1
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Effects of SHINBARO2 on Rat Models of Lumbar Spinal Stenosis. Mediators Inflamm 2019; 2019:7651470. [PMID: 31182933 PMCID: PMC6512060 DOI: 10.1155/2019/7651470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023] Open
Abstract
Lumbar spinal stenosis (LSS) is a major cause of chronic low back pain; however, only a few therapies which have been used in clinics still have limited effects on functional recovery. SHINBARO2 is a refined traditional formulation for inflamed lesions and relieve pain of muscular skeletal disease. This study aimed at investigating the effects of SHINBARO2 on LSS and at determining its underlying molecular mechanism in rat models. The LSS rat models were set up by surgical operations in 6-week-old male Sprague-Dawley rats. SHINBARO2 was orally or intraperitoneally administered for 14 days. The motor and sensory ability of rats were evaluated using the activity cage and hot plate method. On the termination day, total vertebrae including the disc and spinal cord were excised for ex vivo study. SHINBARO2 improved locomotor functions and pain sensitivity in LSS rat models. Mechanism study suggested that SHINBARO2 inhibited the production of nitric oxide and prostaglandin E2 in tissues from LSS-induced rats. SHINBARO2 also suppressed the expression of proinflammatory cytokines including tumor necrosis factor-α and interleukin-1β. The activation of NF-κB by LSS surgery was effectively reduced by SHINBARO2, which coincided with the inhibition of IκB degradation. In addition, brain-derived neurotrophic factor (BDNF), a potent promoter of neurite growth, and its downstream ERK signaling were also regulated by SHINBARO2. These findings suggest that the effect of SHINBARO2 might be associated in part with the anti-inflammation and pain control in LSS rat models.
Collapse
|
3
|
Abstract
The ubiquitin-proteasome system (UPS) is a complex and robust metabolic pathway that contributes to the regulation of many key cellular processes including the cell cycle, cell division, and response to external stimuli. Ubiquitin ligases, which tag proteins with ubiquitin, are opposed by deubiquitinase enzymes (DUBs). The relative activity of these enzymes allows for a dynamic balance that determines the abundance and activity of cellular proteins. Targeting the UPS in cancer has proven successful, as evidenced by use of bortezomib, a proteasome inhibitor, in multiple myeloma. However, no pharmacologic inhibitor of the upstream enzymes has yet to reach clinical trials for the treatment of malignancy. Here we present an in vitro DUB assay for use in drug discovery and development that provides a biologically relevant platform for screening and developing lead or tool compounds targeting DUBs.
Collapse
Affiliation(s)
- Joseph S Bednash
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. .,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Bahar E, Kim JY, Yoon H. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int J Mol Sci 2017; 18:ijms18091989. [PMID: 28914791 PMCID: PMC5618638 DOI: 10.3390/ijms18091989] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
Manganese (Mn) is an essential trace element required for the development of human body and acts as an enzyme co-factor or activator for various reactions of metabolism. While essential in trace amounts, excessive Mn exposure can result in toxic accumulations in human brain tissue and resulting extrapyramidal symptoms called manganism similar to idiopathic Parkinson’s disease (PD). Quercetin (QCT) has been demonstrated to play an important role in altering the progression of neurodegenerative diseases by protecting against oxidative stress. This study aimed to investigate the protective effect of QCT on Mn-induced neurotoxicity and the underlying mechanism in SK-N-MC human neuroblastoma cell line and Sprague-Dawley (SD) male rat brain. The results showed that Mn treatment significantly decreased the cell viability of SK-N-MC cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by QCT pretreatment at 10 and 20 µg/mL. Compared to the Mn alone group, QCT pretreatment significantly attenuated Mn-induced oxidative stress, mitochondrial dysfunction and apoptosis. Meanwhile, QCT pretreatment markedly downregulated the NF-κB but upregulated the heme oxygenase-1 (HO-1) and Nrf2 proteins, compared to the Mn alone group. Our result showed the beneficial effect of QCT on hematological parameters against Mn in rat brain. QCT decrease reactive oxygen species (ROS) and protein carbonyl levels and increased Cu/Zn-superoxide dismutase (SOD) activity induced in Mn-treated rats. QCT administration caused a significant reduction in the Mn-induced neuroinflammation by inhibiting the expression of inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). QCT lowered the Mn elevated levels of various downstream apoptotic markers, including Bax, cytochrome c, cleaved caspase-3 and polymerase-1 (PARP-1), while QCT treatment upregulated anti-apoptotic Bcl-2 proteins and prevented Mn-induced neurodegeneration. Furthermore, administration of QCT (25 and 50 mg/kg) to Mn-exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of QCT to Mn-exposed rats showed significant reduction of 8-hydroxy-2′-deoxyguanosine (8-OHdG), Bax, activated caspase-3 and PARP-1 immunoreactivity. These results indicate that QCT could effectively inhibit Mn induced apoptosis and inflammatory response in SK-N-MC cells and SD rats, which may involve the activation of HO-1/Nrf2 and inhibition of NF-κB pathway.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Ji-Ye Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Department of Pathology and Translational Genomics, School of Medicine, Samsung Medical Center, Seoul 06351, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
5
|
Bednash JS, Weathington N, Londino J, Rojas M, Gulick DL, Fort R, Han S, McKelvey AC, Chen BB, Mallampalli RK. Targeting the deubiquitinase STAMBP inhibits NALP7 inflammasome activity. Nat Commun 2017; 8:15203. [PMID: 28492230 PMCID: PMC5437278 DOI: 10.1038/ncomms15203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
Inflammasomes regulate innate immune responses by facilitating maturation of inflammatory cytokines, interleukin (IL)-1β and IL-18. NACHT, LRR and PYD domains-containing protein 7 (NALP7) is one inflammasome constituent, but little is known about its cellular handling. Here we show a mechanism for NALP7 protein stabilization and activation of the inflammasome by Toll-like receptor (TLR) agonism with bacterial lipopolysaccharide (LPS) and the synthetic acylated lipopeptide Pam3CSK4. NALP7 is constitutively ubiquitinated and recruited to the endolysosome for degradation. With TLR ligation, the deubiquitinase enzyme, STAM-binding protein (STAMBP) impedes NALP7 trafficking to lysosomes to increase NALP7 abundance. STAMBP deubiquitinates NALP7 and STAMBP knockdown abrogates LPS or Pam3CSK4-induced increases in NALP7 protein. A small-molecule inhibitor of STAMBP deubiquitinase activity, BC-1471, decreases NALP7 protein levels and suppresses IL-1β release after TLR agonism. These findings describe a unique pathway of inflammasome regulation with the identification of STAMBP as a potential therapeutic target to reduce pro-inflammatory stress.
Collapse
Affiliation(s)
- Joseph S Bednash
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Nathaniel Weathington
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - James Londino
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Mauricio Rojas
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Dexter L Gulick
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Robert Fort
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - SeungHye Han
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Alison C McKelvey
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, Pennsylvania 15213, USA
- Departments of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, USA
| |
Collapse
|
6
|
Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Arch Pharm Res 2017; 40:328-337. [PMID: 28074397 DOI: 10.1007/s12272-017-0890-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
After the chemical investigation of the ethyl acetate extract of the marine-derived fungal strain Penicillium sp. SF-5629, the isolation and structural elucidation of eight secondary metabolites, including (3R,4S)-6,8-dihydroxy-3,4,7-trimethylisocoumarin (1), (3S,4S)-sclerotinin A (2), penicitrinone A (3), citrinin H1 (4), emodin (5), ω-hydroxyemodin (6), 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (7), and 3,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (8) were carried out. Evaluation of the anti-inflammatory activity of these metabolites showed that 4 inhibited nitric oxide and prostaglandin E2 production in lipopolysaccharide-stimulated BV2 microglia, with IC50 values of 8.1 ± 1.9 and 8.0 ± 2.8 μM, respectively. The inhibitory function of 4 was confirmed based on decreases in inducible nitric oxide synthesis and cyclooxygenase-2 gene expression. In addition, 4 was found to suppress the phosphorylation of inhibitor kappa B-α, interrupt the nuclear translocation of nuclear factor kappa B, and decrease the activation of p38 mitogen-activated protein kinase.
Collapse
|
7
|
Chung HJ, Lee J, Shin JS, Kim MR, Koh W, Kim MJ, Lee JW, Kim EJ, Lee IH, Kim WK, Lee YJ, Lee SK, Ha IH. In Vitro and In Vivo Anti-Allergic and Anti-Inflammatory Effects of eBV, a Newly Developed Derivative of Bee Venom, through Modulation of IRF3 Signaling Pathway in a Carrageenan-Induced Edema Model. PLoS One 2016; 11:e0168120. [PMID: 27930719 PMCID: PMC5145209 DOI: 10.1371/journal.pone.0168120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Bee venom (BV), a type of toxin extracted from honeybees (Apis mellifera), has been empirically and widely used to treat inflammatory diseases throughout Asia. Essential BV (eBV) was developed by removing phospholipase A2 (PLA2) and histamine to lower occurrence of allergic reaction. This study investigated the anti-allergic and anti-inflammatory activities of eBV in vitro and in vivo and its underlying mechanism of action. METHODS The anti-inflammatory potential of eBV was assessed in vivo using a carrageenan-induced paw edema model. To further investigate the mechanism by which eBV exerts anti-allergic and anti-inflammatory effects, compound 48/80-stimulated RBL-2H3 cells and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells were studied in vitro. RESULTS Release of β-hexosaminidase and histamine was increased by eBV in a dose-dependent manner, but these levels were lower in eBV compared to original BV at the same concentration. In addition, eBV suppressed compound 48/80-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RBL-2H3 cells. eBV was also shown to suppress nitric oxide (NO) production by down-regulating mRNA expression and subsequent protein expression of inflammatory mediators in LPS-induced RAW 264.7 cells. Phosphorylation of activators and signal transducers of transcription 1/interferon regulatory factor 3 (STAT1/IRF3) was attenuated by eBV treatment. eBV significantly inhibited carrageenan-induced acute edema in vivo. Serum levels of prostaglandin E2 (PGE2), TNF-α, and IL-1β were also down-regulated by eBV. CONCLUSIONS These results demonstrate that eBV inhibits allergic and inflammatory response by reducing inflammatory mediator production via regulation of the STAT1/IRF3 signaling pathway, suggesting that eBV is a feasible candidate for regulation of allergic-inflammatory response in complementary and alternative medicine.
Collapse
Affiliation(s)
- Hwa-Jin Chung
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Jinho Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Joon-Shik Shin
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Me-riong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Wonil Koh
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Min-Jeong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Jae-woong Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Eun Jee Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hee Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kim WK, Chung HJ, Pyee Y, Choi TJ, Park HJ, Hong JY, Shin JS, Lee JH, Ha IH, Lee SK. Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats. Chin Med 2016; 11:17. [PMID: 27069504 PMCID: PMC4827221 DOI: 10.1186/s13020-016-0089-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS Male Sprague-Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE2 and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE2 in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION SHINBARO inhibited PGE2 and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model.
Collapse
Affiliation(s)
- Won Kyung Kim
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Hwa-Jin Chung
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
- />Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896 Republic of Korea
| | - Yuna Pyee
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Tae Jun Choi
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Hyen Joo Park
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Ji-Young Hong
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Joon-Shik Shin
- />Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896 Republic of Korea
| | - Jin Ho Lee
- />Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896 Republic of Korea
| | - In-Hyuk Ha
- />Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896 Republic of Korea
| | - Sang Kook Lee
- />College of Pharmacy, Seoul National University, Seoul, 151-742 Republic of Korea
| |
Collapse
|
9
|
Kim DC, Quang TH, Ngan NTT, Yoon CS, Sohn JH, Yim JH, Feng Y, Che Y, Kim YC, Oh H. Dihydroisocoumarin Derivatives from Marine-Derived Fungal Isolates and Their Anti-inflammatory Effects in Lipopolysaccharide-Induced BV2 Microglia. JOURNAL OF NATURAL PRODUCTS 2015; 78:2948-2955. [PMID: 26651366 DOI: 10.1021/acs.jnatprod.5b00614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemical investigation of the EtOAc extracts of marine-derived fungal isolates Aspergillus sp. SF-5974 and Aspergillus sp. SF-5976 yielded a new dihydroisocoumarin derivative (1) and 12 known metabolites. The structures of the isolated metabolites were established by extensive spectroscopic analyses, including 1D and 2D NMR spectra and MS data. Among the metabolites, the absolute configuration of 5'-hydroxyasperentin (6) was determined by single-crystal X-ray diffraction analysis. The in vitro antineuroinflammatory effects of the metabolites were also evaluated in lipopolysaccharide (LPS)-stimulated microglial cells. Among the isolated metabolites, dihydroisocoumarin derivatives 1-6 (10-80 μM) were shown to inhibit LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, in LPS-stimulated BV2 microglia. Further, 1 (20-80 μM) was found to suppress the phosphorylation of the inhibitor of nuclear factor kappa B-α (IκB-α), interrupt the nuclear translocation of nuclear factor kappa B (NF-κB), and decrease the activation of p38 mitogen-activated protein kinase (MAPK).
Collapse
Affiliation(s)
- Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
| | - Tran Hong Quang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Chi-Su Yoon
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University , Busan 617-736, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI , 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Yu Feng
- Beijing Ditan Hospital, Capital Medical University , Beijing 100015, People's Republic of China
| | - Yongsheng Che
- Beijing Institute of Pharmacology & Toxicology , Beijing 100850, People's Republic of China
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University , Iksan 570-749, Republic of Korea
| |
Collapse
|
10
|
Deubiquitinase USP47/UBP64E Regulates β-Catenin Ubiquitination and Degradation and Plays a Positive Role in Wnt Signaling. Mol Cell Biol 2015; 35:3301-11. [PMID: 26169834 DOI: 10.1128/mcb.00373-15] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022] Open
Abstract
Wnt signaling plays important roles in development and tumorigenesis. A central question about the Wnt pathway is the regulation of β-catenin. Phosphorylation of β-catenin by CK1α and GSK3 promotes β-catenin binding to β-TrCP, leading to β-catenin degradation through the proteasome. The phosphorylation and ubiquitination of β-catenin have been well characterized; however, it is unknown whether and how a deubiquitinase is involved. In this study, by screening RNA interference (RNAi) libraries, we identified USP47 as a deubiquitinase that prevents β-catenin ubiquitination. Inactivation of USP47 by RNAi increased β-catenin ubiquitination, attenuated Wnt signaling, and repressed cancer cell growth. Furthermore, USP47 deubiquitinates itself, whereas β-TrCP promotes USP47 ubiquitination through interaction with an atypical motif in USP47. Finally, in vivo studies in the Drosophila wing suggest that UBP64E, the USP47 counterpart in Drosophila, is required for Armadillo stabilization and plays a positive role in regulating Wnt target gene expression.
Collapse
|
11
|
Kim DC, Lee HS, Ko W, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H. Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 2014; 19:18073-89. [PMID: 25379644 PMCID: PMC6271136 DOI: 10.3390/molecules191118073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1) was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production by suppressing the expression of inducible NO synthase (iNOS) in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2) production by suppressing cyclooxygenase-2 (COX-2) expression in a concentration-dependent manner (from 10 μM to 80 μM) without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β). In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB) activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α), thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK) pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hee-Suk Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Wonmin Ko
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Dong-Sung Lee
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea.
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|
12
|
Bhattacharya S, Ghosh MK. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. FEBS J 2014; 281:3061-78. [PMID: 24823443 PMCID: PMC4149788 DOI: 10.1111/febs.12843] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, -700 032, India
| | | |
Collapse
|
13
|
Pyee Y, Chung HJ, Choi TJ, Park HJ, Hong JY, Kim JS, Kang SS, Lee SK. Suppression of inflammatory responses by handelin, a guaianolide dimer from Chrysanthemum boreale, via downregulation of NF-κB signaling and pro-inflammatory cytokine production. JOURNAL OF NATURAL PRODUCTS 2014; 77:917-924. [PMID: 24689881 DOI: 10.1021/np4009877] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The anti-inflammatory activity of handelin (1), a guaianolide dimer from Chrysanthemum boreale flowers, was evaluated in vivo, and the effects on mediators nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) and the nuclear factor-κB (NF-κB) and ERK/JNK signaling pathways were investigated in vitro. Compound 1 inhibited lipopolysaccharide (LPS)-induced production of NO and PGE2 in cultured mouse macrophage RAW 264.7 cells. The suppression of NO and PGE2 production by 1 was correlated with the downregulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compound 1 also suppressed the induction of pro-inflammatory cytokines TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells. To further clarify the transcriptional regulatory pathway in the expression of iNOS and COX-2 by 1, the role of NF-κB was determined in RAW 264.7 cells. Compound 1 inhibits the binding activity of NF-κB into the nuclear proteins. The transcriptional activity of NF-κB stimulated with LPS was also suppressed by 1, which coincided with the inhibition of IκB degradation. Compound 1 also suppressed the activation of mitogen-activated protein kinases, including ERK and JNK signaling. In addition, the LPS-stimulated upregulation of miRNA-155 expression was suppressed by 1. The oral administration of 1 inhibited acute inflammation in carrageenan-induced paw and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema models. The serum level of IL-1β was also inhibited by 1 in a carrageenan-induced paw edema model. These findings suggest that the suppression of NF-κB activation and pro-inflammatory cytokine production may be a plausible mechanism of action for the anti-inflammatory activity of handelin.
Collapse
Affiliation(s)
- Yuna Pyee
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sang-qi Granula Reduces Blood Pressure and Myocardial Fibrosis by Suppressing Inflammatory Responses Associated with the Peroxisome Proliferator-Activated Receptors and Nuclear Factor κ B Protein in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:721729. [PMID: 24171042 PMCID: PMC3793543 DOI: 10.1155/2013/721729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/08/2013] [Accepted: 08/18/2013] [Indexed: 12/22/2022]
Abstract
Aim. Sang-qi Granula (SQ) is a compound prepared from Chinese herbs and is currently used for treatment of hypertension in China. Given its protective effects on cardial function in decreasing blood pressure, we investigated the mechanism of protective effects of SQ on myocardium. Methods. 16 male normal Wistar-Kyoto rats and 16 spontaneous hypertension rats (SHR) were employed without medical treatment. 16 SHR were employed with SQ treatment. Rats in each group were sacrificed at two time points (8-week treatment and 16-week treatment). Blood pressure (BP), and heart weight/body weight (HW/BW) were measured. The expression of myeloperoxidase (MCP-1), ICAM-1, TNF- α , and CD68-positive cells was assessed. The interstitial collagen volume fraction (CVF), perivascular collagen volume area (PVCA), and the expression of TGF- β , Smad-3, PPAR α , γ , and NF- κ B (P65 and P50) were observed. Results. SQ significantly inhibited the elevation of the blood pressure and HW/BW of SHR. Next, SQ prevented myocardial fibrosis. Finally, a proinflammatory mediator associated with NF- κ B (TNF- α , ICAM-1, MCP-1, CD68), TGF- β , and Smad-3 related to collagen deposition, which is upregulated in SHR group, was significantly suppressed by SQ. Expression of NF- κ B was decreased in SHQ+SQ group compared to PPAR α , and γ expression was increased by SQ. Conclusion. Treatment with SQ ameliorates cardial fibrosis induced by hypertension by attenuating the upregulation of ICAM-1, TNF- α , MCP-1, TGF- β , Smad-3, P65, and P50 expression and improving PPAR α and PPAR γ expression level. The results suggest that SQ may be an option for preventing cardial fibrosis through PPAR signalling pathway.
Collapse
|
15
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. J Virol 2011; 86:1589-607. [PMID: 22130534 DOI: 10.1128/jvi.05754-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342-3364, 2009; Sadagopan et al., J Virol. 85:2666-2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2 coimmunoprecipitated with LANA-1 and ANG in TIVE-LTC and BCBL-1 cells and with ANG in 293T cells independent of LANA-1. This suggested that annexin A2 forms a complex with LANA-1 and ANG as well as a separate complex with ANG. Silencing annexin A2 in BCBL-1 cells resulted in significant cell death, downregulation of cell cycle-associated Cdk6 and of cyclin D, E, and A proteins, and downregulation of LANA-1 and ANG expression. No effect was seen in KSHV⁻ lymphoma (BJAB and Ramos) and 293T cells. These studies suggest that LANA-1 association with annexin A2/ANG could be more important than ANG association with annexin A2, and KSHV probably uses annexin A2 to maintain the viability and cell cycle regulation of latently infected cells. Since the identified LANA-1- and ANG-interacting common cellular proteins are hitherto unknown to KSHV and ANG biology, this offers a starting point for further analysis of their roles in KSHV biology, which may lead to identification of potential therapeutic targets to control KSHV latency and associated malignancies.
Collapse
|
16
|
Lee S, Shin S, Kim H, Han S, Kim K, Kwon J, Kwak JH, Lee CK, Ha NJ, Yim D, Kim K. Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF-κB pathways. J Inflamm (Lond) 2011; 8:16. [PMID: 21733191 PMCID: PMC3146809 DOI: 10.1186/1476-9255-8-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arctiin, isolated from Forsythia suspensa has been reported to have anti-inflammatory, anti-oxidant, antibacterial, and antiviral effects in vitro. However, there has been a lack of studies regarding its effects on immunological activity. The aim of this study is to investigate the anti-inflammatory potential and possible mechanisms of arctiin in LPS-induced macrophages. METHODS We investigated the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecule changes. RESULTS Arctiin dose dependently decreased the production of NO and proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2, and it reduced the gene and protein levels as determined by RT-PCR and western blot analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 were also inhibited by arctiin. Furthermore, the activation of the nuclear transcription factor, NF-κB in macrophages was inhibited by arctiin. CONCLUSION Taken together these results provide evidence of the bioactivity of arctiin in inflammatory diseases and suggest that arctiin may exert anti-inflammatory effect by inhibiting the pro-inflammatory mediators through the inactivation of NF-kB.
Collapse
Affiliation(s)
- Sungwon Lee
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Seulmee Shin
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Hyunyul Kim
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Shinha Han
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Kwanghee Kim
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Jeunghak Kwon
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Sciences, Handong Global University, Pohang 791-708, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Nam-Joo Ha
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Dongsool Yim
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| | - Kyungjae Kim
- College of Pharmacy, SahmYook University, Seoul 139-742, Republic of Korea
| |
Collapse
|
17
|
Sun Z, Chen Z, Lawson SR, Fang Y. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 2010; 84:7832-46. [PMID: 20504922 PMCID: PMC2897636 DOI: 10.1128/jvi.00217-10] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus nonstructural protein 2 (nsp2) contains a cysteine protease domain at its N terminus, which belongs to the ovarian tumor (OTU) protease family. In this study, we demonstrated that the PRRSV nsp2 OTU domain antagonizes the type I interferon induction by interfering with the NF-kappaB signaling pathway. Further analysis revealed that the nsp2 OTU domain possesses ubiquitin-deconjugating activity. This domain has the ability to inhibit NF-kappaB activation by interfering with the polyubiquitination process of IkappaBalpha, which subsequently prevents IkappaBalpha degradation. To determine whether the nsp2 protein antagonist function can be ablated from the virus, we introduced point mutations into the OTU domain region by use of reverse genetics. The D458A, S462A, and D465A mutations targeting on a B-cell epitope in the OTU domain region generated the viable recombinant viruses, and the S462A and D465A mutants were attenuated for growth in cell culture. The OTU domain mutants were examined to determine whether mutations in the nsp2 OTU domain region altered virus ability to inhibit NF-kappaB activation. The result showed that certain mutations lethal to virus replication impaired the ability of nsp2 to inhibit NF-kappaB activation but that the viable recombinant viruses, vSD-S462A and vSD-D465A, were unable to inhibit NF-kappaB activation as effectively as the wild-type virus. This study represents a fundamental step in elucidating the role of nsp2 in PRRS pathogenesis and provides an important insight in future modified live-virus vaccine development.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Zhenhai Chen
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven R. Lawson
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Ying Fang
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
- Corresponding author. Mailing address: Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007-1396. Phone: (605) 688-6647. Fax: (605) 688-6003. E-mail:
| |
Collapse
|
18
|
Fang Y, Fu D, Shen XZ. The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta Rev Cancer 2010; 1806:1-6. [PMID: 20302916 DOI: 10.1016/j.bbcan.2010.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 12/20/2022]
Abstract
Deubiquitinating enzymes (DUBs), capable of removing ubiquitin (Ub) from protein substrates, are involved in numerous biological processes. The ubiquitin C-terminal hydrolases (UCHs) subfamily of DUBs consists of four members: UCH-L1, UCH-L3, UCH37 and BRCA1-associated protein-1 (BAP1). UCH-L1 possesses deubiquitinating activity and dimerization-dependent ubiquitin ligase activity, and functions as a mono-ubiquitin stabilizer; UCH-L3 does both deubiquitinating and deneddylating activity, except dimerization or ligase activity, and unlike UCH-L1, can interact with Lys48-linked Ub dimers to protect it from degradation and in the meanwhile to inhibit its hydrolase activity; UCH37 is responsible for the deubiquitinating activity in the 19S proteasome regulatory complex, and as indicated by the recent study, UCH37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated via transient association of 19S regulatory particle- or proteasome-bound hRpn13 with hINO80; BAP1, binding to the wild-type BRCA1 RING finger domain, is regarded as a tumor suppressor, but for such suppressing activity, as demonstrated otherwise, both deubiquitinating activity and nucleus localization are required. There is growing evidence that UCH enzymes and human malignancies are closely correlated. Previous studies have shown that UCH enzymes play a crucial role in some signalings and cell-cycle regulation. In this review, we provided an insight into the relation between UCH enzymes and oncogenesis.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | | | | |
Collapse
|
19
|
De-ubiquitylation is the most critical step in the ubiquitin-mediated homeostatic control of the NF-kappaB/IKK basal activity. Mol Cell Biochem 2009; 331:69-80. [PMID: 19421711 DOI: 10.1007/s11010-009-0146-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
The role of ubiquitylation in signal-induced activation of nuclear factor -kappaB (NF-kappaB) has been well established, while its involvement in maintaining NF-kappaB basal activity is less certain. Recent evidences demonstrate that in unstimulated cells, NF-kappaB homeostasis is actually the result of opposing forces: pro-activating activity of the IkappaB Kinase (IKK) and inhibitory activity of the Inhibitor of -kappaB (IkappaB) proteins. It is well known that endogenous de-ubiquitylating mechanisms are less effective on Ub motifs containing UbG76A. Here, we show that overexpression of a ubiquitin (Ub) G76A mutant leads to persistent activation of the IKK/NF-kappaB pathway in the absence of extra-cellular stimuli. In contrast, no effects on NF-kappaB activation were observed upon expression of UbK48R and UbK63R mutants, which are known to impair elongation of Lys(48)- and Lys(63)-linked poly-ubiquitin chains, respectively. Overall, these findings indicate that under basal conditions, the rate of de-ubiquitylation, rather than that of substrate ubiquitylation, is critical for the maintenance of appropriate levels of IKK/NF-kappaB activity.
Collapse
|
20
|
Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 2008; 7:90-100. [PMID: 18202012 DOI: 10.1158/1535-7163.mct-07-0463] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have reported previously that PX-478 (S-2-amino-3-[4'-N,N,-bis(chloroethyl)amino]phenyl propionic acid N-oxide dihydrochloride) has potent antitumor activity against a variety of human tumor xenografts associated with the levels of the hypoxia-inducible factor-1alpha (HIF-1alpha) within the tumor. We now report that PX-478 inhibits HIF-1alpha protein levels and transactivation in a variety of cancer cell lines. Hypoxia-induced vascular endothelial growth factor formation was inhibited by PX-478, whereas baseline levels of vascular endothelial growth factor in normoxia were unaffected. Studies of the mechanism of PX-478 action showed that HIF-1alpha inhibition occurs in both normoxia and hypoxia and does not require pVHL or p53. In addition, PX-478 decreases levels of HIF-1alpha mRNA and inhibits translation as determined by 35S labeling experiments and reporter assays using the 5' untranslated region of HIF-1alpha. Moreover, to a lesser extent, PX-478 also inhibits HIF-1alpha deubiquitination resulting in increased levels of polyubiquitinated HIF-1alpha. The inhibitory effect of PX-478 on HIF-1alpha levels is primarily due to its inhibition of translation because HIF-1alpha translation continues in hypoxia when translation of most proteins is decreased. We conclude that PX-478 inhibits HIF-1alpha at multiple levels that together or individually may contribute to its antitumor activity against HIF-1alpha-expressing tumors.
Collapse
Affiliation(s)
- Mei Y Koh
- M. D. Anderson Cancer Center, University of Texas, FC-6.3044, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Tong-xin-luo capsule inhibits left ventricular remodeling in spontaneously hypertensive rats by enhancing PPAR-γ expression and suppressing NF-κB activity. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200801020-00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Ye Z, Petrof EO, Boone D, Claud EC, Sun J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:882-92. [PMID: 17690189 PMCID: PMC1959497 DOI: 10.2353/ajpath.2007.070220] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AvrA is a newly described bacterial effector existing in Salmonella. Here, we test the hypothesis that AvrA is a deubiquitinase that removes ubiquitin from two inhibitors of the nuclear factor-kappaB (NF-kappaB) pathway, IkappaBalpha and beta-catenin, thereby inhibiting the inflammatory responses of the host. The role of AvrA was assessed in intestinal epithelial cell models and in mouse models infected with AvrA-deficient and -sufficient Salmonella strains. We also purified AvrA and AvrA mutant proteins and characterized their deubiquitinase activity in a cell-free system. We investigated target gene and inflammatory cytokine expression, as well as effects on epithelial cell proliferation and apoptosis induced by AvrA-deficient and -sufficient bacterial strains in vivo. Our results show that AvrA blocks degradation of IkappaBalpha and beta-catenin in epithelial cells. AvrA deubiquitinates IkappaBalpha, which blocks its degradation and leads to the inhibition of NF-kappaB activation. Target genes of the NF-kappaB pathway, such as interleukin-6, were correspondingly down-regulated during bacterial infection with Salmonella expressing AvrA. AvrA also deubiquitinates and thus blocks degradation of beta-catenin. Target genes of the beta-catenin pathway, such as c-myc and cyclinD1, were correspondingly up-regulated with AvrA expression. Increased beta-catenin further negatively regulates the NF-kappaB pathway. Our findings suggest an important role for AvrA in regulating host inflammatory responses through NF-kappaB and beta-catenin pathways.
Collapse
Affiliation(s)
- Zhongde Ye
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|