1
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
2
|
An ultrasensitive electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex using methylene blue as an electrochemical probe for insulin detection. Anal Bioanal Chem 2021; 413:7451-7462. [PMID: 34668997 DOI: 10.1007/s00216-021-03703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
This work introduces an electrochemical aptasensor based on a single-stranded aptamer-Au@Fe-MIL-88 complex for sensitive and selective determination of insulin using differential pulls voltammetry. Au@Fe-MIL-88 with a large surface area was synthesized and employed as a suitable substrate for immobilization of the aptamer (APT-Au@Fe-MIL-88). Methylene blue (MB), as an electrochemical probe, was intercalated into the aptamer. Graphene oxide (GO) and zinc sulfide (ZnS) were placed on the Au electrode to amplify the MB current. Also, ZnS improves the immobilization of APT-Au@Fe-MIL-88 into the aptasensor through the strong interaction of Au-S. In the presence of the insulin, MB is released from the aptamer due to DNA conformational change, and as a result, the peak intensity of the intercalated MB was decreased. Under optimal conditions, the change in the current of MB was proportional to the insulin concentration in the range of 5.0 × 10-16-5.0 × 10-11 mol L-1, with a superior ultra-low detection limit of 1.3 × 10-16 mol L-1. It was observed that the aptasensor is suitable for determining insulin in serum samples with good sensitivity and reproducibility and with recoveries ranging from 96.4 to 102.0%. The relative standard deviations (RSD) were lower than 3.8% (n = 3).
Collapse
|
3
|
Abstract
The qualitative and quantitative determination of insulin and its related substances (e. g., C-peptide) is of great importance in many different areas of analytical chemistry. In particular, due to the steadily increasing prevalence of metabolic disorders such as diabetes mellitus, an adequate control of the circulating amount of insulin is desirable. In addition, also in forensics and doping control analysis, the determination of insulin in blood, urine or other biological matrices plays a major role. However, in order to establish general reference values for insulin and C-peptide for diabetology, the comparability of measured concentrations is indispensable. This has not yet been fully implemented, although enormous progress has been made in recent years, and the search for a "gold standard" method is still ongoing. In addition to established ligand-binding assays, an increasing number of mass-spectrometric methods have been developed and employed as the to-date available systems (for example, high-resolution/high accuracy mass spectrometers) provide the sensitivity required to determine analyte concentrations in the sub-ng/mL (sub-100pmol/L) level. Meanwhile, also high-throughput measurements have been realized to meet the requirement of testing a high number of samples in a short period of time. Further developments aim at enabling the online measurement of insulin in the blood with the help of an insulin sensor and, in the following, in addition to a brief review, today's state of the art testing developments are summarized.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
4
|
Martini D, Biasini B, Zavaroni I, Bedogni G, Musci M, Pruneti C, Passeri G, Ventura M, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Del Rio D. Claimed effects, outcome variables and methods of measurement for health claims proposed under European Community Regulation 1924/2006 in the area of blood glucose and insulin concentrations. Acta Diabetol 2018; 55:391-404. [PMID: 29383587 DOI: 10.1007/s00592-017-1095-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Most requests for authorization to bear health claims under Articles 13(5) and 14 related to blood glucose and insulin concentration/regulation presented to the European Food Safety Authority (EFSA) receive a negative opinion. Reasons for such decisions are mainly ascribable to poor substantiation of the claimed effects. In this scenario, a project was carried out aiming at critically analysing the outcome variables (OVs) and methods of measurement (MMs) to be used to substantiate health claims, with the final purpose to improve the quality of applications provided by stakeholders to EFSA. This manuscript provides a position statement of the experts involved in the project, reporting the results of an investigation aimed to collect, collate and critically analyse the information relevant to claimed effects (CEs), OVs and MMs related to blood glucose and insulin levels and homoeostasis compliant with Regulation 1924/2006. The critical analysis of OVs and MMs was performed with the aid of the pertinent scientific literature and was aimed at defining their appropriateness (alone or in combination with others) to support a specific CE. The results can be used to properly select OVs and MMs in a randomized controlled trial, for an effective substantiation of the claims, using the reference method(s) whenever available. Moreover, results can help EFSA in updating the guidance for the scientific requirements of health claims.
Collapse
Affiliation(s)
- Daniela Martini
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Medical School, Building A, Via Volturno 39, 43125, Parma, Italy
| | - Beatrice Biasini
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Medical School, Building A, Via Volturno 39, 43125, Parma, Italy
| | - Ivana Zavaroni
- Division of Endocrinology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - Giorgio Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Basovizza, Trieste, Italy
| | - Marilena Musci
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Carlo Pruneti
- Department of Medicine and Surgery, Clinical Psychology Unit, University of Parma, Medical School Building, Parma, Italy
| | - Giovanni Passeri
- Department of Medicine and Surgery, Building Clinica Medica Generale, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniela Galli
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, Parma, Italy
| | - Alessandra Dei Cas
- Division of Endocrinology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - Riccardo C Bonadonna
- Division of Endocrinology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Medical School, Building A, Via Volturno 39, 43125, Parma, Italy.
| |
Collapse
|
5
|
Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Besharati M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim Acta 2017; 185:59. [PMID: 29594593 DOI: 10.1007/s00604-017-2570-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
The authors describe an electrochemical method for aptamer-based determination of insulin at femtomolar concentrations. The surface of a screen printed electrode was modified with ordered mesoporous carbon that was chemically modified with 1,3,6,8-pyrenetetrasulfonate (TPS). The amino-terminated aptamer was then covalently linked to TPS via reactive sulfonyl chloride groups. Subsequently, the redox probe Methylene Blue (MB) was interacted into the aptamer. The MB-modified binds to insulin and this results in the release of MB and a decreased signal as obtained by differential pulse voltammetry, best at a working voltage of -0.3 V (versus silver pseudo-reference electrode). Insulin can be quantified by this method in the 1.0 fM to 10.0 pM concentration range, with a 0.18 fM limit of detection (at 3σ/slope). The assay was applied to the determination of insulin in spiked human serum samples. The method is highly sensitive, selective, stable, and has a wide analytical range. Graphical abstract The surface of a screen printed electrode was modified with ordered mesoporous carbon-1,3,6,8-pyrenetetrasulfonate. The amino-terminated aptamer was then linked to the 1,3,6,8-pyrenetetrasulfonate. Then, the Methylene Blue was interacted into the aptamer. The modified electrode was applied to the determination of insulin.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, P.O. Box 6714967346, Kermanshah, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran.
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Saeed Sarkar
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 1417613151, Tehran, Iran
| | - Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and center of excellence in phylogeny living organisms, College of Science, University of Tehran, P.O. Box 41556455, Tehran, Iran
- Microbial technology and products (MTP) research center, University of Tehran, P.O. Box 1417466191, Tehran, Iran
| |
Collapse
|
6
|
Imani M, Shahmohamadnejad S. Recombinant production of Aspergillus Flavus uricase and investigation of its thermal stability in the presence of raffinose and lactose. 3 Biotech 2017; 7:201. [PMID: 28667645 DOI: 10.1007/s13205-017-0841-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
Aspergillus flavus uricase (Rasburicase) with a molecular mass of 135 kDa is currently used for the treatment of gout and hyperuricemia occurring in tumor lysis syndrome. To characterize the effects of raffinose and lactose osmolytes on the uricase structure, its coding sequence was cloned, expressed in E. coli BL21, and purified by Ni-NTA agarose affinity chromatography. Thermal inactivation studies at 40 °C showed that nearly 15% of UOX activity was preserved, while the presence of raffinose and lactose reduced its activity to 35 and 45% of its original activity, respectively. Investigation of UOX thermal stability at 40 °C in the course of time showed that the enzyme relatively lost almost 60% of its original activity after 40 min, whereas more than 50% of UOX activity is preserved in the presence of lactose. Estimation of thermal inactivation rate constant, k in, showed that the UOX k in and UOX k in in the presence of raffinose was unchanged (0.018 min-1), whereas for the presence of lactose, it was 0.015 min-1. Half-life and T m analysis showed that UOX half-life is almost 38 min and addition of raffinose did not change the half-life, whereas the presence of lactose had remarkable impact on UOX half-life (46 min). The presence of raffinose increased UOX T m to a lesser extent, whereas lactose notably enhanced the T m from 27 to 37 °C. Overall, our findings show that lactose has protective effects on UOX stability, while for raffinose, it is relatively compromised.
Collapse
|
7
|
Lei C, Xu C, Noonan O, Meka AK, Zhang L, Nouwens A, Yu C. Mesoporous materials modified by aptamers and hydrophobic groups assist ultra-sensitive insulin detection in serum. Chem Commun (Camb) 2016; 51:13642-5. [PMID: 26226380 DOI: 10.1039/c5cc04458h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mesoporous material modified with both insulin-binding-aptamers and hydrophobic methyl groups is synthesized. With rationally designed pore structures and surface chemistry, this material is applied in sample pre-treatment for ELISA, and enables the quantification (0.25-5 pg ml(-1)) of insulin in serum, 30-fold enhancement of the limit-of-detection compared to the commercial ELISA kit.
Collapse
Affiliation(s)
- Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Tiwari MP, Prasad BB. An insulin monitoring device based on hyphenation between molecularly imprinted micro-solid phase extraction and complementary molecularly imprinted polymer-sensor. J Chromatogr A 2014; 1337:22-31. [DOI: 10.1016/j.chroma.2014.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
|
9
|
Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Yilmaz B, Kadioglu Y, Capoglu I. Determination of Insulin in Humans with Insulin-Dependent Diabetes Mellitus Patients by HPLC with Diode Array Detection. J Chromatogr Sci 2012; 50:586-90. [DOI: 10.1093/chromsci/bms042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2011. [DOI: 10.1155/2011/132435] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability) hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can actin vitroas a sustained release system for peptide.
Collapse
|
12
|
Pillai O, Kumar N, Dey CS, Borkute S, Nagalingam S, Panchagnula R. Transdermal iontophoresis of insulin. Part 1: A study on the issues associated with the use of platinum electrodes on rat skin. J Pharm Pharmacol 2010; 55:1505-13. [PMID: 14713361 DOI: 10.1211/0022357022197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
We have studied the issues associated with the use of platinum electrodes for transdermal iontophoretic delivery of peptides, using insulin as a model peptide. Insulin permeation was studied using full-thickness rat skin by varying the donor solution pH as a function of electrode polarity. The stability of insulin under the iontophoretic conditions was studied using TLC, SDS-polyacrylamide gel electrophoresis and HPLC. Large pH shifts were observed during anodal iontophoresis (AI), when the donor solution pH was above the isoelectric point of insulin and in cathodal iontophoresis (CI), when the donor solution pH was below the isoelectric point of insulin. The direction and magnitude of electroosmotic flow was influenced by pH of the donor solution and the electrode polarity. On the other hand, the buffer used to maintain the pH governed the contribution of electrorepulsion to the overall transport of insulin. Electrochemical degradation of insulin was significant during Al at pH 7.4. Among the pH investigated, Al of insulin at pH 3.6 and Cl at pH 8.35 were better, as the pH shift was relatively less and electrochemically more stable during iontophoresis as compared with other pH. In summary, the pH shift caused by platinum electrodes had a significant influence on the permeation and stability of insulin.
Collapse
Affiliation(s)
- Omathanu Pillai
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar-160062, Punjab, India
| | | | | | | | | | | |
Collapse
|
13
|
Ortner K, Buchberger W, Himmelsbach M. Capillary electrokinetic chromatography of insulin and related synthetic analogues. J Chromatogr A 2009; 1216:2953-7. [DOI: 10.1016/j.chroma.2008.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/26/2008] [Accepted: 11/03/2008] [Indexed: 11/15/2022]
|
14
|
Rastogi R, Anand S, Koul V. Evaluation of pharmacological efficacy of 'insulin-surfoplex' encapsulated polymer vesicles. Int J Pharm 2009; 373:107-15. [PMID: 19429295 DOI: 10.1016/j.ijpharm.2009.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/23/2009] [Accepted: 01/24/2009] [Indexed: 11/18/2022]
Abstract
The present study has been designed to study whether formation of ion-pair complex or 'surfoplex' can enhance the pharmacological efficacy of protein-loaded PCL-PEG-based polymerosomes. Insulin was selected as the model protein and was complexed with sodium deoxycholate, a naturally occurring bile salt. The surfoplexes were characterized for extent and site of complexation, stability, mass and partition coefficient. The lipophilicity of insulin was enhanced 5-fold upon complexation resulting in an increase in entrapment efficiency by 10-50% for all formulations compared to free insulin. The release of insulin from the systems was also modulated with reduction in burst release by 30%. The surfoplex was found to be therapeutically active for 8h duration (C(max) serum insulin=64.15+/-13.28 mIU/mL) in diabetic rat model. However, pharmacological efficacy of the complex-loaded nanoparticles (Nps) did not show significant enhancement with respect to insulin-loaded systems. The study therefore suggests that while ion-pair complexes may improve the in vitro kinetics of protein-loaded carriers, their therapeutic potential is dependent on the intensity of interactions between the peptide chains and polymer matrix.
Collapse
Affiliation(s)
- Rachna Rastogi
- II/192, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | |
Collapse
|
15
|
Kuuranne T, Thomas A, Leinonen A, Delahaut P, Bosseloir A, Schänzer W, Thevis M. Insulins in equine urine: qualitative analysis by immunoaffinity purification and liquid chromatography/tandem mass spectrometry for doping control purposes in horse-racing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:355-362. [PMID: 18181226 DOI: 10.1002/rcm.3360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Insulin is a peptide hormone consisting of two peptide chains (A- and B-chain) that are cross-linked by two disulfide bonds. To obtain improved pharmacokinetic onset of action profiles of insulin treatment in diabetic patients, recombinant long-, intermediate-, and rapid-acting insulin analogs are produced, in which the C-terminal end of the B-chain plays an especially important role.A review of the veterinary literature reveals the low prevalence of equine type I diabetes mellitus, which indicates that the therapeutic use of insulin in racing horses is unlikely. Although there is no unequivocal evidence of an overall performance-enhancing effect of insulin, in human sports the misuse of insulin preparations is reported among elite athletes. The desired effects of insulin include the increase of muscular glycogen prior to sports event or during the recovery phase, in addition to a chalonic action, which increases the muscle size by inhibiting protein breakdown. In the present study urinary insulin was detected in equine samples and differences between equine insulin, human insulin, as well as rapidly acting recombinant insulin variants were examined. The method was based on sample purification by solid-phase extraction (SPE) and immunoaffinity chromatography (IAC), and subsequent analysis by microbore liquid chromatography (LC) and tandem mass spectrometry (MS/MS) using top-down sequencing for the determination of various insulins. Product ion scan experiments of intact proteins and B-chains enabled the differentiation between endogenously produced equine insulin, its DesB30 metabolite, human insulin and recombinant insulin analogs, and the assay allowed the assignment of individual product ions, especially those originating from modified C-termini of B-chains.
Collapse
Affiliation(s)
- Tiia Kuuranne
- Institute of Biochemistry - Center for Preventive Doping Research, German Sports University Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Ravi S, Peh KK, Darwis Y, Krishna Murthy B, Raghu Raj Singh T. Development and Validation of an HPLC–UV Method for the Determination of Insulin in Rat Plasma: Application to Pharmacokinetic Study. Chromatographia 2007. [DOI: 10.1365/s10337-007-0402-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed Chromatogr 2006; 20:898-903. [PMID: 16389645 DOI: 10.1002/bmc.616] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A reversed-phase high-performance liquid chromatographic (HPLC) method has been developed and validated for the determination of insulin in nanoparticulate dosage forms. Its application for the development and characterization of insulin-loaded nanoparticulates composed of polyelectrolytes has also been carried out. A reversed-phase (RP) C18 column and gradient elution with a mobile phase composed of acetonitrile (ACN) and 0.1% aqueous trifluoroacetic acid (TFA) solution at a flow rate of 1 mL/min was used. Protein identification was made by UV detection at 214 nm. The gradient changed from 30:70 (ACN:TFA, v/v) to 40:60 (v/v) in 5 min followed by isocratic elution at 40:60 (v/v) for a further five minutes. The method was linear in the range of 1-100 microg/mL (R2 = 0.9996), specific with a good inter-day and intra-day precision based on relative standard deviation values (less than 3.80%). The recovery was between 98.86 and 100.88% and the detection and quantitation limits were 0.24 and 0.72 microg/mL, respectively. The method was further tested for the determination of the association efficiency of insulin to nanoparticulate carriers composed of alginate and chitosan, as well as its loading capacity for this protein. Encapsulant release under simulated gastrointestinal fluids was evaluated. The method can be used for development and characterization of insulin-loaded nanoparticles made from cross-linked chitosan-alginate.
Collapse
Affiliation(s)
- Bruno Sarmento
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
18
|
Yang C, Huang H, Zhang H, Liu M. Analysis of Insulin by High Performance Liquid Chromatographic Method with Precolumn Derivatization with 4‐Chloro‐7‐Nitrobenzo‐2‐Oxa‐1,3‐Diazole. ANAL LETT 2006. [DOI: 10.1080/01932690600824147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Killen BU, Corrigan OI. Effect of soluble filler on drug release from stearic acid based compacts. Int J Pharm 2006; 316:47-51. [PMID: 16600537 DOI: 10.1016/j.ijpharm.2006.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/27/2006] [Accepted: 02/17/2006] [Indexed: 11/24/2022]
Abstract
Fatty acids are potentially suitable carriers for use in the design of drug delivery systems, being biocompatible, biodegradable, of low toxicity inexpensive, with drug release being approximately proportional to the square root of time. However, at low drug loadings, below the critical percolation threshold, release is likely to be extremely slow and incomplete. To overcome these problems, we have investigated the use of increasing amounts of the soluble filler lactose on drug release. Benzoic acid and insulin were used as model low and high molecular weight drugs, respectively. At a 10% loading, benzoic acid was an order of magnitude higher than that observed for insulin. Using lactose as soluble filler, it was possible to effect greater release with increasing lactose content in the range 10-50%. Values of F, the formation factor, increased, but not to the same extent as for increased drug loading. The Higuchi release rate constant, k, was similar at lactose loadings of 5-20%, but increased rapidly at higher lactose loadings. Quantitatively, the addition of lactose yielded release rate constants 1.2-3.6 times greater than the value for lactose-free compacts in the case of benzoic acid and two- to five-fold in the case of insulin. A linear relationship was demonstrated between k, and the percentage soluble fraction of the matrix above the percolation threshold.
Collapse
Affiliation(s)
- Bronagh U Killen
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
20
|
Santos C, Afonso RA, Guarino MP, Patarrão RS, Fernandes A, Noronha JP, Macedo MP, Caldeira J. In vitro nitrosation of insulin A- and B-chains. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2006; 12:331-8. [PMID: 17404423 DOI: 10.1255/ejms.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The physiological roles of insulin and nitric oxide (NO) have been recently recognized by several studies. A diversity of chemical modifications of insulin is reported both in vivo and in vitro. S-nitrosation, the covalent linkage of NO to cysteine free thiol is recognized as an important post-translational regulation in many proteins. Here we report the in vitro synthesis of an S-nitrosothiol of bovine insulin A- and B-chains. These compounds were characterized by their HPLC chromatographic behavior, monitored by UV visible spectroscopy and electron spray ionization mass spectrometry. The experimental results indicate that each A- and B-chain were S- nitrosated with only one NO group. Stability and solubility of these synthesized derivatives is described for physiological purposes. In this work, nitroso A- and B-chains of insulin were synthesized in vitro in order to better understand the possible interactions between insulin and NO that may be involved in the etiology of insulin resistance.
Collapse
Affiliation(s)
- Celina Santos
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Application of electrospray ionization-mass spectrometry to screen extractants for determination of insulin in an emulsion system by HPLC-UV. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Bulotta A, Perfetti R, Hui H, Boros LG. GLP-1 stimulates glucose-derived de novo fatty acid synthesis and chain elongation during cell differentiation and insulin release. J Lipid Res 2003; 44:1559-65. [PMID: 12777469 DOI: 10.1194/jlr.m300093-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1, 7-36) is capable of restoring normal glucose tolerance in aging, glucose-intolerant Wistar rats and is a potent causal factor in differentiation of human islet duodenal homeobox-1-expressing cells into insulin-releasing beta cells. Here we report stable isotope-based dynamic metabolic profiles of rat pancreatic epithelial (ARIP) and human ductal tumor (PANC-1) cells responding to 10 nM GLP-1 treatment in 48 h cultures. Macromolecule synthesis patterns and substrate flow measurements using gas chromatography/mass spectrometry (MS) and the stable [1,2-13C2]glucose isotope as the tracer showed that GLP-1 induced a significant 20% and 60% increase in de novo fatty acid palmitate synthesis in ARIP and PANC-1 cells, respectively, and it also induced a significant increase in palmitate chain elongation into stearate utilizing glucose as the primary substrate. Distribution of 13C in other metabolites indicated no changes in the rates of nucleic acid ribose synthesis, glutamate oxidation, or lactate production. Tandem high-performance liquid chromatography-ion trap MS analysis of the culture media demonstrated mass insulin secretion by GLP-1-treated tumor cells. Metabolic profile changes in response to GLP-1-induced cell differentiation include selective increases in de novo fatty acid synthesis from glucose and consequent chain elongation, allowing increased membrane formation and greater insulin availability and release.
Collapse
Affiliation(s)
- Angela Bulotta
- Division of Endocrinology, Cedars-Sinai Medical Center 8723 Alden Drive, SSB 290 Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
23
|
Shenoy DB, D'Souza RJ, Tiwari SB, Udupa N. Potential applications of polymeric microsphere suspension as subcutaneous depot for insulin. Drug Dev Ind Pharm 2003; 29:555-63. [PMID: 12779285 DOI: 10.1081/ddc-120018644] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this investigation was to develop an injectable, depot-forming drug delivery system for insulin based on microparticle technology to maintain constant plasma drug concentrations over prolonged period of time for the effective control blood sugar levels. Formulations were optimized with two well-characterized biodegradable polymers namely, poly(DL-lactide-co-glycolide) and poly-epsilon-caprolactone and evaluated in vitro for physicochemical characteristics, drug release in phosphate buffered saline (pH 7.4), and evaluated in vivo in streptozotocin-induced hypoglycemic rats. With a large volume of internal aqueous phase during w/o/w double emulsion solvent evaporation process and high molecular weight of the polymers used, we could not achieve high drug capture and precise control over subsequent release within the study period of 60 days. However, this investigation revealed that upon subcutaneous injection, the biodegradable depot-forming polymeric microspheres controlled the drug release and plasma sugar levels more efficiently than plain insulin injection. Preliminary pharmacokinetic evaluation exhibited steady plasma insulin concentration during the study period. These formulations, with their reduced frequency of administration and better control over drug disposition, may provide an economic benefit to the user compared with products currently available for diabetes control.
Collapse
Affiliation(s)
- Dinesh B Shenoy
- Dr. T. M. A. Pai Pharmaceutical Research Centre, College of Pharmaceutical Sciences, Manipal, Karnataka, India.
| | | | | | | |
Collapse
|