1
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
2
|
Finch ER, Janke LJ, Li L, Payton MA, Jenkins DA, Crews KR, Relling MV, Karol SE. Dasatinib does not exacerbate dexamethasone-induced osteonecrosis in murine models of acute lymphoblastic leukemia therapy. Pediatr Blood Cancer 2022; 69:e29490. [PMID: 34866312 PMCID: PMC8860849 DOI: 10.1002/pbc.29490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There are clinical reports that the incorporation of dasatinib may increase the frequency of osteonecrosis in acute lymphoblastic leukemia (ALL) treatment regimens. No rigorous testing of this hypothesis is available to guide clinicians. METHODS We tested whether oral dasatinib increased the frequency of dexamethasone-induced osteonecrosis in a murine model and tested its effects on dexamethasone's antileukemic efficacy in a murine BCR-ABL+ model of ALL. RESULTS Dasatinib did not change the frequency of osteonecrosis (p = .99) nor of arteriopathy (p = .36) in dexamethasone-treated mice when given at dosages that achieved clinically relevant steady-state dasatinib plasma concentrations of 53.1 ng/ml (95% CI: 43.5-57.3 ng/ml). These dasatinib exposures were not associated with increased dexamethasone plasma exposure in nonleukemia-bearing mice. These same dosages were not associated with any decrement in antileukemic efficacy of dexamethasone in a responsive BCR-ABL+ model of ALL. CONCLUSIONS Based on the results of our preclinical murine studies, we conclude that dasatinib is unlikely to increase the osteonecrotic effects of dexamethasone in ALL regimens.
Collapse
Affiliation(s)
- Emily R. Finch
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Laura J. Janke
- Department of Pathology, Division of Comparative Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Monique A. Payton
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - David A. Jenkins
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Seth E. Karol
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Drug Interactions. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Kovačević M, Hackenberger DK, Lončarić Ž, Hackenberger BK. Measurement of multixenobiotic resistance activity in enchytraeids as a tool in soil ecotoxicology. CHEMOSPHERE 2021; 279:130549. [PMID: 33878689 DOI: 10.1016/j.chemosphere.2021.130549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The multixenobiotic resistance (MXR) mechanism is the first defense line against xenobiotics. Enchytraeids, a model organism in soil ecotoxicology, are often exposed to various xenobiotics, some of which may influence MXR activity. Since MXR activity has not been studied in these organisms, the aim of this paper was to establish a methodology for the implementation of the dye assay in enchytraeids. Enchytraeus albidus and Enchytraeus crypticus were exposed to model chemosensitizers: cyclosporine A (CA), dexamethasone (DEX), ivermectin (IVM), rifampicin (RIF), verapamil (VER), and fungicide propiconazole (PCZ). Thereafter, a dye assay with specific fluorescent dyes rhodamine B and rhodamine 123 was performed. Changes in MXR activity caused by variations in dye accumulation were measured fluorometrically. CA, IVM, and VER were found to inhibit the MXR system and increase the fluorescence 2.2-fold, while DEX and RIF induced the MXR system and decreased the fluorescence. CA was the strongest inhibitor in both E. albidus (IC50 5.48 ± 1.25 μM) and E. crypticus (IC50 5.20 ± 3.10 μM). In the validation experiment, PCZ was found to inhibit the MXR system. The IC50 varied between species and exposure substrates: water (E. albidus - IC50 0.74 ± 0.24 mg/L; E. crypticus - 1.31 ± 0.24 mg/L) or soil (E. albidus - 1.79 ± 0.42 mg/kg; E. crypticus - 1.79 ± 0.17 mg/kg). In conclusion, the tested compounds changed the MXR activity, which confirms the applicability of this method as a valuable complementary biomarker in soil ecotoxicology.
Collapse
Affiliation(s)
- Marija Kovačević
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Željka Lončarić
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
5
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
6
|
Milojkovic M, Milacic N, Radovic J, Ljubisavljevic S. MDR1 gene polymorphisms and P-glycoprotein expression in respiratory diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:341-6. [DOI: 10.5507/bp.2014.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/04/2014] [Indexed: 12/27/2022] Open
|
7
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Zhang B, Liu Y, Li X. Alteration in the expression of cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the liver of mouse induced by microcystin-LR. Toxins (Basel) 2015; 7:1102-15. [PMID: 25831226 PMCID: PMC4417957 DOI: 10.3390/toxins7041102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/21/2023] Open
Abstract
Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.
Collapse
Affiliation(s)
- Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
9
|
Berg T, Hegelund Myrbäck T, Olsson M, Seidegård J, Werkström V, Zhou XH, Grunewald J, Gustavsson L, Nord M. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect 2014; 2:e00054. [PMID: 25505599 PMCID: PMC4186441 DOI: 10.1002/prp2.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023] Open
Abstract
This study describes for the first time the expression levels of genes encoding membrane transporters and drug-metabolizing enzymes in the lungs of ex-smoking patients with chronic obstructive pulmonary disease (COPD). Membrane transporters and drug-metabolizing enzymes are key determinants of drug uptake, metabolism, and elimination for systemically administered as well as inhaled drugs, with consequent influence on clinical efficacy and patient safety. In this study, while no difference in gene expression was found between healthy and COPD subjects, we identified a significant regional difference in mRNA expression of both membrane transporters and drug-metabolizing enzymes between central and peripheral tissue in both healthy and COPD subjects. The majority of the differentially expressed genes were higher expressed in the central airways such as the transporters SLC2A1 (GLUT1), SLC28A3 (CNT3), and SLC22A4 (OCTN1) and the drug-metabolizing enzymes GSTZ1, GSTO2, and CYP2F1. Together, this increased knowledge of local pharmacokinetics in diseased and normal lung may improve modeling of clinical outcomes of new chemical entities intended for inhalation therapy delivered to COPD patients. In addition, based on the similarities between COPD and healthy subjects regarding gene expression of membrane transporters and drug-metabolizing enzymes, our results suggest that clinical pharmacological studies in healthy volunteers could be a valid model of COPD patients regarding drug disposition of inhaled drugs in terms of drug metabolism and drug transporters.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | | | | | | | | | | | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna Stockholm, Sweden
| | - Lena Gustavsson
- Molecular Medicine, Department of Laboratory Medicine, Lund University Medicon Village, Lund, Sweden
| | | |
Collapse
|
10
|
Ballent M, Wilkens MR, Maté L, Muscher AS, Virkel G, Sallovitz J, Schröder B, Lanusse C, Lifschitz A. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity. J Vet Pharmacol Ther 2013; 36:576-82. [DOI: 10.1111/jvp.12040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- M. Ballent
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| | - M. R. Wilkens
- Department of Physiology; University of Veterinary Medicine Hannover; Hannover Germany
| | - L. Maté
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| | - A. S. Muscher
- Department of Physiology; University of Veterinary Medicine Hannover; Hannover Germany
| | - G. Virkel
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| | - J. Sallovitz
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| | - B. Schröder
- Department of Physiology; University of Veterinary Medicine Hannover; Hannover Germany
| | - C. Lanusse
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| | - A. Lifschitz
- Facultad de Ciencias Veterinarias; Laboratorio de Farmacología; Centro de Investigación Veterinaria de Tandil (CIVETAN); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); UNCPBA; Tandil Argentina
| |
Collapse
|
11
|
Manceau S, Giraud C, Declèves X, Batteux F, Chéreau C, Chouzenoux S, Scherrmann JM, Weill B, Perrot JY, Tréluyer JM. Expression and induction by dexamethasone of ABC transporters and nuclear receptors in a human T-lymphocyte cell line. J Chemother 2012; 24:48-55. [PMID: 22546724 DOI: 10.1179/1120009x12z.00000000010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The efficacy of drugs acting within lymphocytes, like antiretroviral drugs in the treatment of HIV infection, depends on their intracellular concentrations modulated by efflux proteins like ABCB1 (P-glycoprotein). In lymphocytes, two glucocorticoids, prednisone and prednisolone, have been shown to induce ABCB1 activity. Yet, no data exist regarding dexamethasone (DEX). We report the modulation of ABC transporters and nuclear receptors' expression by DEX in a commonly used model of human lymphocytes. CCRF-CEM cells were exposed to DEX (100 nM, 2 μM) for 24 to 72 hours. ABCB1 activity was measured using DiOC(6) efflux in flow cytometry. Gene expression levels were quantified by qRT-PCR. ABCB1 activity and mRNA expression increased with DEX concentrations and incubation times. DEX (1 μM, 24 h) increased significantly ABCB1 and GR mRNA expression levels by around 8- and 3.5-fold, respectively (P<10(-6)). ABCB1 induction by DEX in CCRF-CEM cells suggests a potential risk of interaction in lymphocytes when associating DEX to ABCB1 substrates in antiretroviral multitherapies in vivo.
Collapse
|
12
|
Manceau S, Giraud C, Declèves X, Scherrmann J, Artiguebieille F, Goffinet F, Chappuy H, Vinot C, Tréluyer J. ABC drug transporter and nuclear receptor expression in human cytotrophoblasts: Influence of spontaneous syncytialization and induction by glucocorticoids. Placenta 2012; 33:927-32. [DOI: 10.1016/j.placenta.2012.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
|
13
|
Hayashi Y, Ushijima K, Ando H, Yanagihara H, Ishikawa E, Tsuruoka SI, Sugimoto KI, Fujimura A. Influence of a time-restricted feeding schedule on the daily rhythm of abcb1a gene expression and its function in rat intestine. J Pharmacol Exp Ther 2010; 335:418-23. [PMID: 20668054 DOI: 10.1124/jpet.110.170837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
P-glycoprotein (P-gp) is one of the ATP-binding cassette transporters and acts as an efflux pump for cytotoxic substances. P-gp mRNA expression and transporting activity show the daily rhythm and contribute to the chrono-pharmacokinetic profiles of many drugs. It is reported that the daily rhythm of abcb1a mRNA is regulated by a circadian clock-controlled output pathway. Time-restricted feeding is well known to shift the peripheral circadian phase of clock gene expression without changing the central clock function. This study was undertaken to examine the influence of a time-restricted feeding procedure during the light phase on the daily rhythms of abcb1a mRNA expression and P-gp activity. The abcb1a mRNA and P-gp activity showed a daily rhythm with a peak early in the dark phase in rat intestine under ad libitum feeding. Time-restricted feeding during the light phase shifted these rhythms to 12-h advance. The mRNA expression of clock genes (DBP and HLF, the transcript activators of abcb1a) also showed daily rhythms, and their phases were shifted by the time-restricted feeding procedure. The peak time of DBP mRNA expression was similar to that of abcb1a mRNA expression under ad libitum feeding and time-restricted feeding conditions. These results indicate that a time-restricted feeding procedure changes DBP mRNA expression, which in turn influences abcb1a mRNA expression and P-gp activity.
Collapse
Affiliation(s)
- Yohei Hayashi
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation. Brain Res 2010; 1357:9-18. [DOI: 10.1016/j.brainres.2010.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 02/04/2023]
|
15
|
Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, Prusiner SB. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 2009; 5:e1000673. [PMID: 19956709 PMCID: PMC2777304 DOI: 10.1371/journal.ppat.1000673] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/30/2009] [Indexed: 12/02/2022] Open
Abstract
Quinacrine is a potent antiprion compound in cell culture models of prion disease but has failed to show efficacy in animal bioassays and human clinical trials. Previous studies demonstrated that quinacrine inefficiently penetrates the blood-brain barrier (BBB), which could contribute to its lack of efficacy in vivo. As quinacrine is known to be a substrate for P-glycoprotein multi-drug resistance (MDR) transporters, we circumvented its poor BBB permeability by utilizing MDR(0/0) mice that are deficient in mdr1a and mdr1b genes. Mice treated with 40 mg/kg/day of quinacrine accumulated up to 100 microM of quinacrine in their brains without acute toxicity. PrP(Sc) levels in the brains of prion-inoculated MDR(0/0) mice diminished upon the initiation of quinacrine treatment. However, this reduction was transient and PrP(Sc) levels recovered despite the continuous administration of quinacrine. Treatment with quinacrine did not prolong the survival times of prion-inoculated, wild-type or MDR(0/0) mice compared to untreated mice. A similar phenomenon was observed in cultured differentiated prion-infected neuroblastoma cells: PrP(Sc) levels initially decreased after quinacrine treatment then rapidly recovered after 3 d of continuous treatment. Biochemical characterization of PrP(Sc) that persisted in the brains of quinacrine-treated mice had a lower conformational stability and different immunoaffinities compared to that found in the brains of untreated controls. These physical properties were not maintained upon passage in MDR(0/0) mice. From these data, we propose that quinacrine eliminates a specific subset of PrP(Sc) conformers, resulting in the survival of drug-resistant prion conformations. Transient accumulation of this drug-resistant prion population provides a possible explanation for the lack of in vivo efficacy of quinacrine and other antiprion drugs.
Collapse
Affiliation(s)
- Sina Ghaemmaghami
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Misol Ahn
- Department of Pathology, University of California, San Francisco, California, United States of America
| | - Pierre Lessard
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Giuseppe Legname
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, California, United States of America
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| |
Collapse
|
16
|
Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ. Changes in the placental glucocorticoid barrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. Biol Reprod 2009; 80:1209-15. [PMID: 19208548 DOI: 10.1095/biolreprod.108.073650] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid excess in utero inhibits fetal growth and programs adverse outcomes in adult offspring. Access of maternal glucocorticoid to the glucocorticoid receptor (NR3C1) in the placenta and fetus is regulated by metabolism via the 11beta-hydroxysteroid dehydrogenase (HSD11B) enzymes, as well as multidrug resistance P-glycoprotein (ABCB1)-mediated efflux of glucocorticoids from the syncytiotrophoblast. This study determined expression of genes encoding the two HSD11B isoforms (Hsd11b1 and Hsd11b2), the two ABCB1 isoforms (Abcb1a and Abcb1b), and Nr3c1 in the junctional and labyrinth zones of rat placentas at Days 16 and 22 of normal gestation (Day 23 is term). To assess possible regulation of the Hsd11b and Abcb1 isoforms by glucocorticoids and progesterone, their placental expression was also measured at Day 22 after partial progesterone withdrawal from Day 16 (maternal ovariectomy plus full estrogen and partial progesterone replacement) or after treatment with dexamethasone acetate (1 microg/ml of drinking water from Day 13). Expression of Hsd11b1 mRNA increased in the labyrinth zone (the site of maternal-fetal exchange) from Day 16 to Day 22, whereas that of Hsd11b2 fell dramatically. Consistent with these changes, corticosterone levels increased 10-fold in the labyrinth zone over this period. Expression of both Abcb1a and Abcb1b was markedly higher in the labyrinth zone compared with the junctional zone on both days, consistent with the proposed barrier role of ABCB1 in the placenta. Nr3c1 mRNA expression was similar in the two placental zones at Day 16 but increased 3-fold in the labyrinth zone by Day 22. Partial progesterone withdrawal increased Hsd11b1 mRNA and protein expression in the labyrinth zone but decreased Nr3c1 mRNA expression. These data show that the dynamic expression patterns of the placental HSD11Bs in late gestation are associated with dramatic shifts in placental corticosterone. Moreover, the late gestational rise in labyrinthine Hsd11b1 seems to be driven by the normal prepartum fall in progesterone level.
Collapse
Affiliation(s)
- Peter J Mark
- School of Anatomy and Human Biology, The University of Western Australia, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
17
|
Faria A, Monteiro R, Azevedo I, Calhau C. Pomegranate Juice Effects on Cytochrome P450s Expression:In VivoStudies. J Med Food 2007; 10:643-9. [DOI: 10.1089/jmf.2007.403] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ana Faria
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Chemistry Investigation Centre, Department of Chemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosário Monteiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Isabel Azevedo
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Conceição Calhau
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Nishimura M, Koeda A, Suzuki E, Kawano Y, Nakayama M, Satoh T, Narimatsu S, Naito S. Regulation of mRNA expression of MDR1, MRP1, MRP2 and MRP3 by prototypical microsomal enzyme inducers in primary cultures of human and rat hepatocytes. Drug Metab Pharmacokinet 2007; 21:297-307. [PMID: 16946557 DOI: 10.2133/dmpk.21.297] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mRNA induction of various transporters by rifampicin (Rif), dexamethasone (Dex) and omeprazole (Ome) was investigated in primary cultures of cryopreserved human and rat hepatocytes. Analysis was performed by quantitative real-time RT-PCR using primers and TaqMan probes. In primary cultures of human hepatocytes, mRNA levels of MDR and MRP1 were increased by about 1.5 fold and 1.3 fold, respectively, by exposure to Rif at 2 to 50 microM as compared with 0.1% DMSO-treated controls. MRP2 mRNA levels in the same human hepatocytes were significantly increased by 1.2 to 1.8 fold by exposure to Rif at 50 microM as compared with controls. In primary cultures of rat hepatocytes, Mdr1a and Mdr1b mRNA levels were not increased or only slightly increased at 24 hr by exposure to any of the inducers at 2, 10 or 50 microM. Mrp2 mRNA levels in the same rat hepatocytes were significantly increased by 7 to 45 fold by exposure to Dex at 2 microM as compared with controls. Based on the species differences observed in the present study, primary cultures of cryopreserved hepatocytes from both the human and rat should be useful in preclinical drug development for evaluating candidate drugs for transporter induction.
Collapse
Affiliation(s)
- Masuhiro Nishimura
- Department of Drug Metabolism, Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory Inc., Naruto, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nwankwo JO. Significant transcriptional down-regulation of the human MDR1 gene by β-naphthoflavone: A proposed hypothesis linking potent CYP gene induction to MDR1 inhibition. Med Hypotheses 2007; 68:661-9. [PMID: 17011724 DOI: 10.1016/j.mehy.2006.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/29/2006] [Indexed: 11/19/2022]
Abstract
Previous work has established the existence of a co-ordinate response in induction between Phase I xenobiotic metabolism, cytochrome P450 (CYP) and the multidrug resistance (MDR1) genes in hepatocytes and some tumor cells. Further correlation was obtained between development of multidrug resistance in cancer cells and a concomitant decrease in inducibility of CYP1A and CYP3A drug metabolizing genes. In the present study, a human MDR1 promoter reporter gene construct was designed to investigate the reverse effect in which selected activators of the major CYP (1-3) genes were tested for potential inhibition of transcriptional activity of the MDR1 gene. beta-naphthoflavone (BNF), a potent CYP1A1 inducer, significantly (P<0.05) down-regulated MDR1 transcriptional activity at 10 microM concentration, causing a 33-fold decrease relative to vector control values. Chemotherapeutic relevance of BNF's transcriptional down-regulation of MDR1 promoter activity was further demonstrated by its restoring 45.86%, and 79.34% drug sensitivity to the resistant MCF-7/Adr cells at 10- and 20 microM concentrations, respectively (P<0.05). A functional linkage between potent induction of the major CYP (1-3) genes and transcriptional down-regulation of MDR1 gene in drug-resistant tumor cells is hereby hypothesized. Steroid and xenobiotic nuclear receptor (SXR) is proposed to mediate the cross-talk between the two genes and to recruit potent CYP gene inducers as co-repressor ligands in effecting its transcriptional down-regulation of MDR1 gene. Implications for the multidrug resistance phenomenon are discussed.
Collapse
Affiliation(s)
- Joseph O Nwankwo
- University of Wisconsin Medical School, Surgical Oncology Section, Department of Surgery, K4/619 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792-7375, United States.
| |
Collapse
|
20
|
Jin M, Shimada T, Yokogawa K, Nomura M, Ishizaki J, Piao Y, Kato Y, Tsuji A, Miyamoto KI. Site-dependent contributions of P-glycoprotein and CYP3A to cyclosporin A absorption, and effect of dexamethasone in small intestine of mice. Biochem Pharmacol 2006; 72:1042-50. [PMID: 16939683 DOI: 10.1016/j.bcp.2006.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 11/25/2022]
Abstract
We examined whether the oral bioavailability of cyclosporin A is controlled primarily by P-glycoprotein (P-gp) or CYP3A in the small intestine. In situ loop method was used to evaluate the uptake of cyclosporin A (40nmol) at the upper and lower intestine of wild-type and mdr1a/1b knockout mice treated or not treated with dexamethasone (75mg/kg/day, 7 days, i.p.). Expression of CYP3A mRNA in the control group was higher in the upper than the lower intestine, while that of the multidrug resistance-1a (mdr1a) mRNA was in the opposite order. Dexamethasone administration potently induced CYP3A and mdr1a mRNAs in the lower and upper intestine, respectively. At 45min after cyclosporin A administration into an upper intestinal loop of the control group of wild-type mice, the ratio of residual cyclosporin A to dose did not differ significantly from that of mdr1a/1b knockout mice, whereas in dexamethasone-treated wild-type mice, the residual ratio was increased significantly. The ratio of the cyclosporin A metabolite M17 to cyclosporin A in portal venous blood at an upper intestinal loop of mdr1a/1b knockout mice was much higher than that a lower intestinal loop. The M17/cyclosporin A ratio of portal venous blood at a lower intestinal loop in mdr1a/1b knockout mice was increased significantly by dexamethasone treatment. These results suggest that, under physiological conditions, the oral bioavailability of cyclosporin A is mainly controlled by CYP3A in the upper intestine, rather than liver, but when P-gp is induced by steroid, the intestinal absorption of cyclosporin A may be inhibited.
Collapse
Affiliation(s)
- Mingji Jin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Arya V, Demarco VG, Issar M, Hochhaus G. Contrary to adult, neonatal rats show pronounced brain uptake of corticosteroids. Drug Metab Dispos 2006; 34:939-42. [PMID: 16507650 DOI: 10.1124/dmd.105.007419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotoxic adverse effects after systemic corticosteroid administration are elevated in preterm infants. To test whether this might be related to an immature blood-brain barrier (BBB) that permits corticosteroids to enter the brain and induce neurotoxic effects, this study assessed the differences in brain permeability of triamcinolone acetonide after intratracheal administration to neonatal (10- to 11-day-old) and adult rats. Triamcinolone acetonide (or the phosphate prodrug in the case of neonatal rats) was administered intratracheally to neonatal rats at doses of 2.5, 25, or 50 microg/kg and to adult rats at 100 microg/kg. An ex vivo receptor binding assay was used to monitor the cumulative brain and liver glucocorticoid receptor occupancies over 6 h. Brain and liver receptor occupancies in neonates were similar for the 25 and 50 microg/kg triamcinolone acetonide phosphate (brain/liver receptor occupancy ratio, 1.10 +/- 0.14 and 0.87 +/- 0.13, respectively), whereas some reduction in the brain permeability was seen at the lower dose. After intratracheal administration of 100 microg/kg triamcinolone acetonide to adult rats, receptor occupancies in the brain were significantly lower (brain/liver ratio, 0.21 +/- 0.14; p < 0.001). The study demonstrated that glucocorticoids enter the brain of neonatal rats because of an immature BBB. The results of this study support the hypothesis that neurotoxic adverse effects in preterm infants after systemic corticosteroid administration might be related to an immature BBB.
Collapse
Affiliation(s)
- Vikram Arya
- Department of Pharmaceutics, College of Pharmacy, JHMHC, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
22
|
Kobayashi-Hattori K, Watanabe T, Kimura K, Sugita-Konishi Y. Down-regulation of mdr1b mRNA expression in the kidneys of mice following maternal exposure to tributyltin chloride. Biosci Biotechnol Biochem 2006; 70:1242-5. [PMID: 16717428 DOI: 10.1271/bbb.70.1242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the change in renal mdr1b mRNA expression in offspring exposed to tributyltin chloride (TBTC) via the placenta and lactation or via lactation, using the real-time reverse transcription-polymerase chain reaction. Pregnant ICR mice were given water containing TBTC (0, 15, and 50 microg/ml) ad libitum from the start of pregnancy to weaning or from parturition to weaning. Exposure via the placenta and lactation significantly reduced the renal mdr1b level in offspring. Exposure to TBTC through the mother might impair the exclusion system of toxic compounds in offspring.
Collapse
|
23
|
Jin M, Shimada T, Yokogawa K, Nomura M, Kato Y, Tsuji A, Miyamoto KI. Contributions of intestinal P-glycoprotein and CYP3A to oral bioavailability of cyclosporin A in mice treated with or without dexamethasone. Int J Pharm 2006; 309:81-6. [PMID: 16384676 DOI: 10.1016/j.ijpharm.2005.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 11/05/2005] [Accepted: 11/05/2005] [Indexed: 12/22/2022]
Abstract
The contributions of P-glycoprotein (P-gp) and CYP3A to the oral bioavailability (BA) of cyclosporin A (CyA) were separately evaluated by using wild-type and mdr1a/1b knockout mice treated with dexamethasone (DEX). Mice were treated with DEX (1 or 75 mg/kg/day, i.p.) daily for 7 days, and the blood concentrations of CyA were measured after an i.v. or p.o. dose of CyA (10mg/kg) at 1.5h after the last DEX treatment. The BA values of CyA in wild-type and mdr1a/1b knockout mice were similar, 0.25 and 0.287, respectively. As regards expression of mdr1a and CYP3A mRNAs, expression of mdr1a mRNA was weakest in the duodenum, the main absorption site of CyA, along the whole intestine of wild-type mice, while expression of CYP3A was strongest in the duodenum of both types of mice. After treatment with 1 and 75 mg/kg DEX, the BA values decreased to 43 and 25% of the control in wild-type mice, respectively, and to 89 and 73% of the control in mdr1a/1b knockout mice, respectively. Expression of mdr1a mRNA in duodenum of wild-type mice was potently induced by DEX treatment. The expression of CYP3A mRNA in liver and duodenum of both strains was enhanced only by high-DEX treatment. These results suggest that P-glycoprotein plays only a small role in the absorption of CyA under physiological conditions, but the protein is readily induced by DEX and then functions as a more substantial absorption barrier to CyA than does CYP3A in the intestine.
Collapse
Affiliation(s)
- Mingji Jin
- Department of Clinical Pharmacy, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Schiengold M, Schwantes L, Ribeiro MF, Lothhammer N, Gonzalez TP, Chies JAB, Nardi NB. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology 2005; 49:610-7. [PMID: 15961125 DOI: 10.1016/j.neuropharm.2005.04.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/06/2005] [Accepted: 04/15/2005] [Indexed: 01/16/2023]
Abstract
Expression of the drug transport proteins, including P-glycoprotein (Pgp), in the brain vascular endothelium represents a challenge for the effective delivery of drugs for the treatment of several central nervous system (CNS) disorders including depression, schizophrenia and epilepsy. It has been hypothesized that Pgp plays a major role in drug efflux at the blood-brain barrier, and may be an underlying factor in the variable responses of patients to CNS drugs. However, the role of Pgp in the transport of many CNS drugs has not been directly demonstrated. To explore the role of Pgp in drug transport across an endothelial cell barrier derived from the central nervous system, the expression and activity of Pgp in bovine retinal endothelial cells (BRECs) and the effects of representative CNS drugs on Pgp activity were examined. Significant Pgp expression in BRECs was demonstrated by western analyses, and expression was increased by treatment of the cells with hydrocortisone. Intracellular accumulation of the well-characterized Pgp-substrate Taxol was markedly increased by the non-selective transporter inhibitor verapamil and the Pgp-selective antagonist PGP-4008, demonstrating that Pgp is active in these endothelial cells. In contrast, neither verapamil nor PGP-4008 affected the intracellular accumulation of [3H]paroxetine, [14C]phenytoin, [3H]clozapine or [14C]carbamazapine, indicating that these drugs are not substrates for Pgp. Paroxetine, clozapine and phenytoin were shown to be Pgp inhibitors, while carbamazapine did not inhibit Pgp at any concentration tested. These results indicate that Pgp is not likely to modulate patient responses to these drugs.
Collapse
Affiliation(s)
- Lynn W Maines
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
26
|
van der Deen M, de Vries EGE, Timens W, Scheper RJ, Timmer-Bosscha H, Postma DS. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res 2005; 6:59. [PMID: 15967026 PMCID: PMC1200430 DOI: 10.1186/1465-9921-6-59] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/20/2005] [Indexed: 11/10/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases.
Collapse
Affiliation(s)
- Margaretha van der Deen
- University Medical Center Groningen, Department of Internal Medicine, Medical Oncology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Elisabeth GE de Vries
- University Medical Center Groningen, Department of Internal Medicine, Medical Oncology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Laboratory Medicine, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rik J Scheper
- Free University, Department of Pathology, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hetty Timmer-Bosscha
- University Medical Center Groningen, Department of Internal Medicine, Medical Oncology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Dirkje S Postma
- Department of Pulmonary Medicine, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
27
|
Konishi H, Sumi M, Shibata N, Takada K, Minouchi T, Yamaji A. Decrease in oral bioavailability of ciclosporin by intravenous pulse of methylprednisolone succinate in rats. J Pharm Pharmacol 2005; 56:1259-66. [PMID: 15482640 DOI: 10.1211/0022357044481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examined the effects of high-dose methylprednisolone on the bioavailability of orally administered ciclosporin in rats. To emulate the clinical protocol of methylprednisolone pulse therapy, methylprednisolone sodium succinate (MPS), a prodrug of methylprednisolone, was intravenously administered as repeated doses (66.3 mg kg(-1)) for 3 days. The area under the blood ciclosporin concentration versus time curve after oral administration was significantly reduced by 60% by pulse treatment with MPS. Based on our previous finding that the total body clearance of ciclosporin was reduced by about 20% by the same methylprednisolone pulse protocol, the extent of reduction in the oral bioavailability of ciclosporin was estimated to be approximately 50%, indicating a drug interaction between high-dose methylprednisolone and orally administered ciclosporin, which affected the absorption process. In rats treated with MPS, an in-situ efflux experiment using rhodamine-123 demonstrated that the reverse transport function of P-glycoprotein (P-gp) in the small intestine was significantly enhanced, although there was no significant increase in the intestinal microsomal activity of triazolam alpha- and 4-hydroxylation, metabolic probes for CYP3A. In addition, a significant decrease was observed in the amount of secreted bile acids serving as an enhancer of gastrointestinal absorption of ciclosporin in MPS treatment. To directly estimate the absorptive capacity, an in-situ absorption test was conducted using a closed-loop of small intestine in control and MPS-treated rats. Intestinal absorption of ciclosporin was significantly decreased, not only in the absence of bile flow but also by treatment with MPS, which well reflected the change in the in-vivo pharmacokinetic behaviour of ciclosporin after methylprednisolone pulsing. These results demonstrate that bioavailability of ciclosporin is markedly reduced by MPS pulse treatment, and the mechanism of this interaction was confirmed to involve enhancement of small-intestinal P-gp function and decrease in bile secretion.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Administration, Oral
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/pharmacology
- Aryl Hydrocarbon Hydroxylases/biosynthesis
- Bile/drug effects
- Bile/metabolism
- Biological Availability
- Cyclosporine/administration & dosage
- Cyclosporine/blood
- Cyclosporine/pharmacokinetics
- Cytochrome P-450 CYP3A
- Drug Interactions
- Drug Therapy, Combination
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/blood
- Immunosuppressive Agents/pharmacokinetics
- Injections, Intravenous
- Intestinal Absorption/drug effects
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Male
- Methylprednisolone Hemisuccinate/administration & dosage
- Methylprednisolone Hemisuccinate/pharmacology
- Oxidoreductases, N-Demethylating/biosynthesis
- Prodrugs/administration & dosage
- Prodrugs/pharmacology
- Pulse Therapy, Drug
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Hiroki Konishi
- Department of Hospital Pharmacy, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Corticosteroids and the blood–brain barrier. HANDBOOK OF STRESS AND THE BRAIN - PART 1: THE NEUROBIOLOGY OF STRESS 2005. [DOI: 10.1016/s0921-0709(05)80019-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
|
30
|
Kier LD, Neft R, Tang L, Suizu R, Cook T, Onsurez K, Tiegler K, Sakai Y, Ortiz M, Nolan T, Sankar U, Li AP. Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutat Res 2004; 549:101-13. [PMID: 15120965 DOI: 10.1016/j.mrfmmm.2003.11.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 11/09/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Microarrays with toxicologically relevant genes (tox genes) have been developed in our laboratory for toxicogenomics studies in rat, dog and man. The genes were chosen using published information as well as a discovery process for genes responsive to toxic treatments using transcription profiling experiments conducted with rats and dogs. In addition to published information human tox genes were derived from rat tox genes based on gene homology. Using the microarray with rat-specific tox genes, a database containing gene expression, histopathology, and clinical chemistry findings has been generated for 89 compounds. Analysis of the database indicates that treatment with toxic compounds induces specific gene expression patterns. Dose- and time-dependent response relationships in gene expression were observed for treatment with toxic compounds. Gene expression at 24h was found to correlate well with organ toxicity observed at 72 h. Mining of the database led to the selection of specific groups of genes (predictive gene sets) whose expression patterns are predictive of organ toxicity with a high degree of accuracy (approximately 90%). The data also provide insight on toxic mechanism and gene regulation pathways. For instance, carbon tetrachloride and chloroform treatments were found to decrease the expression of the cytochrome P450 isoform 3A1 gene while enhancing the expression of the multiple drug resistance gene MDR1 in liver, clearly demonstrating that the CYP3A1 and MDR1 genes were not co-regulated as postulated by some researchers. This approach, the use of gene expression as an endpoint to define organ toxicity, is extended to the definition of human drug toxicity using primary human hepatocytes as a test system. Preliminary results demonstrate that the toxic drug, troglitazone, can be clearly distinguished from the less toxic analogues, rosiglitazone and pioglitazone based on their effects on tox gene expression in human hepatocytes. Our results with both rats in vivo and human hepatocytes in vitro suggest that microarrays with toxicologically relevant genes can be used routinely for the evaluation of chemical toxicity.
Collapse
Affiliation(s)
- Larry D Kier
- PHASE-1 Molecular Toxicology, Inc., Santa Fe, NM 87505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Warrington JS, Greenblatt DJ, von Moltke LL. The effect of age on P-glycoprotein expression and function in the Fischer-344 rat. J Pharmacol Exp Ther 2004; 309:730-6. [PMID: 14757850 DOI: 10.1124/jpet.103.061234] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigated the effect of age on P-glycoprotein (P-gp) expression and function in rat liver, intestine, kidney, and endothelial cells of the blood-brain barrier (BBB) and lymphocytes. Flow cytometric analysis was used to examine P-gp expression in lymphocytes from male Fischer-344 rats from three age groups (young at 3-4 months, intermediate at 13-14 months, and old at 25-26 months). In addition, P-gp function in lymphocytes was assessed by measuring the ability of the P-gp inhibitor verapamil to limit the efflux of the fluorescent P-gp substrate rhodamine 123. P-gp expression was evaluated in the remaining four tissues by Western blot analysis. The effect of age on P-gp expression was tissue-specific. Although lymphocytic and hepatic P-gp expression increased with age, renal P-gp content was lower in the old kidneys. No statistical difference was observed in P-gp expression in intestinal microsomes or in BBB cell lysates among the three age groups. P-gp function was also increased by 6- to 8-fold in lymphocytes from the old rats. When P-gp expression was compared with CYP3A expression in these rats (reported elsewhere in this journal), we found that P-gp expression increased with age, whereas CYP3A expression and activity declined in the old livers. The converse pattern was observed in the kidney. Thus, age-related changes in P-gp expression and function are likely to be tissue-specific, and these changes may be inversely related to differences in CYP3A expression.
Collapse
Affiliation(s)
- Jill S Warrington
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
32
|
Granzotto M, Drigo I, Candussio L, Rosati A, Bartoli F, Giraldi T, Decorti G. Rifampicin and verapamil induce the expression of P-glycoprotein in vivo in Ehrlich ascites tumor cells. Cancer Lett 2004; 205:107-115. [PMID: 15036667 DOI: 10.1016/j.canlet.2003.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 09/26/2003] [Indexed: 11/23/2022]
Abstract
The effect of an in vivo treatment with two commonly employed drugs that are P-glycoprotein substrates, verapamil and rifampicin, on Ehrlich ascites carcinoma cells, was evaluated. Ehrlich ascites carcinoma cells were inoculated i.p. in CD-1 mice and animals were orally treated for 10 days with rifampicin (60 mg/kg/day) or verapamil (6 mg/kg/day). In the harvested cells the transcripts for mdr1a and mrp1, but not those for mdr1b, mrp2 and CYP3A, were detected, and treatment with verapamil or rifampicin did not modify the levels of the transcripts. On the contrary, an increased expression of P-glycoprotein was observed at the protein level with Western blot. The intracellular uptake of doxorubicin, a P-glycoprotein and MRP substrate, was significantly lower in cells obtained from treated animals in comparison with cells obtained from controls; in addition, the uptake was increased by a pretreatment with verapamil. The survival time of control animals implanted with untreated cells was similar to that of animals inoculated with cells obtained from rifampicin treated animals, however, the antineoplastic effect of doxorubicin was significanly higher in control animals. A treatment with rifampicin or verapamil in Ehrlich ascites tumor confers resistance to the antineoplastic drug doxorubicin, probably through an increased expression of P-glycoprotein.
Collapse
Affiliation(s)
- Marilena Granzotto
- Department of Biomedical Sciences, University of Trieste, Via Giorgieri 7, Trieste I-34127, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Magnarin M, Morelli M, Rosati A, Bartoli F, Candussio L, Giraldi T, Decorti G. Induction of proteins involved in multidrug resistance (P-glycoprotein, MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK1 cells. Eur J Pharmacol 2004; 483:19-28. [PMID: 14709322 DOI: 10.1016/j.ejphar.2003.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-glycoprotein, multidrug resistance-related proteins (MRPs) and lung resistance-related protein (LRP) are involved in multidrug resistance in tumor cells but are also expressed in normal tissues. In the LLC-PK(1) tubular renal cell line, a 15-day treatment with 25 microM rifampicin significantly increased the mRNA levels of P-glycoprotein, MRP1, MRP2, LRP and cytochrome P450 3A4 (CYP 3A4). Western blot analysis confirmed a moderate increase in the expression of P-glycoprotein and MRP2, but not MRP1 also at the protein level. The intracellular uptake of doxorubicin was significantly lower in rifampicin pretreated cells. A pretreatment with 6-[82S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]cyclosporin D, valspodar (PSC 833), a specific inhibitor of P-glycoprotein, with (3-(3-(2-(7-chloro-2-quinidinyl)ethenyl-phenyl)((3-diimethyl amino-3oxo propyl)thio)methyl)thio)propanoic acid, sodium salt (MK-571), a specific inhibitor of MRP1, and with verapamil, that inhibits both proteins, significantly increased doxorubicin cell accumulation in rifampicin pretread cells. In rifampicin treated cells cultured on porous membranes, doxorubicin showed a polarized transport, that was reduced by a pretreatment with PSC 833. A chronic treatment with rifampicin induces the expression of transport proteins and of CYP 3A4 and could therefore alter the renal elimination kinetics of drugs that are their substrates.
Collapse
Affiliation(s)
- Monica Magnarin
- Department of Biomedical Sciences, University of Trieste, Via L. Giorgieri 7, I-34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Mealey KL, Bentjen SA, Gay JM, Hosick HL. Dexamethasone treatment of a canine, but not human, tumour cell line increases chemoresistance independent of P-glycoprotein and multidrug resistance-related protein expression. Vet Comp Oncol 2003; 1:67-75. [DOI: 10.1046/j.1476-5829.2003.00009.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Luttringer O, Theil FP, Lavé T, Wernli-Kuratli K, Guentert TW, de Saizieu A. Influence of isolation procedure, extracellular matrix and dexamethasone on the regulation of membrane transporters gene expression in rat hepatocytes. Biochem Pharmacol 2002; 64:1637-50. [PMID: 12429353 DOI: 10.1016/s0006-2952(02)01382-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of the isolation procedure of hepatocytes, extracellular matrix (ECM) configuration and incubation medium supplementation by dexamethasone (DEX) on the cell morphology and on the gene expression of membrane transporters was examined in rat hepatocytes. The mRNA levels were determined using oligonucleotide microarrays, in liver, in suspension and in primary culture in monolayer (CPC), and in collagen gels sandwich (SPC) in absence and presence of DEX (100 and 1000 nM). The results indicated pronounced morphological differences between CPC and SPC in response to DEX demonstrating that the hepatocytes re-formed, as in vivo, multicellular arrays with extensive bile canalicular network only in SPC in presence of DEX. The mRNA levels of membrane transporters were not affected significantly during isolation procedure. However, plating hepatocytes in CPC resulted in a decrease of major basolateral transporters mRNA level whereas mRNA levels of mdr1b and mrp3 were increased (>100-fold). Similar observations were made in SPC in the absence of DEX demonstrating that the ECM configuration alone did not play a critical role in the regulation of membrane transporters. However, adding DEX to the incubation medium in SPC resulted in an up-regulation of mdr2, oatp2 and mrp2 in a concentration-dependent way for the two latter genes, whereas mdr1b and mrp3 expression were maintained to their baseline liver levels. These data suggested therefore that the combination of ECM and DEX supplementation is essential for the formation of the bile canalicular network and is a determinant factor in the regulation of membrane transporters in cultured rat hepatocytes.
Collapse
|
36
|
Brady JM, Cherrington NJ, Hartley DP, Buist SC, Li N, Klaassen CD. Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos 2002; 30:838-44. [PMID: 12065443 DOI: 10.1124/dmd.30.7.838] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multiple drug resistance (mdr) genes encode P-glycoprotein, which is responsible for resistance to some cancer chemotherapeutic drugs and efflux of xenobiotics of cells. Thus, mdr can protect organs from xenobiotics. In rats, there are two mdr1 genes capable of xenobiotic transport, mdr1a and mdr1b. The purpose of this study was to determine the tissue distribution of rat mdr1a and mdr1b mRNA and whether microsomal enzyme inducers that increase phase I and II drug-metabolizing enzymes coordinately regulate mdr1a and/or mdr1b. The mRNA levels of mdr1a and mdr1b were determined using branched-DNA signal amplification technology. The highest level of expression of mdr1a mRNA was observed in the gastrointestinal tract, with levels increasing, respectively, from duodenum, jejunum, and ileum to large intestine. Expression levels of mdr1a mRNA in the cerebral cortex, cerebellum, kidney, lung, and liver were less than one-tenth of that in the ileum. The tissue distribution of mdr1b mRNA was similar to mdr1a with highest expression in the gastrointestinal tract but only about 3-fold higher than in most other tissues. The induction of mdr1a and mdr1b mRNA transcripts in liver, kidney, and ileum by treatment of rats with 18 chemicals representing aryl hydrocarbon receptor ligands, constitutive androstane receptor ligands, pregnane X receptor ligands, peroxisome proliferator-activated receptor ligands, electrophile-response-element activators, and CYP4502E1 inducers was assessed. Hepatic, renal, and intestinal expression of mdr1a and mdr1b mRNA were not significantly altered by treatment of rats with any of these classes of ligands. In conclusion, the primary expression of rat mdr1 genes is in the gastrointestinal tract where they are thought to function to decrease the absorption of some xenobiotics. Rat mdr1 gene expression is not readily increased by microsomal enzyme inducers in rats through coordinate mechanisms with phase I and II drug-metabolizing enzymes.
Collapse
Affiliation(s)
- James M Brady
- Deptartment of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
37
|
Usuki E, Bloomquist JR, Freeborn E, Casagnoli K, Van Der Schyf CJ, Castagnoli N. Metabolic studies on haloperidol and its tetrahydropyridinyl dehydration product (HPTP) in C57BL/6 mouse brain preparations. Neurotox Res 2002; 4:51-8. [PMID: 12826493 DOI: 10.1080/10298420290007628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The neuroleptic agent haloperidol (HP) and its tetrahydropyridinyl dehydration product HPTP are biotransformed by humans, baboons and rodents to the HP pyridinium (HPP(+)) and reduced HP pyridinium (RHPP(+)) species, potential neurotoxic metabolites that have been detected in the brain. HPP(+), however, does not pass the mouse blood-brain barrier since it is not detected in the brain following systemic administration. We report here that C57BL/6 mouse brain preparations catalyze the oxidation of HP and HPTP to HPP(+). The initial rate of HPP(+) formation from HPTP by whole brain homogenates was estimated to be approximately 20 times faster than that observed with HP as substrate. HPTP also was converted to HPP(+) by mouse brain microsomal preparations and brain slices. These results suggest that the presence of HPP(+) in the C57BL/6 mouse brain following systemic administration of HPTP may be due primarily to its in situ metabolism to HPP(+). Attempts to identify the catalyst responsible for these biotransformations, however, have not been successful.
Collapse
Affiliation(s)
- Etsuko Usuki
- Harvey W. Peters Center, Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hennessy M, Kelleher D, Spiers JP, Barry M, Kavanagh P, Back D, Mulcahy F, Feely J. St Johns wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol 2002; 53:75-82. [PMID: 11849198 PMCID: PMC1874544 DOI: 10.1046/j.0306-5251.2001.01516.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 08/13/2001] [Indexed: 11/20/2022] Open
Abstract
AIMS St John's Wort (SJW) is widely used in the treatment of depression but concerns have been raised about its potential to interact with other drugs. Co-administration with SJW has resulted in significant reductions in trough plasma concentrations of indinavir and cyclosporin [1, 2]. Induction of cytochrome P450 3A4 (CYP3A4) has been implicated as the most likely interaction mechanism. However, the magnitude of the interaction seen in clinical practice is greater than that predicted by in vitro studies suggesting additional interaction mechanisms may exist. As indinavir and cyclosporin are substrates for both CYP3A4 and the multi drug transporter P-glycoprotein we hypothesized that modulation of P-glycoprotein expression and function by SJW may contribute to the development of potentially harmful drug-drug interactions. METHODS Healthy volunteers were randomized to either SJW (0.15%) 600 mg three times daily for 16 days (n = 15) or placebo (n = 7). Blood samples were obtained for P-glycoprotein expression and function at baseline, 16 and 32 days post treatment. Peripheral blood lymphocytes (PBMCs) were isolated by Ficoll density gradient centrifugation, fixed and permeabilized. Cells were stained with a P-glycoprotein specific antibody, quantified by flow cytometry and median fluorescence intensity (MFI) values obtained. Vimentin and IE (nonsense antibody) were used as controls. The presence of the MDR 1 gene product was confirmed by RT-PCR. P-glycoprotein mediated drug efflux was determined as a function of rhodamine efflux in the absence and presence of ritonavir. Data are expressed as mean +/- s.d. and were subjected to nonparametric analysis. RESULTS P-glycoprotein expression increased 4.2 fold from baseline in subjects treated with SJW (7.0 +/- 1.9 vs 29.5 +/- 14.3 (MFI); P < 0.05). There was no effect with placebo (5.1 +/- 1.3 vs 6.0 +/- 1.9 MFI). SJW increased P-glycoprotein mediated rhodamine efflux (reduced ratio) compared with baseline (0.12 +/- 0.04 vs 0.24 +/- 0.18 P < 0.05). There was no change with placebo. Ritonavir (5 microm) inhibited P-glycoprotein mediated efflux in both groups producing greater intracellular accumulation of rhodamine. However, this effect was attenuated following treatment with SJW (23.9 +/- 15.3% vs 75.4 +/- 16.4% P < 0.05). CONCLUSIONS SJW increased expression and enhanced the drug efflux function of the multi drug transporter P-glycoprotein in PBMCs of healthy volunteers. This may represent a second mechanism for the drug-herb interactions seen in clinical practice and account for the discrepancies between in vitro and in vivo data. Since P-glycoprotein and CYP3A4 have distinct though overlapping substrates, patients receiving drugs, which are P-glycoprotein substrates should be warned against self-medication with SJW as clinically significant drug interactions may occur.
Collapse
Affiliation(s)
- Martina Hennessy
- Department of Pharmacology and Therapeutics, Trinity Centre for Health Sciences, St James's Hospital, Trinity College, Dublin 8, Ireland, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Patel J, Mitra AK. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics 2001; 2:401-15. [PMID: 11722289 DOI: 10.1517/14622416.2.4.401] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), abundant in both the liver and upper intestinal enterocytes, limits the systemic bioavailability of xenobiotics. P-glycoprotein (P-gp), the MDR1 gene product, is also known to reduce the oral bioavailability of the drug molecules. High cellular expression of P-gp and CYP3A4 in mature intestinal enterocytes and their similar substrate specificity suggest that the function of these proteins may be complementary and may form a co-ordinated intestinal barrier. Various ongoing preclinical and clinical studies have demonstrated that the oral bioavailability of various P-gp and/or CYP3A4 substrates can be increased by simultaneous administration of P-gp and/or CYP3A4 inactivators. The current review describes the background and summarises several proposed hypotheses in modifying oral bioavailability by various drug-inhibitor interactions.
Collapse
Affiliation(s)
- J Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|
40
|
Hamilton KO, Yazdanian MA, Audus KL. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and beta-ligands. Int J Pharm 2001; 228:171-9. [PMID: 11576779 DOI: 10.1016/s0378-5173(01)00836-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this work was to investigate if P-glycoprotein (Pgp) efflux pump activity could be inhibited in the sub-bronchial epithelial cell line, Calu-3, by glucocorticosteroids and beta-ligands. The Pgp modulation efficiency of each compound was determined by its ability to increase the accumulation of the Pgp substrate rhodamine 123 (Rh123) accumulation in these cells. Pgp inhibition was observed at > or =100 microM steroids and beta-ligand. The modulation effectiveness of the beta-ligands increased with increasing hydrophobicity (logP(octanol/aqueous)) whereas an obvious correlation was not obtained with the complete set of steroids tested. Steroidal Pgp substrates did not affect Rh123 accumulation (e.g. aldosterone, dexamethasone, 11beta,17alpha,21-OH progesterone). In contrast, two hydrophobic non-Pgp steroidal substrates (testosterone and progesterone) displayed different effects on Rh123 accumulation, with progesterone being the more potent modulator. The most hydrophobic beta-ligand, propranolol, a known Pgp substrate, gave the largest increase in Rh123 accumulation in this therapeutic class. The beta-ligand modulation efficiency could also be correlated to Pgp structural recognition elements such as hydrogen bonding potential, the presence of a basic nitrogen and planar aromatic ring. No effect on Rh123 accumulation was observed with the formulation additives tested (ethanol, glycerol and palmitoyl carnitine) at concentrations previously reported to be non-toxic to Calu-3 cells.
Collapse
Affiliation(s)
- K O Hamilton
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratories, 2095 Constant Avenue, Lawrence, KS 66047-3729, USA
| | | | | |
Collapse
|
41
|
Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276:14581-7. [PMID: 11297522 DOI: 10.1074/jbc.m010173200] [Citation(s) in RCA: 620] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal P-glycoprotein, which is encoded by the MDR1 gene, plays an important role in the absorption and presystemic elimination of many xenobiotics. Hence, an understanding of the factors regulating its expression and function is of substantial interest. In addition to genetic factors, exposure to drugs such as rifampin can profoundly affect its expression. So far, the mechanisms by which rifampin induces MDR1 expression are poorly understood. Recent studies demonstrate that the nuclear receptor PXR (pregnane X receptor) is involved in xenobiotic induction of CYP3A4. Because CYP3A4 and MDR1 are often co-induced, we investigated whether a similar mechanism is also involved in MDR1 induction. The human colon carcinoma cell line LS174T was used as an intestinal model to study induction because in these cells the endogenous MDR1 gene is highly inducible by rifampin. The 5'-upstream region of human MDR1 was examined for the presence of potential PXR response elements. Several binding sites were identified that form a complex regulatory cluster at about -8 kilobase pairs. Only one DR4 motif within this cluster is necessary for induction by rifampin. We conclude that induction of MDR1 is mediated by a DR4 motif in the upstream enhancer at about -8 kilobase pairs, to which PXR binds.
Collapse
Affiliation(s)
- A Geick
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, D-70376 Stuttgart, Germany
| | | | | |
Collapse
|
42
|
Becquemont L, Camus M, Eschwege V, Barbu V, Rey E, Funck-Brentano C, Jaillon P. Lymphocyte P-glycoprotein expression and activity before and after rifampicin in man. Fundam Clin Pharmacol 2000; 14:519-25. [PMID: 11129093 DOI: 10.1111/j.1472-8206.2000.tb00435.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that P-glycoprotein (P-gp) is inducible by rifampicin in the human gut as shown in intestinal biopsies. The present study was performed in order to test the hypothesis that human peripheral lymphocytes can be used to assess such an inducibility. We also assessed inter- and intra-individual variability of P-gp expression and activity in peripheral lymphocytes. Blood samples from 13 healthy volunteers were collected 1.7, 14 and 19 days after inclusion. Rifampicin treatment (600 mg/day) was administered from day 15 to day 18. Lymphocyte P-gp expression was measured at the messenger RNA level by semi-quantitative RT-PCR and at the protein level by immunostaining flow cytometry. P-gp activity was determined by flow cytometry with rhodamine 123 efflux. Cytochrome P4503A4 (CYP3A4) inducibility was measured by comparing the urinary metabolic ratio of 6beta-hydroxycortisol/cortisol on day 14 and 19, Lymphocyte P-gp expression and activity was not induced by rifampicin, while it increased CYP3A4 activity from 5.0 +/- 4.0 to 22.9 +/- 16.6 (P < 0.001). There was a 3 - 4-fold inter-individual variability and a 3 - 44 % intra-individual variability of lymphocyte P-gp expression and activity. Peripheral lymphocytes are not an appropriate material to assess P-gp inducibility in humans. P-gp shows significant inter- and intra-individual variability in human lymphocytes.
Collapse
Affiliation(s)
- L Becquemont
- Department of Pharmacology, St-Antoine University Hospital, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bard SM. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2000; 48:357-389. [PMID: 10794825 DOI: 10.1016/s0166-445x(00)00088-6] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multixenobiotic resistance in aquatic organisms exposed to natural toxins or anthropogenic contaminants is a phenomenon analogous to multidrug resistance in mammalian tumor cell lines tolerant of anti-cancer drugs. Multidrug resistance is commonly due to the elevated expression of transmembrane P-glycoproteins (P-gp) which actively transport a wide variety of structurally and functionally diverse compounds. The purpose of this review is to place aquatic ecotoxicological data in context of the larger multidrug resistance field of study. Information on P-glycoproteins structure, mechanism of transport, and substrate specificity gained through traditional mammalian and cell culture models is examined in conjunction with recent work on aquatic species exposed to xenobiotics both in the field and in the laboratory. The physiological function of P-glycoproteins is explored through studies of gene knockout models and expression patterns in normal tissues and tumors. The effect of xenobiotic exposures on P-gp activity and protein titer is examined in wild and captive populations of aquatic invertebrates and vertebrates. Substrate overlap and evidence of co-expression of phase I detoxification enzymes (e.g. cytochromes P450) and P-gp are presented. The role of P-gp chemosensitizers as environmental pollutants and the ecotoxicological consequences of P-gp inhibition are highlighted. The overwhelming evidence suggests that P-glycoproteins provide aquatic organisms with resistance to a wide range of natural and anthropogenic toxins.
Collapse
Affiliation(s)
- SM Bard
- Biology Department, Mail Stop #32, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|