacitation analogous to early phases of Ca2+-triggered membrane fusion in somatic cells and viruses? Bioessays 2004; 26:281-90. [PMID: 14988929 DOI: 10.1002/bies.20003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An important feature of male fertility is the physiological priming of spermatozoa by a multifaceted process collectively referred to as capacitation. The end point of this evasive process is the hyperactivated spermatozoa capable of binding to terminal sugar residues on the egg's extracellular coat, the zona pellucida (ZP), and undergoing acrosomal exocytosis (i.e., induction of the acrosome reaction). The hydrolytic action of acrosomal enzymes released at the site of zona binding, along with the enhanced thrust generated by the hyperactivated beat pattern of the bound spermatozoa, are important factors that regulate the penetration of ZP and fertilization of the egg. Despite many advances in identifying sperm components that promote capacitation, the mechanism underlying the calcium-triggered process remains elusive. The purpose of this review article is to focus on new advances that have enhanced our understanding of in vivo/in vitro capacitation, a prerequisite event resulting from a dramatic modification and reorganization of the sperm membrane molecules. Special emphasis has been laid on accumulating evidence suggesting potential similarities between the sperm capacitation and early phases of calcium-triggered membrane fusion (i.e., tethering and docking) during secretory and endocytotic pathways among eukaryotes.
Collapse
Affiliation(s)
- Daulat R P Tulsiani
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
30
|
Rodeheffer C, Shur BD. Characterization of a novel ZP3-independent sperm-binding ligand that facilitates sperm adhesion to the egg coat. Development 2004; 131:503-12. [PMID: 14695374 DOI: 10.1242/dev.00937] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During mammalian fertilization, sperm adhere to the extracellular coat of the egg, or zona pellucida, in a species-specific manner. In mouse, evidence suggests that sperm recognize and bind to specific oligosaccharide ligands within the zona pellucida glycoprotein, ZP3, viaβ1,4-galactosyltransferase I (GalT I), a lectin-like receptor on the sperm surface. Although in vitro experiments using isolated gametes lend support to this model, recent in vivo studies of genetically altered mice question whether ZP3 and/or GalT I are solely responsible for sperm-egg binding. In this regard, sperm from GalT I-null mice bind poorly to ZP3 and fail to undergo a zona-induced acrosome reaction; however, they still bind to the ovulated egg coat in vitro.
In this report, we characterize a novel ZP3- and GalT I-independent mechanism for sperm adhesion to the egg coat. Results show that the ovulated zona pellucida contains at least two distinct ligands for sperm binding: a ZP3-independent ligand that is peripherally associated with the egg coat and facilitates gamete adhesion; and a ZP3-dependent ligand that is present in the insoluble zona matrix and is recognized by sperm GalT I to facilitate acrosomal exocytosis. The ZP3-independent ligand is not a result of contamination by egg cortical granules, nor is it the mouse homolog of oviduct-specific glycoprotein. It behaves as a 250 kDa, WGA-reactive glycoprotein with a basic isoelectric point, distinguishing it from the acidic glycoproteins that form the insoluble matrix of the egg coat. When eluted from isoelectric focusing gels, the acidic matrix glycoproteins possess sperm-binding activity for wild-type sperm, but not for GalT I-null sperm,whereas the basic glycoprotein retains sperm-binding activity for both wild-type and GalT I-null sperm. Thus, GalT I-null sperm are able to resolve gamete recognition into at least two distinct binding events, leading to the characterization of a novel, peripherally associated, sperm-binding ligand on the ovulated zona pellucida.
Collapse
Affiliation(s)
- Carey Rodeheffer
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
31
|
Bendahmane M, Tulsiani DRP. Capacitated acrosome-intact mouse spermatozoa bind to Sepharose beads coated with functional neoglycoproteins. Arch Biochem Biophys 2003; 415:203-12. [PMID: 12831843 DOI: 10.1016/s0003-9861(03)00257-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Capacitated acrosome-intact mouse spermatozoa bind to the egg's extracellular coat, the zona pellucida (ZP), in a carbohydrate-mediated receptor-ligand manner. The tight irreversible binding of the opposite gametes triggers a signal transduction pathway resulting in the exocytosis of acrosomal contents (i.e., induction of the acrosome reaction [AR]). Previously, we demonstrated that a hexose (mannose) and two amino sugars (N-acetylglucosamine and N-acetylgalactosamine), when covalently conjugated to bovine serum albumin (BSA) (functional neoglycoproteins, ngps), mimicked mZP3 and induced the AR [Biol. Reprod. 60 (1999) 94-101]. To further elucidate the specificity of sperm-ngp interaction and the mZP3 mimicking role of the functional ngps, we have examined binding of the mouse spermatozoa to Sepharose 4B beads coated with the functional and non-functional ngps as well as BSA, ovalbumin (OVA), or asialofetuin (ASF). A significantly greater number of capacitated acrosome-intact spermatozoa bound to the beads coated with functional ngps than the beads coated with non-functional ngps, BSA, OVA, or ASF. The binding was temperature-sensitive and was highest when the sperm-bead assay was carried out at 37 degrees C. Blocking of in vitro capacitation, by including calmodulin antagonists in the incubation medium, prevented sperm from binding to the beads. Furthermore, inclusion of free sugars (mannose, N-acetylglucosamine, or N-acetylgalactosamine) in the binding assay, either individually or as a mixture, inhibited sperm-bead binding in a concentration-dependent manner. Taken together, our data provide evidence strongly suggesting that binding of capacitated spermatozoa to the ngp-coated Sepharose beads is specific. The beads that mimic zona-intact eggs provide an excellent tool for examining pharmacological effects of reagents that alter the sperm function. In addition, the immobilized ngp(s) will be useful as an affinity medium to isolate the sperm surface receptor(s) that recognize and bind to the sugar residues.
Collapse
Affiliation(s)
- Malika Bendahmane
- Departments of Obstetrics & Gynecology, Vanderbilt University School of Medicine, Room D-3243 MCN, Nashville, TN 37232-2633, USA
| | | |
Collapse
|
32
|
Zeng HT, Tulsiani DRP. Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci 2003; 116:1981-9. [PMID: 12668727 DOI: 10.1242/jcs.00396] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sperm capacitation in vitro is thought to be correlated with the increased protein tyrosine phosphorylation of a subset of sperm components. Our group recently used a pharmacological approach to demonstrate that calmodulin (CaM), a 17 kDa calcium sensor protein, has a role in sperm capacitation. In the present study, we have used several CaM antagonists in an attempt to characterize further the role of CaM in capacitation-associated protein tyrosine phosphorylation of sperm components. Our data demonstrate, first, that mouse spermatozoa incubated in a medium that favors capacitation undergo increased protein tyrosine phosphorylation in a time-dependent manner. Second, inclusion of six CaM antagonists individually in an in vitro incubation medium prevented sperm capacitation, as demonstrated by their diminished ability to undergo agonist-induced acrosome reaction. Third, half of the CaM antagonists (compound 48/80, W13 and CaM-binding domain) had no effect on protein tyrosine phosphorylation or sperm motility. Fourth, by contrast, three CaM antagonists (W7, ophiobolin A and calmidazolium) significantly inhibited protein tyrosine phosphorylation of sperm components (42, 56, 66, 82 and 95 kDa) and adversely affected their motility without altering viability as assessed by propidium iodine staining. Finally, inclusion of purified CaM in the capacitation medium significantly increased tyrosine phosphorylation of 82 kDa and 95 kDa components. Combined, these data suggest that CaM antagonists prevent capacitation by interfering with multiple regulatory pathways, and do so either with or without adverse effects on sperm motility and protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Hai-Tao Zeng
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Room D-3243 MCN, Nashville, TN 37232-2633, USA
| | | |
Collapse
|
33
|
Abou-Haila A, Tulsiani DRP. Evidence for the capacitation-associated membrane priming of mouse spermatozoa. Histochem Cell Biol 2003; 119:179-87. [PMID: 12649732 DOI: 10.1007/s00418-003-0504-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2003] [Indexed: 10/25/2022]
Abstract
An important feature of male fertility is the physiological priming of mammalian spermatozoa by a multifaceted process referred to as capacitation. It is a prerequisite event before spermatozoa can bind to the egg's extracellular coat, the zona pellucida, and undergo a signal transduction cascade. The net result is the fusion of the plasma membrane (PM) and underlying outer acrosomal membrane at multiple sites and the release of acrosomal contents (i.e., glycohydrolases, proteinases, etc.) at the site of sperm-zona binding. In this study, we have used an indirect immunofluorescence (IIF) assay and other staining approaches to examine capacitation-associated membrane priming of mouse spermatozoa. For IIF studies, we used affinity-purified antibodies against two glycohydrolases that cross-reacted with the acrosomal enzymes only when the uncapacitated spermatozoa were permeabilized. Incubation of spermatozoa in a medium that favors in vitro capacitation induced membrane priming that allowed the antibodies to cross-react with the acrosomal enzymes in capacitating acrosome-intact spermatozoa without permeabilization, as revealed by the appearance of several distinct fluorescent patterns, including an initial immunopositive lining over the acrosome cap to an intense immunopositive reaction throughout the acrosome. These early immunopositive patterns were followed by the appearance of intense fluorescent spots (droplets) that seem to establish contact with the PM in a time-dependent manner. Inclusion of calmodulin, a 17-kDa Ca(2+)-binding protein which promotes capacitation, in the incubation medium did not alter the overall rate of capacitation; however, its presence accelerated the initial stages of membrane priming. The potential similarities between sperm capacitation and early events of Ca(2+)-triggered membrane fusion among eukaryotes and among various stations of the secretory and endocytotic pathways are discussed.
Collapse
Affiliation(s)
- Aida Abou-Haila
- UFR Biomédicale, Université René Descartes, 45 Rue des Saints-Pères, Paris Cedex 06, France.
| | | |
Collapse
|
34
|
Yunes R, Tomes C, Michaut M, De Blas G, Rodriguez F, Regazzi R, Mayorga LS. Rab3A and calmodulin regulate acrosomal exocytosis by mechanisms that do not require a direct interaction. FEBS Lett 2002; 525:126-30. [PMID: 12163174 DOI: 10.1016/s0014-5793(02)03102-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction between Rab3A and calmodulin is necessary for the inhibitory effect of Rab3A in neuroendocrine cells. Contrastingly, Rab3A triggers the exocytosis known as acrosome reaction in permeabilized spermatozoa. Here we show that a Rab3A mutant that cannot bind calmodulin was fully capable of triggering acrosomal exocytosis. Additionally, calmodulin by itself abrogated the exocytosis triggered by Rab3A. The effect was observed with both the wild type protein and the calmodulin binding deficient mutant. Our results indicate that the inhibitory and stimulatory effects of Rab3A in different exocytic processes are mediated by different effectors.
Collapse
Affiliation(s)
- R Yunes
- Laboratorio de Biologi;a Celular y Molecular, Instituto de Histologi;a y Embriologi;a (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
35
|
Bendahmane M, Zeng HT, Tulsiani DRP. Assessment of acrosomal status in rat spermatozoa: studies on carbohydrate and non-carbohydrate agonists. Arch Biochem Biophys 2002; 404:38-47. [PMID: 12127067 DOI: 10.1016/s0003-9861(02)00278-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the mouse and several other species, including man, capacitated acrosome-intact spermatozoa interact with natural [soluble zona pellucida (ZP) and progesterone (P4)] and synthetic [neoglycoproteins (ngps) and calcium (Ca(2+)) ionophore] agonists, prior to the initiation of a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane overlying the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents [i.e., induction of the acrosome reaction (AR)]. This step is believed to be a prerequisite that enables the acrosome-reacted spermatozoon to penetrate the ZP and fertilize the egg. Although the rat is one of the most commonly used laboratory animals, very little is known about the chemical nature of agonists that induce the AR in this species. The lack of this information is primarily due to the fact that the rat sperm acrosome is a relatively thin structure. Thus, it is difficult to assess the status of the sperm acrosome in this species. In this report, we describe the use of a Coomassie brilliant blue dye staining procedure to assess the status of the rat sperm acrosome by light microscopy. The procedure is highly reproducible and has allowed us to determine the effects of carbohydrate (ngps and mouse ZP) and noncarbohydrate (P4 and Ca(2+) ionophore) agonists on capacitated spermatozoa. In addition, we have used a pharmacological approach to examine the functional significance of calmodulin (CaM), a Ca(2+)-binding protein, in induction of the AR in spermatozoa. Data presented in this report demonstrate that several ngps, solubilized mZP, P4, and Ca(2+) ionophores induce the AR in rat spermatozoa. Furthermore, we demonstrate that, whereas CaM antagonists blocked P4-induced AR, most of the inhibitors used had no significant effect on the Ca(2+) ionophore-induced (nonphysiological) AR.
Collapse
Affiliation(s)
- Malika Bendahmane
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232-2633, USA
| | | | | |
Collapse
|