1
|
Park SY, Kang HM, Oh JW, Choi YW, Park G. Cucurbitacin B-, E-, and I-Induced Browning of White Adipocytes Is Promoted by the Inhibition of Phospholipase D2. Int J Mol Sci 2022; 23:15362. [PMID: 36499689 PMCID: PMC9740502 DOI: 10.3390/ijms232315362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanism of white adipose tissue browning is not well understood; however, naturally occurring compounds are known to play a positive role. The effects of cucurbitacins B, E, and I on the browning of mature white adipocytes were investigated. First, the cell viability exhibited by cucurbitacins B, E, and I in pre- and mature adipocytes was verified. Cucurbitacins B, E, and I had no effect on cell viability in pre- and mature adipocytes at concentrations up to 300 nM. To investigate the characteristics of representative beige adipocytes, the formation and morphology of cucurbitacin B, E, and I lipid droplets were verified. The total lipid droplet surface area, maximum Feret diameter, and total Nile red staining intensity of cucurbitacin B-, E-, and I-treated adipocytes were lower than those of mature white adipocytes. Furthermore, treatment of white mature adipocytes with cucurbitacin B, E, and I led to the formation of several small lipid droplets that are readily available for energy expenditure. We evaluated the effect of cucurbitacins B, E, and I on the expression of representative browning markers UCP1, PGC1a, and PRDM16, which participate in the browning of white adipose tissue. Cucurbitacins B, E, and I increased the mRNA and protein expression levels of UCP1, PGC1a, and PRDM16 in a concentration-dependent manner. To promote energy consumption by beige adipocytes, active mitochondrial biogenesis is essential. Next, we investigated the effects of cucurbitacin B, E, and I on mitochondrial biogenesis in mature adipocytes. Mitochondrial mass increased when mature adipocytes were treated with cucurbitacin B, E, and I. The degree of cucurbitacin B-, E- and I-induced transformation of white adipocytes into beige adipocytes was in the order of Cu E > Cu B > Cu I. To verify the effect of phospholipase D2 on the browning of white adipocytes, CAY10594—a PLD2 pharmacological inhibitor, and a knockdown system were used. PLD2 inhibition and knockdown improved the expression levels of UCP1, PGC1a, and PRDM16. In addition, PLD2 inhibition and knockdown in mature white adipocytes promoted mitochondrial biosynthesis. The effect of PLD2 inhibition and knockdown on promoting browning of white adipocytes significantly increased when Cu B, Cu E, and Cu I were co-treated. These data indicate that mature white adipocytes’ beige properties were induced by cucurbitacins B, E, and I. These effects became more potent by the inhibition of PLD2. These findings provide a model for determining anti-obesity agents that induce browning and increase energy expenditure in mature white adipocytes.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 50463, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanofusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 50463, Republic of Korea
| | - Geuntae Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanofusion Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
3
|
Gao S, Ito H, Murakami M, Yoshida K, Tagawa Y, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Ohguchi K, Nozawa Y, Murate T. Mechanism of increased PLD1 gene expression during early adipocyte differentiation process of mouse cell line 3T3-L1. J Cell Biochem 2010; 109:375-82. [PMID: 19950202 DOI: 10.1002/jcb.22414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A mouse cell line 3T3-L1 is differentiated into adipocytes when treated with an inducer cocktail (IDX) (insulin, dexametahsone, and a cAMP phosphodiesterase inhibitor of isobutyl-methylxanthine (IBMX)). Here, we report that PLD1, but not PLD2, mRNA and protein increased during the early differentiation process. Our analysis shows that IDX resulted in a sequential induction of C/EBPbeta, PLD1, and C/EBPalpha which is a key transcription factor of late adipocyte differentiation. Among the three inducers, IBMX + any other inducer induced mild adipocyte differentiation, whereas insulin + dexamethasone did not. IBMX increased PLD1 but not PLD2 mRNA. Forskolin, an adenylate cyclase activator, and dbcAMP also increased PLD1 mRNA, suggesting the cellular cAMP as the inducer of both adipocyte differentiation and PLD1 transcription. We focused on the regulatory mechanism of PLD1 transcription during this differentiation process. IDX or a combination of inducers including IBMX increased PLD1 promoter activity, which is consistent with mRNA analysis. Promoter analysis identified two adjacent C/EBP motifs located between -338 and -231 bp from the first exon as the IBMX responsive elements. Furthermore, overexpression of C/EBPbeta, but not C/EBPalpha, increased PLD1 mRNA and PLD1 5' promoter activity. EMSA and chromatin immunoprecipitation assay confirmed the direct binding of C/EBPbeta, but not C/EBPalpha, to these C/EBP motifs of PLD1 5' promoter. Our results show that PLD1 is a target gene of C/EBPbeta through the increased cellular cAMP during early adipocyte differentiation of 3T3-L1 cells.
Collapse
Affiliation(s)
- Siqiang Gao
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
5
|
Chahdi A, Choi WS, Kim YM, Beaven MA. Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 2003; 278:12039-45. [PMID: 12556526 DOI: 10.1074/jbc.m212084200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both known isoforms of phospholipase (PL) D, PLD1 and PLD2, require phosphatidylinositol 4,5-bisphosphate for activity. However, PLD2 is fully active in the presence of this phospholipid, whereas PLD1 activation is dependent on additional factors such as ADP-ribosylation factor-1 (ARF-1) and protein kinase Calpha. We find that mastoparan, an activator of G(i) and mast cells, stimulates an intrinsic PLD activity, most likely PLD2, in fractions enriched in plasma membranes from rat basophilic leukemia 2H3 mast cells. Overexpression of PLD2, but not of PLD1, results in a large increase in the mastoparan-inducible PLD activity in membrane fractions, particularly those enriched in plasma membranes. As in previous studies, expressed PLD2 is localized primarily in the plasma membrane and PLD1 in granule membranes. Studies with pertussis toxin and other agents indicate that mastoparan stimulates PLD2 independently of G(i), ARF-1, protein kinase C, and calcium. Kinetic studies indicate that mastoparan interacts synergistically with phosphatidylinositol 4,5-bisphosphate and that oleate, itself a weak stimulant of PLD2 at low concentrations, is a competitive inhibitor of mastoparan stimulation of PLD2. Therefore, mastoparan may be useful for investigating the regulation of PLD2, particularly in view of the well studied molecular interactions of mastoparan with certain other strategic signaling proteins.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1760, USA
| | | | | | | |
Collapse
|
6
|
Hughes WE, Larijani B, Parker PJ. Detecting protein-phospholipid interactions. Epidermal growth factor-induced activation of phospholipase D1b in situ. J Biol Chem 2002; 277:22974-9. [PMID: 11950840 DOI: 10.1074/jbc.m201391200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) proteins have been identified in secretory and endocytic vesicles, consistent with their proposed role in regulating membrane traffic. However, their sites of catalytic action remain obscure. We have developed here a novel, analytical approach to monitor PLD activation in intact cells employing lifetime imaging microscopy to measure fluorescence resonance energy transfer between protein and membrane phospholipid. Verification and application of this technique demonstrates a dispersed endosomal, epidermal growth factor-induced activation of the PLD1b isoform. Application of this approach will facilitate the spatial resolution of many protein-phospholipid interactions that are key events in the regulation of cellular processes.
Collapse
Affiliation(s)
- William E Hughes
- Protein Phosphorylation Laboratory, Cancer Research United Kingdom London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
7
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
8
|
Denmat-Ouisse LA, Phebidias C, Honkavaara P, Robin P, Geny B, Min DS, Bourgoin S, Frohman MA, Raymond MN. Regulation of constitutive protein transit by phospholipase D in HT29-cl19A cells. J Biol Chem 2001; 276:48840-6. [PMID: 11687572 DOI: 10.1074/jbc.m104276200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) plays a central role in the control of vesicle budding and protein transit. We previously showed that in resting epithelial HT29-cl19A cells, PLD is implicated in the control of constitutive protein transit, from the trans-Golgi network to the plasma membrane, and that phorbol ester stimulation of protein transit is correlated with PLD activation (Auger, R., Robin, P., Camier, B., Vial, G., Rossignol, B., Tenu, J.-P., and Raymond, M.-N. (1999) J. Biol. Chem. 274, 28652-28659). In this paper we demonstrate that: 1) PLD is not implicated in the earliest phases of protein transit; 2) PLD controls apical but not basolateral protein transit; 3) HT29-cl19A cells express PLD1b and PLD2a mRNAs and proteins; 4) the expression of a catalytically inactive mutant of PLD2 (mPLD2-K758R) significantly inhibited apical constitutive protein transit whereas expression of a catalytically inactive mutant of PLD1 (hPLD1b-K898R) prevented increases in the rate of apical transit as triggered by phorbol esters; 5) PLD2 appears to be located in a perinuclear region containing the Golgi whereas PLD1, which is scattered in the cytoplasm in resting cells, is translocated to the plasma membrane after phorbol ester stimulation. Taken together, these data lead to the conclusion that in HT29-cl19A cells, both PLDs regulate protein transit between the trans-Golgi network and the apical plasma membrane, but that they do so at different steps in the pathway.
Collapse
Affiliation(s)
- L A Denmat-Ouisse
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, U.M.R. 8619, bâtiment 430, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Phospholipase D (PLD) is activated in mammalian cells in response to diverse stimuli that include growth factors, activators of protein kinase C, and agonists binding to G-protein-coupled receptors. Two forms of mammalian PLD, PLD1 and PLD2, have been identified. Expression of mRNA and protein for PLD1 and PLD2 was analyzed in the following cell lines: A7r5 (rat vascular smooth muscle); EL4 (mouse thymoma); HL-60 (human myeloid leukemia); Jurkat (human leukemia); PC-3 (human prostate adenocarcinoma); PC-12K (rat phaeochromocytoma); and Rat-1 HIR (rat fibroblast). All, with the exception of EL4, express agonist-activated PLD activity. PLD1 is expressed in A7r5, HL-60, PC-3, and Rat-1, while PLD2 is expressed in A7r5, Jurkat, PC12K, PC-3, and Rat-1. Neither isoform is expressed in EL4. Guanine nucleotide-independent PLD activity is present in membranes from all cells expressing PLD2. In PC12K cells, which express only PLD2, treatment with nerve growth factor causes neurite outgrowth and increases expression of PLD2 mRNA and protein within 6-12 h. A corresponding increase is observed in membrane PLD activity and in phorbol-12-myristate-13-acetate (PMA)-stimulated PLD activity in intact cells. These results show that PLD2 can be regulated both pretranslationally and posttranslationally by agonists.
Collapse
Affiliation(s)
- T C Gibbs
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|