1
|
Yarawsky AE, Ciatto C, Slade P, Figueroa NI, Burgner JW, DeLion MT, Paul LN. Quantitation of adeno-associated virus in a dual-vector system using sedimentation velocity analytical ultracentrifugation. J Pharm Sci 2025; 114:900-910. [PMID: 39471891 DOI: 10.1016/j.xphs.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has become the "gold standard" for characterization of the empty, partial, and full capsids of gene therapy products (e.g., AAV and Adenovirus vectors). Other techniques, such as SEC-MALS, TEM, and mass photometry, are commonly used for capsid quantitation, however, the resolving power of these techniques is lacking. In this body of work, SV-AUC was implemented in the characterization of a dual-vector AAV system where the difference in packaged genomes was ∼400 nucleotides. The instrument parameters and SV-AUC analysis were optimized to accurately quantitate both AAV vectors with less than 8% error and with highly correlated linearity (R2 > 0.99) as compared to ddPCR. The results of this work highlight the resolution and accuracy of dual-vector capsid quantitation by SV-AUC and demonstrate the use of the powerful Bayesian analysis implemented in the SEDFIT analysis software.
Collapse
Affiliation(s)
| | - Carlo Ciatto
- Decibel Therapeutics, Inc., 1325 Boylston Street Suite 500, Boston, MA 02215, USA
| | - Peter Slade
- Decibel Therapeutics, Inc., 1325 Boylston Street Suite 500, Boston, MA 02215, USA
| | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA.
| |
Collapse
|
2
|
Kingsbury JS, Starr CG, Gokarn YR. A scaling relationship between thermodynamic and hydrodynamic interactions in protein solutions. Biophys J 2024; 123:3871-3883. [PMID: 39360382 PMCID: PMC11617628 DOI: 10.1016/j.bpj.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
Weak protein interactions are associated with a broad array of biological functions and are often implicated in molecular dysfunction accompanying human disease. In addition, these interactions are a critical determinant in the effective manufacturing, stability, and administration of biotherapeutic proteins. Despite their prominence, much remains unknown about how molecular attributes influence the hydrodynamic and thermodynamic contributions to the overall interaction mechanism. To systematically probe these contributions, we have evaluated self-interaction in a diverse set of proteins that demonstrate a broad range of behaviors from attractive to repulsive. Analysis of the composite trending in the data provides a convenient interconversion among interaction parameters measured from the concentration dependence of the molecular weight, diffusion coefficient, and sedimentation coefficient, as well as insight into the relationship between thermodynamic and hydrodynamic interactions. We find relatively good agreement between our data and a model for interacting hard spheres in the range of weak self-association. In addition, we propose an empirically derived, general scaling relationship applicable across a broad range of self-association and repulsive behaviors.
Collapse
Affiliation(s)
| | | | - Yatin R Gokarn
- Global CMC Development, Sanofi, Framingham, Massachusetts
| |
Collapse
|
3
|
Yarawsky AE, Gough ES, Zai-Rose V, Figueroa NI, Cunningham HM, Burgner JW, DeLion MT, Paul LN. BASIS: BioAnalysis SEDFIT integrated software for cGMP analysis of SV-AUC data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:111-121. [PMID: 38329496 DOI: 10.1007/s00249-024-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the "gold standard" analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, "BASIS", which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.
Collapse
Affiliation(s)
| | - Erik S Gough
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|
4
|
Yarawsky AE, Dinu V, Harding SE, Herr AB. Strong non-ideality effects at low protein concentrations: considerations for elongated proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:427-438. [PMID: 37055656 PMCID: PMC10599268 DOI: 10.1007/s00249-023-01648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
A recent investigation was aimed at obtaining structural information on a highly extended protein via SEC-MALS-SAXS. Significantly broadened elution peaks were observed, reminiscent of a phenomenon known as viscous fingering. This phenomenon is usually observed above 50 mg/mL for proteins like bovine serum albumin (BSA). Interestingly, the highly extended protein (Brpt5.5) showed viscous fingering at concentrations lower than 5 mg/mL. The current study explores this and other non-ideal behavior, emphasizing the presence of these effects at relatively low concentrations for extended proteins. BSA, Brpt5.5, and a truncated form of Brpt5.5 referred to as Brpt1.5 are studied systematically using size-exclusion chromatography (SEC), sedimentation velocity analytical ultracentrifugation (AUC), and viscosity. The viscous fingering effect is quantified using two approaches and is found to correlate well with the intrinsic viscosity of the proteins-Brpt5.5 exhibits the most severe effect and is the most extended protein tested in the study. By AUC, the hydrodynamic non-ideality was measured for each protein via global analysis of a concentration series. Compared to BSA, both Brpt1.5 and Brpt5.5 showed significant non-ideality that could be easily visualized at concentrations at or below 5 mg/mL and 1 mg/mL, respectively. A variety of relationships were examined for their ability to differentiate the proteins by shape using information from AUC and/or viscosity. Furthermore, these relationships were also tested in the context of hydrodynamic modeling. The importance of considering non-ideality when investigating the structure of extended macromolecules is discussed.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Yarawsky AE, Zai-Rose V, Cunningham HM, Burgner JW, DeLion MT, Paul LN. AAV analysis by sedimentation velocity analytical ultracentrifugation: beyond empty and full capsids. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:353-366. [PMID: 37037926 DOI: 10.1007/s00249-023-01646-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
The recent surge of therapeutic interest in recombinant adeno-associated viral (AAV) vectors for targeted DNA delivery has brought analytical ultracentrifugation (AUC) into the spotlight. A major concern during formulation of AAV therapeutics is purity of the active species (DNA-containing capsid, or "filled capsids"). Insertion of DNA into AAV is not a highly efficient process; thus, a significant amount of empty and partial/intermediate AAV molecules may exist. Recent guidance from the FDA includes limiting the presence of empty AAV capsids and other impurities to reduce immunotoxicity. While chromatographic techniques (SEC, SEC-MALS, AEX) are often used for empty and full capsid quantitation due to the ease of accessibility and familiarity among most biochemists, the resolution and sensitivity attained by sedimentation velocity (SV-AUC) in the formulation buffer and purification buffers is unmatched. Approaches for using SV-AUC to determine the empty-to-full capsid ratio have already been discussed by others; however, in this report, we focus on the importance of characterizing other impurities, such as free DNA, partially filled capsids, and aggregates that are recognized as species of concern for immunotoxicity. We also demonstrate the usefulness of applying multiple analyses (e.g., c(s), g(s*), WDA) in confirming the presence of and determining the hydrodynamic parameters of these various species.
Collapse
Affiliation(s)
| | - Valeria Zai-Rose
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | | | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Michael T DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| |
Collapse
|
6
|
Yarawsky AE, Ori AL, English LR, Whitten ST, Herr AB. Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523059. [PMID: 36711672 PMCID: PMC9881980 DOI: 10.1101/2023.01.06.523059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.
Collapse
Affiliation(s)
- Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrea L. Ori
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lance R. English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Chaturvedi SK, Parupudi A, Juul-Madsen K, Nguyen A, Vorup-Jensen T, Dragulin-Otto S, Zhao H, Esfandiary R, Schuck P. Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs 2021; 12:1810488. [PMID: 32887536 PMCID: PMC7531506 DOI: 10.1080/19420862.2020.1810488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoclonal antibodies are a class of biotherapeutics used for an increasing variety of disorders, including cancer, autoimmune, neurodegenerative, and viral diseases. Besides their antigen specificity, therapeutic use also mandates control of their solution interactions and colloidal properties in order to achieve a stable, efficacious, non-immunogenic, and low viscosity antibody solution at concentrations in the range of 50–150 mg/mL. This requires characterization of their reversible self-association, aggregation, and weak attractive and repulsive interactions governing macromolecular distance distributions in solution. Simultaneous measurement of these properties, however, has been hampered by solution nonideality. Based on a recently introduced sedimentation velocity method for measuring macromolecular size distributions in a mean-field approximation for hydrodynamic interactions, we demonstrate simultaneous measurement of polydispersity and weak and strong solution interactions in a panel of antibodies with concentrations up to 45 mg/mL. By allowing approximately an order of magnitude higher concentrations than previously possible in sedimentation velocity size distribution analysis, this approach can substantially improve efficiency and sensitivity for characterizing polydispersity and interactions of therapeutic antibodies at or close to formulation conditions.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Kristian Juul-Madsen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Sonia Dragulin-Otto
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Reza Esfandiary
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
8
|
Dixit U, Bhutoria S, Wu X, Qiu L, Spira M, Mathew S, Harris R, Adams LJ, Cahill S, Pathak R, Rajesh Kumar P, Nguyen M, Acharya SA, Brenowitz M, Almo SC, Zou X, Steven AC, Cowburn D, Girvin M, Kalpana GV. INI1/SMARCB1 Rpt1 domain mimics TAR RNA in binding to integrase to facilitate HIV-1 replication. Nat Commun 2021; 12:2743. [PMID: 33980829 PMCID: PMC8115288 DOI: 10.1038/s41467-021-22733-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
INI1/SMARCB1 binds to HIV-1 integrase (IN) through its Rpt1 domain and exhibits multifaceted role in HIV-1 replication. Determining the NMR structure of INI1-Rpt1 and modeling its interaction with the IN-C-terminal domain (IN-CTD) reveal that INI1-Rpt1/IN-CTD interface residues overlap with those required for IN/RNA interaction. Mutational analyses validate our model and indicate that the same IN residues are involved in both INI1 and RNA binding. INI1-Rpt1 and TAR RNA compete with each other for IN binding with similar IC50 values. INI1-interaction-defective IN mutant viruses are impaired for incorporation of INI1 into virions and for particle morphogenesis. Computational modeling of IN-CTD/TAR complex indicates that the TAR interface phosphates overlap with negatively charged surface residues of INI1-Rpt1 in three-dimensional space, suggesting that INI1-Rpt1 domain structurally mimics TAR. This possible mimicry between INI1-Rpt1 and TAR explains the mechanism by which INI1/SMARCB1 influences HIV-1 late events and suggests additional strategies to inhibit HIV-1 replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Savita Bhutoria
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Xuhong Wu
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Menachem Spira
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Sheeba Mathew
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Richard Harris
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Lucas J Adams
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - P Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Minh Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA
| | - Seetharama A Acharya
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Mark Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, NY, USA
| | - Ganjam V Kalpana
- Department of Genetics, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
9
|
Winzor DJ, Dinu V, Scott DJ, Harding SE. Quantifying the concentration dependence of sedimentation coefficients for globular macromolecules: a continuing age-old problem. Biophys Rev 2021; 13:273-288. [PMID: 33936319 PMCID: PMC8046895 DOI: 10.1007/s12551-021-00793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
This retrospective investigation has established that the early theoretical attempts to directly incorporate the consequences of radial dilution into expressions for variation of the sedimentation coefficient as a function of the loading concentration in sedimentation velocity experiments require concentration distributions exhibiting far greater precision than that achieved by the optical systems of past and current analytical ultracentrifuges. In terms of current methods of sedimentation coefficient measurement, until such improvement is made, the simplest procedure for quantifying linear s-c dependence (or linear concentration dependence of 1/s) for dilute systems therefore entails consideration of the sedimentation coefficient obtained by standard c(s), g*(s) or G(s) analysis) as an average parameter (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯) that pertains to the corresponding mean plateau concentration (following radial dilution) (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{c} $$\end{document}c¯) over the range of sedimentation velocity distributions used for the determination of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯. The relation of this with current descriptions of the concentration dependence of the sedimentation and translational diffusion coefficients is considered, together with a suggestion for the necessary improvement in the optical system.
Collapse
Affiliation(s)
- Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,University of Oslo, Kulturhistorisk museum, Frederiks gate 2, Oslo, 0164 Norway
| |
Collapse
|
10
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
11
|
Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, Gokarn YR. A single molecular descriptor to predict solution behavior of therapeutic antibodies. SCIENCE ADVANCES 2020; 6:eabb0372. [PMID: 32923611 PMCID: PMC7457339 DOI: 10.1126/sciadv.abb0372] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
Despite the therapeutic success of monoclonal antibodies (mAbs), early identification of developable mAb drug candidates with optimal manufacturability, stability, and delivery attributes remains elusive. Poor solution behavior, which manifests as high solution viscosity or opalescence, profoundly affects the developability of mAb drugs. Using a diverse dataset of 59 mAbs, including 43 approved products, and an array of molecular descriptors spanning colloidal, conformational, charge-based, hydrodynamic, and hydrophobic properties, we show that poor solution behavior is prevalent (>30%) in mAbs and is singularly predicted (>90%) by the diffusion interaction parameter (k D), a dilute-solution measure of colloidal self-interaction. No other descriptor, individually or in combination, was found to be as effective as k D. We also show that well-behaved mAbs, a substantial subset of which bear high positive charge and pI, present no disadvantages with respect to pharmacokinetics in humans. Here, we provide a systematic framework with quantitative thresholds for selecting well-behaved therapeutic mAbs during drug discovery.
Collapse
|
12
|
Mitra S, Demeler B. Probing RNA-Protein Interactions and RNA Compaction by Sedimentation Velocity Analytical Ultracentrifugation. Methods Mol Biol 2020; 2113:281-317. [PMID: 32006321 PMCID: PMC10958623 DOI: 10.1007/978-1-0716-0278-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in multi-wavelength analytical ultracentrifugation (MWL-AUC) combine the power of an exquisitely sensitive hydrodynamic-based separation technique with the added dimension of spectral separation. This added dimension has opened up new doors to much improved characterization of multiple, interacting species in solution. When applied to structural investigations of RNA, MWL-AUC can precisely report on the hydrodynamic radius and the overall shape of an RNA molecule by enabling precise measurements of its sedimentation and diffusion coefficients and identify the stoichiometry of interacting components based on spectral decomposition. Information provided in this chapter will allow an investigator to design experiments for probing ion and/or protein-induced global conformational changes of an RNA molecule and exploit spectral differences between proteins and RNA to characterize their interactions in a physiological solution environment.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Chemistry, New York University, New York, NY, USA.
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
13
|
Unusual dynamics of the divergent malaria parasite PfAct1 actin filament. Proc Natl Acad Sci U S A 2019; 116:20418-20427. [PMID: 31548388 DOI: 10.1073/pnas.1906600116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gliding motility and host cell invasion by the apicomplexan parasite Plasmodium falciparum (Pf), the causative agent of malaria, is powered by a macromolecular complex called the glideosome that lies between the parasite plasma membrane and the inner membrane complex. The glideosome core consists of a single-headed class XIV myosin PfMyoA and a divergent actin PfAct1. Here we use total internal reflection fluorescence microscopy to visualize growth of individual unstabilized PfAct1 filaments as a function of time, an approach not previously used with this actin isoform. Although PfAct1 was thought to be incapable of forming long filaments, filaments grew as long as 30 µm. Polymerization occurs via a nucleation-elongation mechanism, but with an ∼4 µM critical concentration, an order-of-magnitude higher than for skeletal actin. Protomers disassembled from both the barbed and pointed ends of the actin filament with similar fast kinetics of 10 to 15 subunits/s. Rapid treadmilling, where the barbed end of the filament grows and the pointed end shrinks while maintaining an approximately constant filament length, was visualized near the critical concentration. Once ATP has been hydrolyzed to ADP, the filament becomes very unstable, resulting in total dissolution in <40 min. Dynamics at the filament ends are suppressed in the presence of inorganic phosphate or more efficiently by BeFX A chimeric PfAct1 with a mammalian actin D-loop forms a more stable filament. These unusual dynamic properties distinguish PfAct1 from more canonical actins, and likely contribute to the difficultly in visualizing PfAct1 filaments in the parasite.
Collapse
|
14
|
Prediction and analysis of analytical ultracentrifugation experiments for heterogeneous macromolecules and nanoparticles based on Brownian dynamics simulation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:845-854. [PMID: 30030576 PMCID: PMC6182663 DOI: 10.1007/s00249-018-1322-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/31/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
Abstract
In the prediction of sedimentation profiles in analytical ultracentrifugation, the counterflow due to diffusion must be taken into account for a proper analysis of experimental data in the determination of molecular properties. This is usually achieved by numerical solution of the Lamm equation. This paper presents an alternative approach, in which the displacement of the solute in the cell, resulting from the opposite effects of ultracentrifugal force and diffusional drift, is described by Brownian dynamics simulation of the solute particles. The formalism is developed for heterogeneous solutes, composed of several species, and implemented in computational schemes and tools. The accuracy of the procedure is verified by comparison with other methods based on the Lamm equation, and its efficiency is illustrated. The possibilities offered by the Brownian dynamics methods in the determination of solute properties and sample composition are demonstrated.
Collapse
|
15
|
Patel TR, Winzor DJ, Scott DJ. Allowance for radial dilution in evaluating the concentration dependence of sedimentation coefficients for globular proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:291-295. [PMID: 28980105 DOI: 10.1007/s00249-017-1259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022]
Abstract
The accuracy with which the concentration dependence of the sedimentation coefficient, s = s 0(1 - kc), can be quantified for globular proteins by commonly used procedures has been examined by subjecting simulated sedimentation velocity distributions for ovalbumin to c(s)‒s analysis. Because this procedure, as well as its g(s)‒s counterpart, is based on assumed constancy of s over the time course of sedimentation coefficient measurement in a given experiment, the best definition of the concentration coefficient k is obtained by associating the measured s with the mean of plateau concentrations for the initial and final distributions used for its determination. The return of a slightly underestimated k (by about 3%) is traced to minor mislocation of the air‒liquid meniscus position as the result of assuming time independence of s in a given experiment. Although more accurate quantification should result from later SEDFIT and SEDANAL programs incorporating the simultaneous evaluation of s 0 and k, the procedures based on assumed constancy of s suffice for determining the limiting sedimentation coefficient s 0-the objective of most s‒c dependence studies.
Collapse
Affiliation(s)
- Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada. .,Discovery Lab, Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Scott
- National Center for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE2 5RD, UK. .,ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Innovation Campus, Oxfordshire, OX11 OFA, UK. .,Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Innovation Campus, Oxfordshire, OX11 OFA, UK.
| |
Collapse
|
16
|
Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H, Krementsova EB, Fagnant PM, Baum J, Trybus KM. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. J Biol Chem 2017; 292:19290-19303. [PMID: 28978649 PMCID: PMC5702669 DOI: 10.1074/jbc.m117.813972] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Motility of the apicomplexan malaria parasite Plasmodium falciparum is enabled by a multiprotein glideosome complex, whose core is the class XIV myosin motor, PfMyoA, and a divergent Plasmodium actin (PfAct1). Parasite motility is necessary for host-cell invasion and virulence, but studying its molecular basis has been hampered by unavailability of sufficient amounts of PfMyoA. Here, we expressed milligram quantities of functional full-length PfMyoA with the baculovirus/Sf9 cell expression system, which required a UCS (UNC-45/CRO1/She4p) family myosin chaperone from Plasmodium spp. In addition to the known light chain myosin tail interacting protein (MTIP), we identified an essential light chain (PfELC) that co-purified with PfMyoA isolated from parasite lysates. The speed at which PfMyoA moved actin was fastest with both light chains bound, consistent with the light chain–binding domain acting as a lever arm to amplify nucleotide-dependent motions in the motor domain. Surprisingly, PfELC binding to the heavy chain required that MTIP also be bound to the heavy chain, unlike MTIP that bound the heavy chain independently of PfELC. Neither the presence of calcium nor deletion of the MTIP N-terminal extension changed the speed of actin movement. Of note, PfMyoA moved filaments formed from Sf9 cell–expressed PfAct1 at the same speed as skeletal muscle actin. Duty ratio estimates suggested that as few as nine motors can power actin movement at maximal speed, a feature that may be necessitated by the dynamic nature of Plasmodium actin filaments in the parasite. In summary, we have reconstituted the essential core of the glideosome, enabling drug targeting of both of its core components to inhibit parasite invasion.
Collapse
Affiliation(s)
- Carol S Bookwalter
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Chwen L Tay
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Rama McCrorie
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michael J Previs
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Hailong Lu
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Elena B Krementsova
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Patricia M Fagnant
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Jake Baum
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Kathleen M Trybus
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
17
|
Mittal M, Singh AK, Kumaran S. Structural and biochemical characterization of ligand recognition by CysB, the master regulator of sulfate metabolism. Biochimie 2017; 142:112-124. [PMID: 28838607 DOI: 10.1016/j.biochi.2017.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
CysB, a member of LysR-type transcriptional regulators, up-regulates the expression of genes associated with sulfate metabolism and cysteine biosynthesis. CysB is activated under sulfur limiting conditions by O-acetylserine (OAS) and N-acetylserine (NAS), but the activation mechanism of CysB remain unknown. Here, we report four crystal structures of ligand binding domains of CysB (CysB-LBD) in apo form and in complex with sulfate, OAS, and NAS. Our results show that CysB has two distinct allosteric ligand binding sites; a sulfate and NAS specific site-1 and a second, NAS and OAS specific site-2. All three ligands bind through the induced-fit mechanism. Surprisingly, OAS remodels the site-1 by binding to site-2, suggesting that site-1 and site-2 are coupled allosterically. Using DNA binding and site-directed mutagenesis approach, we show that OAS enhances NAS mediated activation and mutation at site-1 has no effect on site-2 mediated OAS activation. Results indicate that inducer binding triggered signals from OAS-Specific site-2 are relayed to DBD through site-1. Together, results presented here suggest that induced-fit binding and allosteric coupling between two ligand binding sites and DBD underlie the key feature of CysB activation. Further, this study provides first structural glimpse into recognition of inducer ligands by CysB and provides a general framework to understand how LTTR family regulators respond to dual activators.
Collapse
Affiliation(s)
- Monica Mittal
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India
| | - Appu Kumar Singh
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India
| | - S Kumaran
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
18
|
The Charge Properties of Phospholipid Nanodiscs. Biophys J 2017; 111:989-98. [PMID: 27602726 DOI: 10.1016/j.bpj.2016.06.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/22/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
Phospholipids (PLs) are a major, diverse constituent of cell membranes. PL diversity arises from the nature of the fatty acid chains, as well as the headgroup structure. The headgroup charge is thought to contribute to both the strength and specificity of protein-membrane interactions. Because it has been difficult to measure membrane charge, ascertaining the role charge plays in these interactions has been challenging. Presented here are charge measurements on lipid Nanodiscs at 20°C in 100 mM NaCl, 50 mM Tris, at pH 7.4. Values are also reported for measurements made in the presence of Ca(2+) and Mg(2+) as a function of NaCl concentration, pH, and temperature, and in solvents containing other types of cations and anions. Measurements were made for neutral (phosphatidylcholine and phosphatidylethanolamine) and anionic (phosphatidylserine, phosphatidic acid, cardiolipin, and phosphatidylinositol 4,5-bisphosphate (PIP2)) PLs containing palmitoyl-oleoyl and dimyristoyl fatty acid chains. In addition, charge measurements were made on Nanodiscs containing an Escherichia coli lipid extract. The data collected reveal that 1) POPE is anionic and not neutral at pH 7.4; 2) high-anionic-content Nanodiscs exhibit polyelectrolyte behavior; 3) 3 mM Ca(2+) neutralizes a constant fraction of the charge, but not a constant amount of charge, for POPS and POPC Nanodiscs; 4) in contrast to some previous work, POPC only interacts weakly with Ca(2+); 5) divalent cations interact with lipids in a lipid- and ion-specific manner for POPA and PIP2 lipids; and 6) the monovalent anion type has little influence on the lipid charge. These results should help eliminate inconsistencies among data obtained using different techniques, membrane systems, and experimental conditions, and they provide foundational data for developing an accurate view of membranes and membrane-protein interactions.
Collapse
|
19
|
EGFP oligomers as natural fluorescence and hydrodynamic standards. Sci Rep 2016; 6:33022. [PMID: 27622431 PMCID: PMC5020695 DOI: 10.1038/srep33022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 01/29/2023] Open
Abstract
EGFP oligomers are convenient standards for experiments on fluorescent protein-tagged biomolecules. In this study, we characterized their hydrodynamic and fluorescence properties. Diffusion coefficients D of EGFP1-4 were determined by analytical ultracentrifugation with fluorescence detection and by fluorescence correlation spectroscopy (FCS), yielding 83.4…48.2 μm(2)/s and 97.3…54.8 μm(2)/s from monomer to tetramer. A "barrels standing in a row" model agreed best with the sedimentation data. Oligomerization red-shifted EGFP emission spectra without any shift in absorption. Fluorescence anisotropy decreased, indicating homoFRET between the subunits. Fluorescence lifetime decreased only slightly (4%) indicating insignificant quenching by FRET to subunits in non-emitting states. FCS-measured D, particle number and molecular brightness depended on dark states and light-induced processes in distinct subunits, resulting in a dependence on illumination power different for monomers and oligomers. Since subunits may be in "on" (bright) or "off" (dark) states, FCS-determined apparent brightness is not proportional to that of the monomer. From its dependence on the number of subunits, the probability of the "on" state for a subunit was determined to be 96% at pH 8 and 77% at pH 6.38, i.e., protonation increases the dark state. These fluorescence properties of EGFP oligomeric standards can assist interpreting results from oligomerized EGFP fusion proteins of biological interest.
Collapse
|
20
|
Abstract
The spatial and temporal evolution of concentration boundaries in sedimentation velocity analytical ultracentrifugation reports on the size distribution of particles with high hydrodynamic resolution. For large particles such as large protein complexes, fibrils, viral particles, or nanoparticles, sedimentation conditions usually allow migration from diffusion to be neglected relative to sedimentation. In this case, the shape of the sedimentation boundaries of polydisperse mixtures relates directly to the underlying size-distributions. Integral and derivative methods for calculating sedimentation coefficient distributions g*(s) of large particles from experimental boundary profiles have been developed previously, and are recapitulated here in a common theoretical framework. This leads to a previously unrecognized relationship between g*(s) and the time-derivative of concentration profiles. Of closed analytical form, it is analogous to the well-known Bridgman relationship for the radial derivative. It provides a quantitative description of the effect of substituting the time-derivative by scan differences with finite time intervals, which appears as a skewed box average of the true distribution. This helps to theoretically clarify the differences between results from time-derivative method and the approach of directly fitting the integral definition of g*(s) to the entirety of experimental boundary data.
Collapse
Affiliation(s)
- Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
21
|
Chairatana P, Chu H, Castillo PA, Shen B, Bevins CL, Nolan EM. Proteolysis Triggers Self-Assembly and Unmasks Innate Immune Function of a Human α-Defensin Peptide. Chem Sci 2015; 7:1738-1752. [PMID: 27076903 PMCID: PMC4827351 DOI: 10.1039/c5sc04194e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human α-defensin 6 (HD6) is a unique peptide of the defensin family that provides innate immunity in the intestine by self-assembling to form high-order oligomers that entrap bacteria and prevent host cell invasion. Here, we report critical steps in the self-assembly pathway of HD6. We demonstrate that HD6 is localized in secretory granules of small intestinal Paneth cells. HD6 is stored in these granules as an 81-residue propeptide (proHD6), and is recovered from ileal lumen as a 32-residue mature peptide. The propeptide neither forms higher-order oligomers, nor agglutinates bacteria, nor prevents Listeria monocytogenes invasion into epithelial cells. The Paneth cell granules also contain the protease trypsin, and trypsin-catalyzed hydrolysis of proHD6 liberates mature HD6, unmasking its latent activities. This work illustrates a remarkable example of how nature utilizes a propeptide strategy to spatially and temporally control peptide self-assembly, and thereby initiates innate immune function in the human intestine.
Collapse
Affiliation(s)
- Phoom Chairatana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiutung Chu
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Patricia A Castillo
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Bo Shen
- Department of General Internal Medicine and Gastroenterology and Hepatology, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Yamniuk AP, Newitt JA, Doyle ML, Arisaka F, Giannetti AM, Hensley P, Myszka DG, Schwarz FP, Thomson JA, Eisenstein E. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions. J Biomol Tech 2015; 26:125-41. [PMID: 26543437 DOI: 10.7171/jbt.15-2604-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - John A Newitt
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Michael L Doyle
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Fumio Arisaka
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Anthony M Giannetti
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Preston Hensley
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - David G Myszka
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Fred P Schwarz
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - James A Thomson
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| | - Edward Eisenstein
- 1 Bristol-Myers Squibb, Princeton, New Jersey 08540, USA; 2 Tokyo Institute of Technology, Yokohama 226-8503, Japan; 3 Google[x], Google Life Sciences, Mountain View, California 94043, USA; 4 SystaMedic, Incorporated, Groton, Connecticut 06340, USA; 5 Biosensor Tools LLC, Salt Lake City, Utah 84103, USA; 6 National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; 7 Polaris Pharmaceuticals, Incorporated, San Diego, California 92121, USA; and 8 Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
23
|
Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data. Methods Enzymol 2015; 562:187-204. [PMID: 26412652 DOI: 10.1016/bs.mie.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has seen a resurgence in popularity as a technique for characterizing macromolecules and complexes in solution. SV-AUC is a particularly powerful tool for studying protein conformation, complex stoichiometry, and interacting systems in general. Deconvoluting velocity data to determine a sedimentation coefficient distribution c(s) allows for the study of either individual proteins or multicomponent mixtures. The standard c(s) approach estimates molar masses of the sedimenting species based on determination of the frictional ratio (f/f0) from boundary shapes. The frictional ratio in this case is a weight-averaged parameter, which can lead to distortion of mass estimates and loss of information when attempting to analyze mixtures of macromolecules with different shapes. A two-dimensional extension of the c(s) analysis approach provides size-and-shape distributions that describe the data in terms of a sedimentation coefficient and frictional ratio grid. This allows for better resolution of species with very distinct shapes that may co-sediment and provides better molar mass determinations for multicomponent mixtures. An example case is illustrated using globular and nonglobular proteins of different masses with nearly identical sedimentation coefficients that could only be resolved using the size-and-shape distribution. Other applications of this analytical approach to complex biological systems are presented, focusing on proteins involved in the innate immune response to cytosolic microbial DNA.
Collapse
|
24
|
Bain DL, De Angelis RW, Connaghan KD, Yang Q, Degala GD, Lambert JR. Dissecting Steroid Receptor Function by Analytical Ultracentrifugation. Methods Enzymol 2015; 562:363-89. [PMID: 26412661 DOI: 10.1016/bs.mie.2015.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Steroid receptors comprise a family of ligand-activated transcription factors. The members include the androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor (PR). Each receptor controls distinct sets of genes associated with development, metabolism, and homeostasis. Although a qualitative understanding of how individual receptors mediate gene expression has come into focus, quantitative insight remains less clear. As a step toward delineating the physical mechanisms by which individual receptors activate their target genes, we have carried out a systematic dissection of receptor interaction energetics with their multisite regulatory elements. Analytical ultracentrifugation (AUC) has proved indispensable in these studies, in part by revealing the energetics of receptor self-association and its thermodynamic coupling to DNA binding. Here, we discuss these findings in the context of understanding specificity of receptor-mediated gene control. We first highlight the role of sedimentation velocity and sedimentation equilibrium in addressing receptor assembly state, and present a comparative analysis across the receptor family. We then use these results for understanding how receptors assemble at multisite regulatory elements, and hypothesize how these findings might play a role in receptor-specific gene regulation. Finally, we examine receptor behavior in a cellular context, with a view toward linking our in vitro studies with in vivo function.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Rolando W De Angelis
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory D Degala
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
25
|
Doll TAPF, Neef T, Duong N, Lanar DE, Ringler P, Müller SA, Burkhard P. Optimizing the design of protein nanoparticles as carriers for vaccine applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1705-13. [PMID: 26051652 PMCID: PMC4587294 DOI: 10.1016/j.nano.2015.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
Abstract
Successful vaccine development remains a huge challenge for infectious diseases such as malaria, HIV and influenza. As a novel way to present antigenic epitopes to the immune system, we have developed icosahedral self-assembling protein nanoparticles (SAPNs) to serve as a prototypical vaccine platform for infectious diseases. Here we examine some biophysical factors that affect the self-assembly of these nanoparticles, which have as basic building blocks coiled-coil oligomerization domains joined by a short linker region. Relying on in silico computer modeling predictions, we selected five different linker regions from the RCSB protein database that connect oligomerization domains, and then further studied the self-assembly and stability of in vitro produced nanoparticles through biophysical characterization of formed particles. One design in particular, T2i88, revealed excellent self-assembly and homogeneity thus paving the way toward a more optimized nanoparticle for vaccine applications. From the Clinical Editor Despite the widespread use of vaccines worldwide, successful development of vaccines against some diseases remains a challenge still. In this article, the authors investigated the physic-chemical and biological properties of icosahedral self-assembling protein nanoparticles (SAPNs), which mimic viral particles, in order to utilize this technology as potential platform for future design of vaccines.
Collapse
Affiliation(s)
- Tais A P F Doll
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Tobias Neef
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nha Duong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, MD, USA
| | - Philippe Ringler
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Peter Burkhard
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
26
|
Chairatana P, Nolan EM. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 2014; 136:13267-76. [PMID: 25158166 PMCID: PMC4183631 DOI: 10.1021/ja5057906] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/07/2023]
Abstract
Human α-defensin 6 (HD6) is a 32-aa cysteine-rich peptide of the innate immune system. Although HD6 is a member of an antimicrobial peptide family, it exhibits negligible antibacterial activity in vitro. Rather, HD6 possesses a unique innate immune mechanism whereby it self-assembles into oligomers that capture pathogens to prevent microbial invasion of the intestinal epithelium and subsequent dissemination. Molecular-level understanding for why HD6 functions differently from other human defensins remains unclear. To further elucidate the HD6 self-assembly process and its biological activity, we developed robust protocols for obtaining native and mutant HD6 in high purity from overexpression in Escherichia coli. We combined biophysical characterization with biological assays to probe HD6 structure and function. We report that native HD6 readily self-assembles into elongated fibrils observable by transmission electron microscopy, agglutinates both Gram-negative and -positive bacteria, and prevents the human gastrointestinal pathogen Listeria monocytogenes from invading cultured mammalian cells. Mutation of hydrophobic residues (F2A, I22T, V25T, F29A) perturbs self-assembly and results in attenuated biological activity. In particular, the F2A and F29A mutants do not form fibrils under our experimental conditions and neither agglutinate bacteria nor prevent L. monocytogenes invasion. In total, our results demonstrate that the hydrophobic effect is essential for promoting HD6 self-assembly and innate immune function, and indicate that HD6 may provide host defense against Listeria in the gut. This investigation provides a timely description of how variations in amino acid sequence confer diverse physiological functions to members of the defensin family.
Collapse
Affiliation(s)
- Phoom Chairatana
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J Biol Chem 2014; 289:30832-30841. [PMID: 25231988 DOI: 10.1074/jbc.m114.572453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405
| | - Anne Kelsen
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Jacqueline M Leung
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405.
| | - Kathleen M Trybus
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
28
|
Higgins CD, Malashkevich VN, Almo SC, Lai JR. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2. Proteins 2014; 82:2220-8. [PMID: 24753307 DOI: 10.1002/prot.24585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022]
Abstract
The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2.
Collapse
Affiliation(s)
- Chelsea D Higgins
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | | | | | | |
Collapse
|
29
|
Mitra S. Detecting RNA tertiary folding by sedimentation velocity analytical ultracentrifugation. Methods Mol Biol 2014; 1086:265-88. [PMID: 24136610 DOI: 10.1007/978-1-62703-667-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Analytical Ultracentrifugation (AUC) is a highly sensitive technique for detecting global conformational features of biological molecules and molecular interactions in solution. When operated in a sedimentation velocity (SV) recording mode, it reports precisely on the hydrodynamic properties of a molecule, including its sedimentation and diffusion coefficients, which can be used to calculate its hydrated radius, as well as, to estimate its global shape. This chapter describes the application of SV-AUC to the detection of global conformational changes accompanying equilibrium counterion induced tertiary folding of structured RNA molecules. A brief theoretical background is provided at the beginning, aimed at familiarizing the readers with the operational principle of the technique; then, a detailed set of instructions is provided on how to design, conduct, and analyze the data from an equilibrium RNA folding experiment, using SV-AUC.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Chemistry, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Cruz JC, Pfromm PH, Szoszkiewicz R, Rezac ME. Hydrolases on silica surfaces: Coverage-activity–molecular property relationships revealed. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Padlan CS, Malashkevich VN, Almo SC, Levy M, Brenowitz M, Girvin ME. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates. RNA (NEW YORK, N.Y.) 2014; 20:447-461. [PMID: 24570482 PMCID: PMC3964907 DOI: 10.1261/rna.043034.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.
Collapse
|
32
|
Method qualification and application of diffusion interaction parameter and virial coefficient. Int J Biol Macromol 2013; 62:487-93. [DOI: 10.1016/j.ijbiomac.2013.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
|
33
|
DeBerg HA, Blehm BH, Sheung J, Thompson AR, Bookwalter CS, Torabi SF, Schroer TA, Berger CL, Lu Y, Trybus KM, Selvin PR. Motor domain phosphorylation modulates kinesin-1 transport. J Biol Chem 2013; 288:32612-32621. [PMID: 24072715 DOI: 10.1074/jbc.m113.515510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.
Collapse
Affiliation(s)
- Hannah A DeBerg
- From the Physics Department and Center for the Physics of Living Cells
| | - Benjamin H Blehm
- From the Physics Department and Center for the Physics of Living Cells
| | - Janet Sheung
- From the Physics Department and Center for the Physics of Living Cells
| | - Andrew R Thompson
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Carol S Bookwalter
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | | | - Trina A Schroer
- the Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher L Berger
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Yi Lu
- the Departments of Biochemistry; Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Kathleen M Trybus
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Paul R Selvin
- From the Physics Department and Center for the Physics of Living Cells.
| |
Collapse
|
34
|
Taylor MS, Ruch TR, Hsiao PY, Hwang Y, Zhang P, Dai L, Huang CRL, Berndsen CE, Kim MS, Pandey A, Wolberger C, Marmorstein R, Machamer C, Boeke JD, Cole PA. Architectural organization of the metabolic regulatory enzyme ghrelin O-acyltransferase. J Biol Chem 2013; 288:32211-32228. [PMID: 24045953 DOI: 10.1074/jbc.m113.510313] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ghrelin O-acyltransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the membrane-bound O-acyltransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His-338 is in the ER lumen, consistent with other family members, but conserved Asn-307 is cytosolic, making it unlikely that both are involved in catalysis. Photocross-linking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His-338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately advance the discovery of selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Martin S Taylor
- From the Department of Pharmacology and Molecular Sciences,; the High Throughput Biology Center and Department of Molecular Biology and Genetics
| | | | - Po-Yuan Hsiao
- From the Department of Pharmacology and Molecular Sciences
| | - Yousang Hwang
- From the Department of Pharmacology and Molecular Sciences
| | - Pingfeng Zhang
- the Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Lixin Dai
- the High Throughput Biology Center and Department of Molecular Biology and Genetics
| | - Cheng Ran Lisa Huang
- the High Throughput Biology Center and Department of Molecular Biology and Genetics,; the McKusick-Nathans Institute of Genetic Medicine
| | - Christopher E Berndsen
- the Howard Hughes Medical Institute and Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min-Sik Kim
- the McKusick-Nathans Institute of Genetic Medicine
| | | | - Cynthia Wolberger
- the Howard Hughes Medical Institute and Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ronen Marmorstein
- the Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104; the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Jef D Boeke
- the High Throughput Biology Center and Department of Molecular Biology and Genetics,.
| | - Philip A Cole
- From the Department of Pharmacology and Molecular Sciences,.
| |
Collapse
|
35
|
Bunce MW, Bos MHA, Krishnaswamy S, Camire RM. Restoring the procofactor state of factor Va-like variants by complementation with B-domain peptides. J Biol Chem 2013; 288:30151-30160. [PMID: 24014022 DOI: 10.1074/jbc.m113.506840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.
Collapse
Affiliation(s)
- Matthew W Bunce
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Mettine H A Bos
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Sriram Krishnaswamy
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
36
|
Sckolnick M, Krementsova EB, Warshaw DM, Trybus KM. More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va. J Biol Chem 2013; 288:29313-22. [PMID: 23979131 DOI: 10.1074/jbc.m113.476929] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin Va (myoVa) is a molecular motor that processively transports cargo along actin tracks. One well studied cargo in vivo is the melanosome, a pigment organelle that is moved first by kinesin on microtubules and then handed off to myoVa for transport in the actin-rich dendritic periphery of melanocytes. Melanophilin (Mlph) is the adapter protein that links Rab27a-melanosomes to myoVa. Using total internal reflection fluorescence microscopy and quantum dot-labeled full-length myoVa, we show at the single-molecule level that Mlph increases the number of processively moving myoVa motors by 17-fold. Surprisingly, myoVa-Mlph moves ~4-fold slower than myoVa alone and with twice the run length. These two changes greatly increase the time spent on actin, a property likely to enhance the transfer of melanosomes to the adjacent keratinocyte. In contrast to the variable stepping pattern of full-length myoVa, the myoVa-Mlph complex shows a normal gating pattern between the heads typical of a fully active motor and consistent with a cargo-dependent activation mechanism. The Mlph-dependent changes in myoVa depend on a positively charged cluster of amino acids in the actin binding domain of Mlph, suggesting that Mlph acts as a "tether" that links the motor to the track. Our results provide a molecular explanation for the uncharacteristically slow speed of melanosome movement by myoVa in vivo. More generally, these data show that proteins that link motors to cargo can modify motor properties to enhance their biological role.
Collapse
Affiliation(s)
- Maria Sckolnick
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | | | | | | |
Collapse
|
37
|
De Angelis RW, Yang Q, Miura MT, Bain DL. Dissection of androgen receptor-promoter interactions: steroid receptors partition their interaction energetics in parallel with their phylogenetic divergence. J Mol Biol 2013; 425:4223-35. [PMID: 23917122 DOI: 10.1016/j.jmb.2013.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Steroid receptors comprise a homologous family of ligand-activated transcription factors. The members include androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor (PR). Phylogenetic studies demonstrate that AR, GR, MR, and PR are most closely related, falling into subgroup 3C. ER is more distantly related, falling into subgroup 3A. To determine the quantitative basis by which receptors generate their unique transcriptional responses, we are systematically dissecting the promoter-binding energetics of all receptors under a single "standard state" condition. Here, we examine the self-assembly and promoter-binding energetics of full-length AR and a mutant associated with prostate cancer, T877A. We first demonstrate that both proteins exist only as monomers, showing no evidence of dimerization. Although this result contradicts the traditional understanding that steroid receptors dimerize in the absence of DNA, it is fully consistent with our previous work demonstrating that GR and two PR isoforms either do not dimerize or dimerize only weakly. Moreover, both AR proteins exhibit substantial cooperativity between binding sites, again as seen for GR and PR. In sharp contrast, the more distantly related ER-α dimerizes so strongly that energetics can only be measured indirectly, yet cooperativity is negligible. Thus, homologous receptors partition their promoter-binding energetics quite differently. Moreover, since receptors most closely related by phylogeny partition their energetics similarly, such partitioning appears to be evolutionarily conserved. We speculate that such differences in energetics, coupled with different promoter architectures, serve as the basis for generating receptor-specific promoter occupancy and thus function.
Collapse
Affiliation(s)
- Rolando W De Angelis
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
38
|
Zhao C, Bachu R, Popović M, Devany M, Brenowitz M, Schlatterer JC, Greenbaum NL. Conformational heterogeneity of the protein-free human spliceosomal U2-U6 snRNA complex. RNA (NEW YORK, N.Y.) 2013; 19:561-73. [PMID: 23426875 PMCID: PMC3677266 DOI: 10.1261/rna.038265.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 05/24/2023]
Abstract
The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation. However, (19)F NMR data also identify a lesser fraction (up to 14% at 25°C) of a three-helix conformation. Based upon this distribution, the calculated ΔG for inter-conversion to the four-helix structure from the three-helix structure is approximately -4.6 kJ/mol. In the presence of 5 mM Mg(2+), the fraction of the three-helix conformation increased to ∼17% and the Stokes radius, measured by analytical ultracentrifugation, decreased by 2%, suggesting a slight shift to an alternative conformation. NMR measurements demonstrated that addition of an intron fragment to the U2-U6 snRNA complex results in displacement of U6 snRNA from the region of Helix III immediately 5' of the ACAGAGA sequence of U6 snRNA, which may facilitate binding of the segment of the intron adjacent to the 5' splice site to the ACAGAGA sequence. Taken together, these observations indicate conformational heterogeneity in the protein-free human U2-U6 snRNA complex consistent with a model in which the RNA has sufficient conformational flexibility to facilitate inter-conversion between steps of splicing in situ.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Ravichandra Bachu
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
39
|
Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nat Struct Mol Biol 2013; 20:515-24. [PMID: 23524536 PMCID: PMC4096160 DOI: 10.1038/nsmb.2528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/05/2013] [Indexed: 11/23/2022]
Abstract
Staufen (STAU)1-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded (ds)RNA-binding protein STAU1 in their 3′-untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human (h)STAU1 homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, now named the Staufen-swapping motif (SSM), and dsRNA-binding domain 5 (‘RBD’5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two ‘RBD’5 α-helices of a second molecule. ‘RBD’5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features needed to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound-healing and, undoubtedly, many other cellular processes.
Collapse
|
40
|
Tarasevich BJ, Perez-Salas U, Masica DL, Philo J, Kienzle P, Krueger S, Majkrzak CF, Gray JL, Shaw WJ. Neutron reflectometry studies of the adsorbed structure of the amelogenin, LRAP. J Phys Chem B 2013; 117:3098-109. [PMID: 23477285 PMCID: PMC3634335 DOI: 10.1021/jp311936j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenins make up over 90% of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayer (SAM) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ∼32 Å thick layers at ∼70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulations show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal regions (residues ∼8-24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.
Collapse
Affiliation(s)
- Barbara J Tarasevich
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA. J Bacteriol 2013; 195:2349-58. [PMID: 23504013 DOI: 10.1128/jb.00096-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K(d) [dissociation constant] of <10 nM), and it appears to be the main N-terminal determinant of KinA dimerization. Analysis of KinA mutants deficient for one or more PAS domains revealed a critical role for PAS(B), but not PAS(A), in autophosphorylation of KinA. Our findings suggest that dimerization of PAS(B) is important for keeping the catalytic domain of KinA in a functional conformation. We use this information to propose a model for the structure of the N-terminal sensor module of KinA.
Collapse
|
42
|
Connaghan KD, Miura MT, Maluf NK, Lambert JR, Bain DL. Analysis of a glucocorticoid-estrogen receptor chimera reveals that dimerization energetics are under ionic control. Biophys Chem 2012; 172:8-17. [PMID: 23333595 DOI: 10.1016/j.bpc.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
Abstract
Steroid receptors assemble at DNA response elements as dimers, resulting in coactivator recruitment and transcriptional activation. Our work has focused on dissecting the energetics associated with these events and quantitatively correlating the results with function. A recent finding is that different receptors dimerize with large differences in energetics. For example, estrogen receptor-α (ER-α) dimerizes with a ΔG=-12.0 kcal/mol under conditions in which the glucocorticoid receptor (GR) dimerizes with a ΔG≤-5.1 kcal/mol. To determine the molecular forces responsible for such differences, we created a GR/ER chimera, replacing the hormone-binding domain (HBD) of GR with that of ER-α. Cellular and biophysical analyses demonstrate that the chimera is functionally active. However, GR/ER dimerization energetics are intermediate between the parent proteins and coupled to a strong ionic linkage. Since the ER-α HBD is the primary contributor to dimerization, we suggest that GR residues constrain an ion-regulated HBD assembly reaction.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
43
|
Ellis KE, Frato KE, Elliott SJ. Impact of quaternary structure upon bacterial cytochrome c peroxidases: does homodimerization matter? Biochemistry 2012. [PMID: 23189923 DOI: 10.1021/bi301150n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All known active forms of diheme bacterial cytochrome c peroxidase (bCcP) enzymes are described by a homodimeric state. Further, the majority of bCcPs reported display activity only when the high-potential electron transfer heme of the protein (Fe(H)) is reduced to the ferrous oxidation state. Reduction of Fe(H) results in a set of conformational changes allowing for the low-potential peroxidatic heme (Fe(L)) to adopt a high-spin, five-coordinate state that is capable of binding substrate. Here we examine the impact of dimerization upon the activity of the Shewanella oneidensis (So) bCcP by the preparation of single charge-reversal mutants at the dimer interface and use the resulting constructs to illustrate why dimerization is likely a requirement for activity in bCcPs. The E258K mutant is found to form a monomeric state in solution as characterized by size exclusion chromatography and analytical ultracentrifugation analyses. The resulting E258K monomer has an unfolding stability comparable to that of wild-type So bCcP and an activity that is only slightly diminished (k(cat)/K(m) = 23 × 10(6) M(-1) s(-1)). Spectroscopic and potentiometric analyses reveal that while the thermodynamic stability of the activated form of the enzyme is unchanged (characterized by the E(m) value of the Fe(H)(II)/Fe(H)(III) couple), the kinetic stability of the activated form of the enzyme has been greatly diminished upon generation of the monomer. Together, these data suggest a model in which dimerization of bCcP enzymes is required to stabilize the lifetime of the activated form of the enzyme against reoxidation of Fe(H) and deactivation of Fe(L).
Collapse
Affiliation(s)
- Katie E Ellis
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry 2012; 51:9624-37. [PMID: 23163963 DOI: 10.1021/bi301255u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys(3)-Cys(31), Cys(5)-Cys(20), and Cys(10)-Cys(30)) in the oxidized form (HD5(ox)). To probe the solution structure and oligomerization properties of HD5(ox), and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5(ox), solved at pH 4.0 in 90:10 H(2)O/D(2)O, is presented (PDB: 2LXZ ). Relaxation T(1)/T(2) measurements and the rotational correlation time (τ(c)) estimated from a (15)N-TRACT experiment demonstrate that HD5(ox) is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19-21 (Val(19)-Cys(20)-Glu(21)) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7-14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5(ox) is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14 363 Da were determined for HD5(ox) at pH 7.0, supporting a tetrameric form ([HD5(ox)] ≥ 30 μM). At pH 2.0, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7079 Da, corresponding to a HD5(ox) dimer, were obtained. Millimolar concentrations of NaCl, CaCl(2), and MgCl(2) have a negligible effect on the HD5(ox) sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environmentally sensitive behavior of HD5(ox) in solution, and provide important insights into HD5(ox) structure/activity relationships and the requirements for antimicrobial action.
Collapse
Affiliation(s)
- Andrew J Wommack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
An C, Hiromasa Y, Zhang X, Lovell S, Zolkiewski M, Tomich JM, Michel K. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes. PLoS One 2012; 7:e48689. [PMID: 23152794 PMCID: PMC3494705 DOI: 10.1371/journal.pone.0048689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/01/2012] [Indexed: 01/14/2023] Open
Abstract
Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases.
Collapse
Affiliation(s)
- Chunju An
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Xin Zhang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, Kansas, United States of America
| | - Michal Zolkiewski
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Pohl R, Hauser R, Li M, De Souza E, Feldstein R, Seibert R, Ozhan K, Kashyap N, Steiner S. Ultra-rapid absorption of recombinant human insulin induced by zinc chelation and surface charge masking. J Diabetes Sci Technol 2012; 6:755-63. [PMID: 22920799 PMCID: PMC3440144 DOI: 10.1177/193229681200600404] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)]. METHOD Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution. RESULTS The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min). CONCLUSIONS The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation.
Collapse
|
47
|
Robblee JP, Miura MT, Bain DL. Glucocorticoid receptor-promoter interactions: energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 2012; 51:4463-72. [PMID: 22587663 DOI: 10.1021/bi3003956] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A number of studies have shown that steroid receptors regulate distinct but overlapping sets of genes; however, the molecular basis for such specificity remains unclear. Previous work from our laboratory has demonstrated that under identical solution conditions, three other steroid receptors [the progesterone receptor A isoform (PR-A), the progesterone receptor B isoform (PR-B), and estrogen receptor α (ER-α)] differentially partition their self-association and promoter binding energetics. For example, PR-A and PR-B generate similar dimerization free energies but differ significantly in their extents of intersite cooperativity. Conversely, ER-α maintains an intersite cooperativity most comparable to that of PR-A yet dimerizes with an affinity orders of magnitude greater than that of either of the PR isoforms. We have speculated that these differences serve to generate receptor-specific promoter occupancies, and thus receptor-specific gene regulation. Noting that GR regulates a unique subset of genes relative to the other receptors, we hypothesized that the receptor should maintain a unique set of interaction energetics. We rigorously determined the self-association and promoter binding energetics of full-length, human GR under conditions identical to those used in our earlier studies. We find that unlike all other receptors, GR shows no evidence of reversible self-association. Moreover, GR assembles with strong intersite cooperativity comparable to that seen only for PR-B. Finally, simulations show that such partitioning of interaction energetics allows for receptor-specific promoter occupancies, even under conditions where multiple receptors are competing for binding at identical sites.
Collapse
Affiliation(s)
- James P Robblee
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
48
|
Krementsova EB, Hodges AR, Bookwalter CS, Sladewski TE, Travaglia M, Sweeney HL, Trybus KM. Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. ACTA ACUST UNITED AC 2012; 195:631-41. [PMID: 22084309 PMCID: PMC3257522 DOI: 10.1083/jcb.201106146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p-She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex. The binding site for She3p was mapped to a single α helix that protrudes at right angles from She2p. Processive runs of several micrometers on yeast actin-tropomyosin filaments were observed only in the presence of She2p, and, thus, motor activity is regulated by cargo binding. While moving processively, each head steps ~72 nm in a hand-over-hand motion. Coupling two high-duty cycle monomeric motors via a common cargo-binding adapter protein creates a complex with transport properties comparable with a single dimeric processive motor such as vertebrate myosin Va.
Collapse
Affiliation(s)
- Elena B Krementsova
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Full-length myosin Va exhibits altered gating during processive movement on actin. Proc Natl Acad Sci U S A 2012; 109:E218-24. [PMID: 22228305 DOI: 10.1073/pnas.1109709109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin Va (myoV) is a processive molecular motor that transports intracellular cargo along actin tracks with each head taking multiple 72-nm hand-over-hand steps. This stepping behavior was observed with a constitutively active, truncated myoV, in which the autoinhibitory interactions between the globular tail and motor domains (i.e., heads) that regulate the full-length molecule no longer exist. Without cargo at near physiologic ionic strength (100 mM KCl), full-length myoV adopts a folded (approximately 15 S), enzymatically-inhibited state that unfolds to an extended (approximately 11 S), active conformation at higher salt (250 mM). Under conditions favoring the folded, inhibited state, we show that Quantum-dot-labeled myoV exhibits two types of interaction with actin in the presence of MgATP. Most motors bind to actin and remain stationary, but surprisingly, approximately 20% are processive. The moving motors transition between a strictly gated and hand-over-hand stepping pattern typical of a constitutively active motor, and a new mode with a highly variable stepping pattern suggestive of altered gating. Each head of this partially inhibited motor takes longer-lived, short forward (35 nm) and backward (28 nm) steps, presumably due to globular tail-head interactions that modify the gating of the individual heads. This unique mechanical state may be an intermediate in the pathway between the inhibited and active states of the motor.
Collapse
|
50
|
Moody AD, Robblee JP, Bain DL. Dissecting the linkage between transcription factor self-assembly and site-specific DNA binding: the role of the analytical ultracentrifuge. Methods Mol Biol 2012; 796:187-204. [PMID: 22052491 DOI: 10.1007/978-1-61779-334-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A long-standing goal of biomedical research has been to determine the quantitative mechanisms responsible for gene regulation and transcriptional activation. These events occur through numerous protein-protein and protein-DNA interactions, many of which are allosterically coupled. For systems where highly purified protein is available, analytical ultracentrifugation provides a means to study these linked reactions, allosteric or otherwise. Sedimentation velocity is an ultracentrifugation technique that provides rigorous insight into protein self-association, homogeneity, and gross structure. Because self-association is often in dynamic equilibrium with other reactions such as DNA binding, an explicit and independent analysis of each interaction is critical to revealing mechanism. This chapter details a protocol for using sedimentation velocity to dissect the linkage between transcription factor self-association and site-specific DNA binding.
Collapse
Affiliation(s)
- Amie D Moody
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | | | | |
Collapse
|