1
|
Liu J, Xu Y, Xie G, Geng B, Yang R, Tian W, Chen H, Wang G. Modulation of TNFR 1-Triggered Inflammation and Apoptosis Signals by Jacaranone in Cancer Cells. Int J Mol Sci 2024; 25:13670. [PMID: 39769432 PMCID: PMC11679285 DOI: 10.3390/ijms252413670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Jacaranone derived from Senecio scandens, a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately elucidated. In this study, the targets of jacaranone and cancer were identified from various databases, while potential targets and pathways were predicted through the analysis of the protein-protein interactions (PPI) network and pathway enrichment. Through a comprehensive network pharmacology analysis and corroborating experimental findings, we revealed that jacaranone induces tumor cell death by fine-tuning the tumor necrosis factor receptor 1 (TNFR1) downstream signaling pathway. TNFR1 serves as a key node that assembles into complexes I and II, regulating pathways including the nuclear factor (NF)-κB signaling pathway and the cell apoptosis pathway, which play crucial roles in cellular life activities. Jacaranone successfully guides survival signaling pathways to apoptotic mechanisms by inhibiting the assembly of complex I and promoting the formation of complex II. In particular, the main action mechanism of jacaranone lies in inducing the degradation of the inhibitor of apoptosis protein (cIAP)-2. cIAP-2 serves as an E3 ubiquitin ligase that ubiquitinates receptor-interacting serine/threonine-protein kinase 1 (RIPK1), thereby hindering the formation of complex I and effectively reducing the phosphorylation of Inhibitor of κB kinase (IKK) β. When the deubiquitylation process of RIPK1 is triggered, it may promote the formation of complex II, which ultimately leads to cell apoptosis. This fully demonstrates the key role of jacaranone in regulating TNFR1 complexes, especially through the degradation of cIAP-2. Taken together, jacaranone hinders the assembly of TNFR1 complex I and promotes the formation of complex II to induce apoptosis of cancer cells. Our findings unveil a novel mechanism underlying jacaranone, while also presenting a fresh approach for the development of new pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haifeng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (J.L.); (Y.X.); (G.X.); (B.G.); (R.Y.); (W.T.)
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (J.L.); (Y.X.); (G.X.); (B.G.); (R.Y.); (W.T.)
| |
Collapse
|
2
|
Zhang F, Chen Y, Cui Q, Ge Y, Liu Y. Case report: Mutation evolution in a patient with TdT positive high grade B cell lymphoma with MYC and BCL2 rearrangements following the treatment of concurrent follicular lymphoma and diffuse large B-cell lymphoma. Discov Oncol 2024; 15:129. [PMID: 38662249 PMCID: PMC11045710 DOI: 10.1007/s12672-024-00991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Concurrent follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL)was reported in some studies, while the diagnosis of TdT (terminal deoxynucleotydil transferase) positive high grade B cell lymphoma (HGBL) with MYC and BCL2 rearrangements ("double hit") transformed from FL/DLBCL has been rarely reported. Herein, we described the clinical features and mutation profiles of a case diagnosed with TdT positive "double hit" HGBL following the treatment of FL/DLBCL. CASE PRESENTATION This is a 43-year-old Chinese man who was diagnosed with low grade FL (account for 80%) combined with DLBCL (20%) at a stage of IVB. The patient presented with BCL2/IGH translocation without MYC rearrangement, as well as the expressions of CD20, CD19, CD10 and BCL2 at the initial diagnosis of FL/DLBCL. MYC rearrangement and TdT expression occurred after the treatment. The targeted sequencing revealed mutations in KMT2D, FOXO1, CREBBP, ATM, STAT6, BCL7A, DDX3X, MUC4, FGFR3, ARID5B, DDX11 and PRKCSH genes were the co-mutations shared by the FL/DLBCL and TdT positive "double hit" HGBL, while CCND3, BIRC6, ROBO1 and CHEK2 mutations specifically occurred after the treatment. The overall survival time was 37.8 and 17.8 months after the initial diagnosis of FL/DLBCL and TdT positive "double hit" HGBL, respectively. CONCLUSION This study reports a rare case of TdT positive "double hit" HGBL following the treatment of concurrent FL/DLBCL and highlights the mutation characteristics. Collectively, this study will help enrich the knowledge of TdT positive "double hit" HGBL transformed from FL/DLBCL.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Qian Cui
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Yan Ge
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Yanhui Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, 2nd Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Zhong K, Wang X, Zhang H, Chen N, Mai Y, Dai S, Yang L, Chen D, Zhong W. BIRC6 Modulates the Protein Stability of Axin to Regulate the Growth, Stemness, and Resistance of Renal Cancer Cells via the β-Catenin Pathway. ACS OMEGA 2024; 9:7782-7792. [PMID: 38405482 PMCID: PMC10882609 DOI: 10.1021/acsomega.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The mechanism underlying the development of renal cell carcinoma (RCC) remains unclear, and effective prevention and therapeutic measures are lacking. BIRC6, a protein inhibitor of apoptosis, has attracted great interest. Our data indicated that overexpression of BIRC6 elevated cell growth, colony formation, migration, and invasion of cultured RCC cells, while siRNA knockdown of BIRC6 suppressed these processes. Additionally, BIRC6 was highly expressed in RCC clinical samples along with a downregulated level of Axin. Immunoprecipitation assays found that BIRC6 interacted with Axin and the two proteins colocalized within the cytoplasm of RCC cells. Overexpression of BIRC6 promoted the ubiquitination modification of Axin, while genetic knockdown of BIRC6 suppressed it. Furthermore, overexpression of BIRC6 significantly promoted the turnover of Axin, suggesting BIRC6's inhibitory effect on Axin protein stability. BIRC6 was also upregulated in cancer stem-like cells of RCC and increased the drug resistance of RCC cells against sunitinib. Western blotting assays showed that the overexpression of BIRC6 upregulated CXCR4 protein expression and activated the β-catenin pathway. Two cell lines were then constructed with BIRC6 overexpressed by lentiviruses. Pharmacological administration of a Wnt/β-catenin inhibitor, XAV-939, or genetic knockdown of β-catenin inhibited cell growth, tumor sphere formation, colony formation, migration, and invasion of BIRC6-overexpressed cells. In vivo administration of XAV-939 markedly suppressed the tumorigenesis of BIRC6-overexpressed RCC cells in nude mice. In conclusion, we propose that BIRC6 activates the β-catenin signaling pathway via mediating the ubiquitination and degradation of Axin, promoting the growth, stemness, and drug resistance of RCC cells. This project aims to elucidate the role of BIRC6 as a potential therapeutic target and provide new insights into the clinical treatment of RCC.
Collapse
Affiliation(s)
- Kaihua Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Xiaohong Wang
- Department of Nephrology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510500, China
| | - Heyuan Zhang
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
| | - Yang Mai
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| | - Sipin Dai
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong Chen
- Sun Yat-sen Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Weifeng Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou 514031, China
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
| |
Collapse
|
4
|
Dietz L, Ellison CJ, Riechmann C, Cassidy CK, Felfoldi FD, Pinto-Fernández A, Kessler BM, Elliott PR. Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. Science 2023; 379:1112-1117. [PMID: 36758106 DOI: 10.1126/science.ade8840] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Certain inhibitor of apoptosis (IAP) family members are sentinel proteins that prevent untimely cell death by inhibiting caspases. Antagonists, including second mitochondria-derived activator of caspases (SMAC), regulate IAPs and drive cell death. Baculoviral IAP repeat-containing protein 6 (BIRC6), a giant IAP with dual E2 and E3 ubiquitin ligase activity, regulates programmed cell death through unknown mechanisms. We show that BIRC6 directly restricts executioner caspase-3 and -7 and ubiquitinates caspase-3, -7, and -9, working exclusively with noncanonical E1, UBA6. Notably, we show that SMAC suppresses both mechanisms. Cryo-electron microscopy structures of BIRC6 alone and in complex with SMAC reveal that BIRC6 is an antiparallel dimer juxtaposing the substrate-binding module against the catalytic domain. Furthermore, we discover that SMAC multisite binding to BIRC6 results in a subnanomolar affinity interaction, enabling SMAC to competitively displace caspases, thus antagonizing BIRC6 anticaspase function.
Collapse
Affiliation(s)
- Larissa Dietz
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Cara J Ellison
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Carlos Riechmann
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - F Daniel Felfoldi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Paul R Elliott
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Hunkeler M, Jin CY, Fischer ES. Structures of BIRC6-client complexes provide a mechanism of SMAC-mediated release of caspases. Science 2023; 379:1105-1111. [PMID: 36758104 DOI: 10.1126/science.ade5750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.
Collapse
Affiliation(s)
- Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Ehrmann JF, Grabarczyk DB, Heinke M, Deszcz L, Kurzbauer R, Hudecz O, Shulkina A, Gogova R, Meinhart A, Versteeg GA, Clausen T. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 2023; 379:1117-1123. [PMID: 36758105 DOI: 10.1126/science.ade8873] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.
Collapse
Affiliation(s)
- Julian F Ehrmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Daniel B Grabarczyk
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Maria Heinke
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Otto Hudecz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Alexandra Shulkina
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Rebeca Gogova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Zhao C, Ma B, Yang Z, Li O, Liu S, Pan L, Gong W, Dong P, Shu Y. Inhibition of XPO1 impairs cholangiocarcinoma cell proliferation by triggering p53 intranuclear accumulation. Cancer Med 2023; 12:5751-5763. [PMID: 36200270 PMCID: PMC10028126 DOI: 10.1002/cam4.5322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XPO1 mediates the nuclear export of several proteins, mainly tumor suppressors. KPT-330 (Selinexor) is a selective inhibitor of XPO1 that has demonstrated good therapeutic effects in hematologic cancers. METHODS We used TCGA and GTEx pan-cancer database to evaluate XPO1 mRNA expression in various tumors. Cell proliferation assay and colony formation assay were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. Western blot was performed to explore the specific mechanisms. RESULTS We found that XPO1 was highly expressed across a range of cancers and associated with poor prognosis in hepatobiliary and pancreatic tumors. We revealed that the XPO1 inhibitor KPT-330 triggered the nuclear accumulation of the p53 protein and significantly disrupted the proliferation of cholangiocarcinoma cells. Mechanistically, the XPO1 inhibitor, KPT-330, reduced BIRC6 expression by inhibiting the PI3K/AKT pathway to decrease p53 degradation and improve its stability. CONCLUSION Therefore, XPO1 may be a potential therapeutic target in cholangiocarcinoma, mediated by its effects on KPT-330.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ben Ma
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Zi‐yi Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ou Li
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Shi‐lei Liu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Li‐jia Pan
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yi‐jun Shu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
8
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
9
|
Saha G, Sarkar S, Mohanta PS, Kumar K, Chakrabarti S, Basu M, Ghosh MK. USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma. Oncogene 2022; 41:5061-5075. [PMID: 36243803 DOI: 10.1038/s41388-022-02486-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the 'USP7-Mdm2-p53' axis. However, in cancers without functional p53, USP7-dependent apoptosis is induced through many other alternative pathways. Here, we have identified another critical p53 independent path active under USP7 to regulate apoptosis. Proteomics analysis identifies XIAP as a potential target of USP7-dependent deubiquitination. GSEA analysis revealed up-regulation of apoptosis signalling upon USP7 inhibition associated with XIAP down-regulation. Modulation of USP7 expression and activity in multiple cancer cell lines showed that USP7 deubiquitinates XIAP to inhibit apoptosis in a caspase-dependent pathway, and the combinatorial inhibition of USP7 and XIAP induces apoptosis in vitro and in vivo. Immunohistochemical staining revealed that grade-wise accumulation of USP7 correlated with an elevated level of XIAP in glioma tissue. This is the first report on the identification and validation of XIAP as a novel substrate of USP7 and together, they involve in the empowerment of the tumorigenic potential of cancer cells by inhibiting apoptosis.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sibani Sarkar
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Partha S Mohanta
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Krishna Kumar
- Structural Biology & Bioinformatics Division, CSIR-IICB, TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Saikat Chakrabarti
- Structural Biology & Bioinformatics Division, CSIR-IICB, TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, South 24 Paraganas, PIN -743372, Dakshin Barasat, West Bengal, India
| | - Mrinal K Ghosh
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
10
|
Gómez Bergna SM, Marchesini A, Amorós Morales LC, Arrías PN, Farina HG, Romanowski V, Gottardo MF, Pidre ML. Exploring the Role of the Inhibitor of Apoptosis BIRC6 in Breast Cancer: A Database Analysis. JCO Clin Cancer Inform 2022; 6:e2200093. [PMID: 36455174 DOI: 10.1200/cci.22.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 (baculoviral IAP repeat-containing protein 6) in breast cancer (BC), focusing particularly on its involvement in the metastatic cascade. METHODS We analyzed BIRC6 mRNA expression levels and copy number variations in three BC databases from The Cancer Genome Atlas comparing clinical and molecular attributes. Genomic analysis was performed using the cBioPortal platform, whereas transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots, and gene ontology) were performed using USC Xena and R. Statistical significance was set at P < .05. RESULTS Our bioinformatic analyses showed that there was a differential expression of BIRC6 in cancer samples when compared with normal samples. Copy number variations that involve amplification and gain of BIRC6 gene were correlated with negative hormone receptor tumors, higher prognostic indexes, younger age at diagnosis, and both chemotherapy and radiotherapy administration. Transcriptomic and gene ontology analyses showed that, under conditions of high BIRC6 mRNA levels, there are differential expression patterns in apoptotic, proliferation, and metastatic pathways. CONCLUSION In summary, our in silico data suggest that BIRC6 plays an antiapoptotic, pro-proliferative, and apparent prometastatic role and could be a relevant molecular target for treatment of BC tumors.
Collapse
Affiliation(s)
- Santiago M Gómez Bergna
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Marchesini
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Leslie C Amorós Morales
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula N Arrías
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Hernán G Farina
- Departamento de Ciencia y Tecnología, Centro de Oncología Molecular y Traslacional, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Víctor Romanowski
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - M Florencia Gottardo
- Departamento de Ciencia y Tecnología, Centro de Oncología Molecular y Traslacional, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Matias L Pidre
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
12
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
14
|
Li Y, Tan Y, Wen L, Xing Z, Wang C, Zhang L, Wu K, Sun H, Li Y, Lei Q, Wu S. Overexpression of BIRC6 driven by EGF-JNK-HECTD1 signaling is a potential therapeutic target for triple-negative breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:798-812. [PMID: 34729249 PMCID: PMC8526501 DOI: 10.1016/j.omtn.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease. The lack of targeted therapies and poor patient outcome have fostered efforts to discover new molecular targets to treat patients with TNBC. Here, we showed that baculoviral IAP repeat containing 6 (BIRC6) is overexpressed and positively correlated with epidermal growth factor (EGF) receptor (EGFR) in TNBC cells and tissues and that BIRC6 overexpression is associated with poor patient survival. Mechanistic studies revealed that BIRC6 stability is increased by EGF-JNK signaling, which prevents ubiquitination and degradation of BIRC6 mediated by the E3 ubiquitin ligase HECTD1. BIRC6 in turn decreases SMAC expression by inducing the ubiquitin-proteasome pathway, thereby antagonizing apoptosis and promoting the proliferation, colony formation, tumorsphere formation, and tumor growth capacity of TNBC cells. Therapeutically, the PEGylated cationic lipid nanoparticle (pCLN)-assisted delivery of BIRC6 small interfering RNA (siRNA) efficiently silences BIRC6 expression in TNBC cells, thus suppressing TNBC cell growth in vitro and in vivo, and its antitumor activity is significantly superior to that of the EGFR inhibitor gefitinib. Our findings identify an important regulatory mechanism of BIRC6 overexpression and provide a potential therapeutic option for treating TNBC.
Collapse
Affiliation(s)
- Yongpeng Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanan Tan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhihao Xing
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518000, China
| | - Changxu Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liuhui Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haiyan Sun
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Yuqing Li
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Qifang Lei
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Song Wu
- The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, China
- Corresponding author Prof. Song Wu, PhD, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China.
| |
Collapse
|
15
|
Vilfranc CL, Che LX, Patra KC, Niu L, Olowokure O, Wang J, Shah SA, Du CY. BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) regulation of β-catenin signaling in the progression of drug-induced hepatic fibrosis and carcinogenesis. World J Hepatol 2021; 13:343-361. [PMID: 33815677 PMCID: PMC8006081 DOI: 10.4254/wjh.v13.i3.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) is a liver tumor suppressor, which is downregulated in a large number of patients with liver diseases. BRUCE facilitates DNA damage repair to protect the mouse liver against the hepatocarcinogen diethylnitrosamine (DEN)-dependent acute liver injury and carcinogenesis. While there exists an established pathologic connection between fibrosis and hepatocellular carcinoma (HCC), DEN exposure alone does not induce robust hepatic fibrosis. Further studies are warranted to identify new suppressive mechanisms contributing to DEN-induced fibrosis and HCC.
AIM To investigate the suppressive mechanisms of BRUCE in hepatic fibrosis and HCC development.
METHODS Male C57/BL6/J control mice [loxp/Loxp; albumin-cre (Alb-cre)-] and BRUCE Alb-Cre KO mice (loxp/Loxp; Alb-Cre+) were injected with a single dose of DEN at postnatal day 15 and sacrificed at different time points to examine liver disease progression.
RESULTS By using a liver-specific BRUCE knockout (LKO) mouse model, we found that BRUCE deficiency, in conjunction with DEN exposure, induced hepatic fibrosis in both premalignant as well as malignant stages, thus recapitulating the chronic fibrosis background often observed in HCC patients. Activated in fibrosis and HCC, β-catenin activity depends on its stabilization and subsequent translocation to the nucleus. Interestingly, we observed that livers from BRUCE KO mice demonstrated an increased nuclear accumulation and elevated activity of β-catenin in the three stages of carcinogenesis: Pre-malignancy, tumor initiation, and HCC. This suggests that BRUCE negatively regulates β-catenin activity during liver disease progression. β-catenin can be activated by phosphorylation by protein kinases, such as protein kinase A (PKA), which phosphorylates it at Ser-675 (pSer-675-β-catenin). Mechanistically, BRUCE and PKA were colocalized in the cytoplasm of hepatocytes where PKA activity is maintained at the basal level. However, in BRUCE deficient mouse livers or a human liver cancer cell line, both PKA activity and pSer-675-β-catenin levels were observed to be elevated.
CONCLUSION Our data support a “BRUCE-PKA-β-catenin” signaling axis in the mouse liver. The BRUCE interaction with PKA in hepatocytes suppresses PKA-dependent phosphorylation and activation of β-catenin. This study implicates BRUCE as a novel negative regulator of both PKA and β-catenin in chronic liver disease progression. Furthermore, BRUCE-liver specific KO mice serve as a promising model for understanding hepatic fibrosis and HCC in patients with aberrant activation of PKA and β-catenin.
Collapse
Affiliation(s)
- Chrystelle L Vilfranc
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Li-Xiao Che
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Krushna C Patra
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Olugbenga Olowokure
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Shimul A Shah
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Chun-Ying Du
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| |
Collapse
|
16
|
Sivanand A, Hennessey D, Iyer A, O'Keefe S, Surmanowicz P, Vaid G, Xiao Z, Gniadecki R. The Neoantigen Landscape of Mycosis Fungoides. Front Immunol 2020; 11:561234. [PMID: 33329522 PMCID: PMC7719792 DOI: 10.3389/fimmu.2020.561234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma, for which there is no cure. Immune checkpoint inhibitors have been tried in MF but the results have been inconsistent. To gain insight into the immunogenicity of MF we characterized the neoantigen landscape of this lymphoma, focusing on the known predictors of responses to immunotherapy: the quantity, HLA-binding strength and subclonality of neoantigens. Methods Whole exome and whole transcriptome sequences were obtained from 24 MF samples (16 plaques, 8 tumors) from 13 patients. Bioinformatic pipelines (Mutect2, OptiType, MuPeXi) were used for mutation calling, HLA typing, and neoantigen prediction. PhyloWGS was used to subdivide malignant cells into stem and clades, to which neoantigens were matched to determine their clonality. Results MF has a high mutational load (median 3,217 non synonymous mutations), resulting in a significant number of total neoantigens (median 1,309 per sample) and high-affinity neoantigens (median 328). In stage I disease most neoantigens were clonal but with stage progression, 75% of lesions had >50% subclonal antigens and 53% lesions had CSiN scores <1. There was very little overlap in neoantigens across patients or between different lesions on the same patient, indicating a high degree of heterogeneity. Conclusions The neoantigen landscape of MF is characterized by high neoantigen load and significant subclonality which could indicate potential challenges for immunotherapy in patients with advanced-stage disease.
Collapse
Affiliation(s)
- Arunima Sivanand
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Dylan Hennessey
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sandra O'Keefe
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip Surmanowicz
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gauravi Vaid
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zixuan Xiao
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Das J, Barman Mandal S. Identification of Homo sapiens cancer classes based on fusion of hidden gene features. J Biomed Inform 2020; 110:103555. [PMID: 32916304 DOI: 10.1016/j.jbi.2020.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Classification of Homo sapiens cancer genes in molecular level is a challenging research issue as they are extremely pseudo random in nature. Signature gene features need to be exposed to distinctly identify the gene class. Tree-structured filter bank is chosen to perform feature extraction and dimension reduction of the genes. Extracted gene features are fused using Gaussian mixture probability distribution function and identify different cancer classes depending on amount of correlation and exploiting maximum likelihood function. The algorithm is tested on 161 sample gene data of 7 different cancer classes. Sensitivity, specificity, accuracy, precision and F-score are used as metrics to judge the performance of the system and ROC is plotted in comparison with existing electrical network model based classifier. The proposed classifier can identify more than stated number of cancer classes which is a major limitation of the existing electrical network based method. The proposed algorithm is validated by comparing the results with other seven existing image processing based methods.
Collapse
Affiliation(s)
- Joyshri Das
- Institute of Radio Physics & Electronics, University of Calcutta, India.
| | | |
Collapse
|
18
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
19
|
Che L, Alavattam KG, Stambrook PJ, Namekawa SH, Du C. BRUCE preserves genomic stability in the male germline of mice. Cell Death Differ 2020; 27:2402-2416. [PMID: 32139899 DOI: 10.1038/s41418-020-0513-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
BRUCE is a DNA damage response protein that promotes the activation of ATM and ATR for homologous recombination (HR) repair in somatic cells, making BRUCE a key protector of genomic stability. Preservation of genomic stability in the germline is essential for the maintenance of species. Here, we show that BRUCE is required for the preservation of genomic stability in the male germline of mice, specifically in spermatogonia and spermatocytes. Conditional knockout of Bruce in the male germline leads to profound defects in spermatogenesis, including impaired maintenance of spermatogonia and increased chromosomal anomalies during meiosis. Bruce-deficient pachytene spermatocytes frequently displayed persistent DNA breaks. Homologous synapsis was impaired, and nonhomologous associations and rearrangements were apparent in up to 10% of Bruce-deficient spermatocytes. Genomic instability was apparent in the form of chromosomal fragmentation, translocations, and synapsed quadrivalents and hexavalents. In addition, unsynapsed regions of rearranged autosomes were devoid of ATM and ATR signaling, suggesting an impairment in the ATM- and ATR-dependent DNA damage response of meiotic HR. Taken together, our study unveils crucial functions for BRUCE in the maintenance of spermatogonia and in the regulation of meiotic HR-functions that preserve the genomic stability of the male germline.
Collapse
Affiliation(s)
- Lixiao Che
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chunying Du
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
20
|
Cheung CHA, Chang YC, Lin TY, Cheng SM, Leung E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J Biomed Sci 2020; 27:31. [PMID: 32019552 PMCID: PMC7001279 DOI: 10.1186/s12929-020-0627-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP), survivin, and BRUCE are members of the inhibitor-of-apoptosis protein (IAP) family known for their inhibitory effects on caspase activity and dysregulation of these molecules has widely been shown to cause embryonic defects and to promote tumorigenesis in human. Besides the anti-apoptotic functions, recent discoveries have revealed that XIAP, survivin, and BRUCE also exhibit regulatory functions for autophagy in cells. As the role of autophagy in human diseases has already been discussed extensively in different reviews; in this review, we will discuss the emerging autophagic role of XIAP, survivin, and BRUCE in cancer cells. We also provide an update on the anti-apoptotic functions and the roles in maintaining DNA integrity of these molecules. Second mitochondria-derived activator of caspases (Smac) is a pro-apoptotic protein and IAPs are the molecular targets of various Smac mimetics currently under clinical trials. Better understanding on the functions of XIAP, survivin, and BRUCE can enable us to predict possible side effects of these drugs and to design a more “patient-specific” clinical trial for Smac mimetics in the future.
Collapse
Affiliation(s)
- Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan
| | - Tzu-Yu Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
21
|
Zhu H, Li Y, Liu Y, Han B. Bivalent SMAC Mimetics for Treating Cancer by Antagonizing Inhibitor of Apoptosis Proteins. ChemMedChem 2019; 14:1951-1962. [DOI: 10.1002/cmdc.201900410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
| |
Collapse
|
22
|
Ge C, Vilfranc CL, Che L, Pandita RK, Hambarde S, Andreassen PR, Niu L, Olowokure O, Shah S, Waltz SE, Zou L, Wang J, Pandita TK, Du C. The BRUCE-ATR Signaling Axis Is Required for Accurate DNA Replication and Suppression of Liver Cancer Development. Hepatology 2019; 69:2608-2622. [PMID: 30693543 PMCID: PMC6541504 DOI: 10.1002/hep.30529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Replication fork stability during DNA replication is vital for maintenance of genomic stability and suppression of cancer development in mammals. ATR (ataxia-telangiectasia mutated [ATM] and RAD3-related) is a master regulatory kinase that activates the replication stress response to overcome replication barriers. Although many downstream effectors of ATR have been established, the upstream regulators of ATR and the effect of such regulation on liver cancer remain unclear. The ubiquitin conjugase BRUCE (BIR Repeat containing Ubiquitin-Conjugating Enzyme) is a guardian of chromosome integrity and activator of ATM signaling, which promotes DNA double-strand break repair through homologous recombination. Here we demonstrate the functions for BRUCE in ATR activation in vitro and liver tumor suppression in vivo. BRUCE is recruited to induced DNA damage sites. Depletion of BRUCE inhibited multiple ATR-dependent signaling events during replication stress, including activation of ATR itself, phosphorylation of its downstream targets CHK1 and RPA, and the mono-ubiquitination of FANCD2. Consequently, BRUCE deficiency resulted in stalled DNA replication forks and increased firing of new replication origins. The in vivo impact of BRUCE loss on liver tumorigenesis was determined using the hepatocellular carcinoma model induced by genotoxin diethylnitrosamine. Liver-specific knockout of murine Bruce impaired ATR activation and exacerbated inflammation, fibrosis and hepatocellular carcinoma, which exhibited a trabecular architecture, closely resembling human hepatocellular carcinoma (HCC). In humans, the clinical relevance of BRUCE down-regulation in liver disease was found in hepatitis, cirrhosis, and HCC specimens, and deleterious somatic mutations of the Bruce gene was found in human hepatocellular carcinoma in the Cancer Genome Atlas database. Conclusion: These findings establish a BRUCE-ATR signaling axis in accurate DNA replication and suppression of liver cancer in mice and humans and provides a clinically relevant HCC mouse model.
Collapse
Affiliation(s)
- Chunmin Ge
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | | | - Lixiao Che
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Raj K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio 45229
| | - Liang Niu
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267
| | - Olugbenga Olowokure
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Shimul Shah
- University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital Cancer Center; Harvard Medical School, Charlestown, MA 02129
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston Texas 77030
| | - Chunying Du
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267,Corresponding author: Chunying Du, Ph.D. Phone: (513) 558-4803,
| |
Collapse
|
23
|
Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and
disease. Genes Immun 2019; 20:641-650. [DOI: 10.1038/s41435-019-0078-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
|
24
|
Che L, Yang X, Ge C, El-Amouri SS, Wang QE, Pan D, Herzog TJ, Du C. Loss of BRUCE reduces cellular energy level and induces autophagy by driving activation of the AMPK-ULK1 autophagic initiating axis. PLoS One 2019; 14:e0216553. [PMID: 31091257 PMCID: PMC6519829 DOI: 10.1371/journal.pone.0216553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an intracellular catabolic system. It delivers cellular components to lysosomes for degradation and supplies nutrients that promote cell survival under stress conditions. Although much is known regarding starvation-induced autophagy, the regulation of autophagy by cellular energy level is less clear. BRUCE is an ubiquitin conjugase and ligase with multi-functionality. It has been reported that depletion of BRUCE inhibits starvation-induced autophagy by blockage of the fusion step. Herein we report a new function for BRUCE in the dual regulation of autophagy and cellular energy. Depletion of BRUCE alone (without starvation) in human osteosarcoma U2OS cells elevated autophagic activity as indicted by the increased LC3B-II protein and its autophagic puncta as well as further increase of both by chloroquine treatment. Such elevation results from enhanced induction of autophagy since the numbers of both autophagosomes and autolysosomes were increased, and recruitment of ATG16L onto the initiating membrane structure phagophores was increased. This concept is further supported by elevated lysosomal enzyme activities. In contrast to starvation-induced autophagy, BRUCE depletion did not block fusion of autophagosomes with lysosomes as indicated by increased lysosomal cleavage of the GFP-LC3 fusion protein. Mechanistically, BRUCE depletion lowered the cellular energy level as indicated by both a higher ratio of AMP/ATP and the subsequent activation of the cellular energy sensor AMPK (pThr-172). The lower energy status co-occurred with AMPK-specific phosphorylation and activation of the autophagy initiating kinase ULK1 (pSer-555). Interestingly, the higher autophagic activity by BRUCE depletion is coupled with enhanced cisplatin resistance in human ovarian cancer PEO4 cells. Taken together, BRUCE depletion promotes induction of autophagy by lowering cellular energy and activating the AMPK-ULK1-autophagy axis, which could contribute to ovarian cancer chemo-resistance. This study establishes a BRUCE-AMPK-ULK1 axis in the regulation of energy metabolism and autophagy, as well as provides insights into cancer chemo-resistance.
Collapse
Affiliation(s)
- Lixiao Che
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xingyuan Yang
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Chunmin Ge
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Salim S. El-Amouri
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Qi-En Wang
- Department of Radiology, Ohio State University, Columbus, Ohio, United States of America
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Thomas J. Herzog
- Division of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, Ohio, United States of America
- University of Cincinnati Cancer Institute, Cincinnati, Ohio, United States of America
| | - Chunying Du
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- University of Cincinnati Cancer Institute, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wang Z, Fang Z, Lu R, Zhao H, Gong T, Liu D, Hong L, Ma J, Zhang M. MicroRNA-204 Potentiates the Sensitivity of Acute Myeloid Leukemia Cells to Arsenic Trioxide. Oncol Res 2019; 27:1035-1042. [PMID: 30982490 PMCID: PMC7848422 DOI: 10.3727/096504019x15528367532612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although arsenic trioxide (ATO) is a well-known antileukemic drug used for acute promyelocytic leukemia treatment, the development of ATO resistance is still a big challenge. We previously reported that microRNA-204 (miR-204) was involved in the regulation of acute myeloid leukemia (AML) cell apoptosis, but its role in chemoresistance is poorly understood. In the present study, we showed that miR-204 was significantly increased in AML cells after ATO treatment. Interestingly, the increased miR-204 level that was negatively correlated with ATO induced the decrease in cell viability and baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression. Overexpression of miR-204 potentiated ATO-induced AML cell growth inhibition and apoptosis. Furthermore, miR-204 directly targets to the 3′-UTR of BIRC6. Upregulation of miR-204 decreased BIRC6 luciferase activity and expression, which subsequently enhanced the expression of p53. Restoration of BIRC6 markedly reversed the effect of miR-204 on the regulation of AML cell sensitivity to ATO. Taken together, our study demonstrates that miR-204 decreases ATO chemoresistance in AML cells at least partially via promoting BIRC6/p53-mediated apoptosis. miR-204 represents a novel target of ATO, and upregulation of miR-204 may be a useful strategy to improve the efficacy of ATO in AML treatment.
Collapse
Affiliation(s)
- Zhiguo Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, P.R. China
| | - Zehui Fang
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Runzhang Lu
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Hongli Zhao
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Tiejun Gong
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Dong Liu
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Luojia Hong
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Jun Ma
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin Province, P.R. China
| | - Mei Zhang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, P.R. China
| |
Collapse
|
26
|
Thutkawkorapin J, Lindblom A, Tham E. Exome sequencing in 51 early onset non-familial CRC cases. Mol Genet Genomic Med 2019; 7:e605. [PMID: 30809968 PMCID: PMC6503031 DOI: 10.1002/mgg3.605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi‐allelic autosomal recessive pathogenic variants. Methods The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant‐ and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young‐onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss‐of‐function) or allele frequency. Results We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A,BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN,SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B,PKHD1,UGGT2,MYH13,TFF3. Conclusion Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.
Collapse
Affiliation(s)
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Wang Z, Luo H, Fang Z, Fan Y, Liu X, Zhang Y, Rui S, Chen Y, Hong L, Gao J, Zhang M. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis. BMB Rep 2018; 51:444-449. [PMID: 29764561 PMCID: PMC6177501 DOI: 10.5483/bmbrep.2018.51.9.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Zhiguo Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi Province; Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin 150010, People's Republic of China
| | - Hong Luo
- Department of Hematology, the First Hospital of Qiqihar, Qiqihar 150001, People's Republic of China
| | - Zehui Fang
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin 161000, Heilongjiang Province, People's Republic of China
| | - Yanling Fan
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin 150010, People's Republic of China
| | - Xiaojuan Liu
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin 150010, People's Republic of China
| | - Yujing Zhang
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin 161000, Heilongjiang Province, People's Republic of China
| | - Shuping Rui
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin 150010, People's Republic of China
| | - Yafeng Chen
- Department of Bone Marrow Transplantation, Harbin Hematological Cancer Institute, Harbin the First Hospital, Harbin 150010, People's Republic of China
| | - Luojia Hong
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin 161000, Heilongjiang Province, People's Republic of China
| | - Jincheng Gao
- Department of Endocrinology, the 4th Affiliated Hospital of Harbin Medical University, Harbin 161000, Heilongjiang Province, People's Republic of China
| | - Mei Zhang
- 1Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shanxi Province, People's Republic of China
| |
Collapse
|
28
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
29
|
Abstract
PURPOSE Evading apoptosis is one of the major hallmarks of cancer cells. Inhibitors of apoptosis (IAPs) proteins are considered as a most important gene families involved in apoptosis. BRUCE protein, a member of IAPs, is able to quench apoptosis as well as playing role in cell division. Our aim in this study was to analyze BRUCE protein expression in gastric carcinoma (GC) and its correlation with the clinicopathological features. METHODS Using immunohistochemistry, 52 GC specimens were studied for BRUCE protein expression. A validated scoring method was applied. RESULTS BRUCE protein expression was detected in majority of tumor tissues (98.07 %). A significant correlation between gender and BRUCE expression (p = 0.024) was detected. Indeed, females showed higher level of BRUCE expression than male patients. CONCLUSION Since specific expression of BRUCE protein was revealed in majority of GC tissues, BRUCE protein may be a useful therapeutic target for cancer therapy. Furthermore, based on the native role of BRUCE protein in inhibition of apoptosis, using this protein in targeted therapy of tumor cells may help to inhibit tumor cells growth and survival leading to rapid elimination of tumor mass.
Collapse
|
30
|
The IAP family member BRUCE regulates autophagosome-lysosome fusion. Nat Commun 2018; 9:599. [PMID: 29426817 PMCID: PMC5807552 DOI: 10.1038/s41467-018-02823-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagy has an important role in cellular homeostasis by degrading and recycling cytotoxic components. Ubiquitination is known to target cargoes for autophagy; however, key components of this pathway remain elusive. Here we performed an RNAi screen to uncover ubiquitin modifiers that are required for starvation-induced macroautophagy in mammalian cells. Our screen uncovered BRUCE/Apollon/Birc6, an IAP protein, as a new autophagy regulator. Depletion of BRUCE leads to defective fusion of autophagosomes and lysosomes. Mechanistically, BRUCE selectively interacts with two ATG8 members GABARAP and GABARAPL1, as well as with Syntaxin 17, which are all critical regulators of autophagosome–lysosome fusion. In addition, BRUCE colocalizes with LAMP2. Interestingly, a non-catalytic N-terminal BRUCE fragment that is sufficient to bind GABARAP/GABARAPL1 and Syntaxin 17, and to colocalize with LAMP2, rescues autolysosome formation in Bruce−/− cells. Thus, BRUCE promotes autolysosome formation independently of its ubiquitin-conjugating activity and is a regulator of both macroautophagy and apoptosis. The inhibitor of apoptosis (IAP) protein, BRUCE is known to ubiquitinate apoptosis regulators for proteasomal degradation. Here the authors show that BRUCE provides a bridge between LAMP2 on lysosomes and Atg8 family proteins on autophagosomes to support autophagosome-lysosome fusion.
Collapse
|
31
|
Fulda S. Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol 2017; 82:150-157. [PMID: 29247787 DOI: 10.1016/j.semcdb.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Caspases are a family of proteolytic enzymes that play a critical role in the regulation of programmed cell death via apoptosis. Activation of caspases is frequently impaired in human cancers, contributing to cancer formation, progression and therapy resistance. A better understanding of the molecular mechanisms regulating caspase activation in cancer cells is therefore highly important. Thus, targeted modulation of caspase activation and apoptosis represents a promising approach for the development of new therapeutic options to elucidate cancer cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
33
|
Chen JR, Jia XH, Wang H, Yi YJ, Li YJ. With no interaction, knockdown of Apollon and MDR1 reverse the multidrug resistance of human chronic myelogenous leukemia K562/ADM cells. Oncol Rep 2017; 37:2735-2742. [PMID: 28358418 DOI: 10.3892/or.2017.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is the main treatment method for patients with chronic myeloid leukemia (CML) and has achieved marked results. However, the acquisition of multidrug resistance (MDR) has seriously affected the quality of life and survival rate of patients. The overexpression of the inhibitors of apoptosis proteins (IAPs) and the adenosine triphosphate (ATP)-dependent binding cassette (ABC) transporters are the two main causes of MDR. Apollon and MDR1 are the most important and representative members, respectively, among the IAPs and ABC transporters. In the present study, we investigated the role of Apollon and MDR1 in chemotherapy resistance and their mechanism of interaction. We respectively knocked down the expression of Apollon and MDR1 using short hairpin RNA (shRNA) in adriamycin (ADM) resistant human CML K562 cells and examined the drug sensitivity, the consequences with regard to ADM accumulation and the alterations in the expression of Apollon and MDR1. The expression levels of Apollon and MDR1 mRNA were higher in the K562/ADM cells compared with the parental K562 cells as determined by reverse transcription‑polymerase chain reaction (RT-PCR). The plasmids of Apollon and MDR1 shRNA were respectively stably transfected into K562/ADM cells using Lipofectamine 2000. The transfection efficiency was detected by fluorescence microscopy. Cell Counting Kit-8 (CCK-8) assay revealed that Apollon or MDR1 knockdown significantly increased the chemosensitivity of the K562/ADM cells to ADM. Flow cytometric assay revealed that K562/ADM/shMDR1 cells exhibited a significantly increased intracellular accumulation of ADM, and that changes were not found in the K562/ADM/shApollon cells. Compared with the parental K562/ADM cells, a significantly decreased expression of Apollon mRNA and protein was determined in the K562/ADM/shApollon cells without affecting the expression of MDR1 as determined by RT-PCR and western blotting. Likewise, the expression levels of MDR1 mRNA and protein also markedly downregulated in the K562/ADM/shMDR1 cells had no effect on Apollon expression. Collectively, our findings demonstrated, for the first time, that downregulation of Apollon or MDR1 through stable transfection with the Apollon- or MDR1-targeting shRNA induced MDR reversal through respective inhibition of Apollon or MDR1 expression and function. However, the reversal mechanism of Apollon and MDR1 revealed no direct interaction with each other.
Collapse
Affiliation(s)
- Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
34
|
Colmegna B, Morosi L, D'Incalci M. Molecular and Pharmacological Mechanisms of Drug Resistance:An Evolving Paradigm. Handb Exp Pharmacol 2017; 249:1-12. [PMID: 28332049 DOI: 10.1007/164_2017_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high heterogeneity and genomic instability of malignant tumors explains why even responsive tumors contain cell clones that are resistant for many possible mechanisms involving intracellular drug inactivation, low uptake or high efflux of anticancer drugs from cancer cells, qualitative or quantitative changes in the drug target. Many tumors, however, are resistant because of insufficient exposure to anticancer drugs, due to pharmacokinetic reasons and inefficient and heterogeneous tumor drug distribution, related to a deficient vascularization and high interstitial pressure. Finally, resistance can be related to the activation of anti-apoptotic and cell survival pathways by cancer cells and often enhanced by tumor microenvironment.
Collapse
Affiliation(s)
- Benedetta Colmegna
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy.
| |
Collapse
|
35
|
Gharabaghi MA. Diagnostic investigation of BIRC6 and SIRT1 protein expression level as potential prognostic biomarkers in patients with non-small cell lung cancer. CLINICAL RESPIRATORY JOURNAL 2016; 12:633-638. [PMID: 27768839 DOI: 10.1111/crj.12572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Lung cancer is the major contributor to overall cancer-related mortality. Biomarkers are important in early detection and prognosis, in addition to developing treatment regimes, which may improve the patient survival rates. Therefore, the present study was designed to evaluate the prognostic and diagnostic value of SIRT1/BIRC6 expression in non-small cell lung cancer (NSCLC). METHODS The data on the prognostic impact of SIRT1/BIRC6 in NSCLC were collected from September 11, 2006 to July 10, 2014. Immunoexpressions and real-time quantitative reverse transcription-PCR of SIRT1/BIRC6 were analyzed and the outcomes were correlated with clinicopathological features and patient survivals. RESULTS MRNA level of SIRT1 was upregulated in NSCLC tissues as compared to normal tissues (3.18 ± 0.77 vs. 1.27 ± 0.62; P = .001). BIRC6 mRNA was upregulated in cancer tissues when compared with normal tissues (4.13 ± 0.91 vs. 1.51 ± 0.72; P = .001). SIRT1 protein was overexpressed in 27 patients (67.5%), while normal tissues showed weak or negative staining to SIRT1 (P = .002). Furthermore, these findings suggested that advanced pathological T stage, and poor differentiation were significantly associated with expression of SIRT1 (P < .05). Increased expression of BIRC6 was detected in 75% of patients, while weak or negative expression were detected in normal tissues (P = .001). Furthermore, increased expression of BIRC6 was linked to advanced pathological T stage, poor differentiation, and lymph node metastasis (P < .05). CONCLUSIONS SIRT1 and BIRC6 may be linked to tumor progression and could be useful for the treatment of NSCLC.
Collapse
Affiliation(s)
- Mehrnaz Asadi Gharabaghi
- Advanced Thoracic Research Center, Department of Pulmonary Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Guo H, Zhong W, Wang X, Pan B, Li F, Lu K, Su Z, Zhang S. Expression and clinical significance of Apollon in renal carcinoma. Oncol Lett 2016; 12:5129-5135. [PMID: 28105219 PMCID: PMC5228483 DOI: 10.3892/ol.2016.5349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Apollon, namely baculoviral inhibitor of apoptosis proteins (IAP) repeat containing 6, is an unusually large member of the IAP family, and may be important in oncogenesis. The aim of the present study was to assess the association between renal carcinoma (RC) and Apollon expression, and to highlight the link between Apollon expression and the occurrence, development and prognosis of RC. Apollon expression was detected by immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction in RC tissues, adjacent non-cancerous tissues and paired normal tissues, respectively, in order to analyze the association between Apollon expression and clinicopathological features of RC. Kaplan-Meier survival estimate was used to assess the prognostic significance. It was observed that Apollon expression was higher in carcinoma tissues than in adjacent non-cancerous tissues and normal control tissues at the protein and messenger RNA level (P<0.001). There was a significant difference in T-stage (P=0.006), nodal involvement (P=0.007) and tumor-node-metastasis-stage (P=0.035) in patients categorized according to different Apollon expression levels. A prognostic significance of Apollon was also identified by the Kaplan-Meier method. The results of the present study indicate that Apollon expression is associated with the biological characteristics of renal cancer, and is potentially a valuable predictor and novel target for RC.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Urology, No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Weifeng Zhong
- Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Urology, Traditional Chinese Medicine Hospital of Luogang, Guangzhou, Guangdong 510530, P.R. China
| | - Xiaohong Wang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng Li
- Department of Urology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Kuang Lu
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Zexuan Su
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Shiqing Zhang
- Department of Urology, No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
37
|
Luk ISU, Shrestha R, Xue H, Wang Y, Zhang F, Lin D, Haegert A, Wu R, Dong X, Collins CC, Zoubeidi A, Gleave ME, Gout PW, Wang Y. BIRC6 Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2016; 23:1542-1551. [PMID: 27663589 DOI: 10.1158/1078-0432.ccr-16-0718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Enzalutamide resistance has emerged as a major problem in the management of castration-resistant prostate cancer (CRPC). Research on therapy resistance of CRPCs has primarily focused on the androgen receptor pathway. In contrast, there is limited information on antiapoptotic mechanisms that may facilitate the treatment resistance. The inhibitor of apoptosis proteins (IAP) family is well recognized for its role in promoting treatment resistance of cancers by inhibiting drug-induced apoptosis. Here, we examined whether BIRC6, an IAP family member, has a role in enzalutamide resistance of CRPCs and could provide a therapeutic target for enzalutamide-resistant CRPC.Experimental Design: Use of enzalutamide-resistant CRPC models: (i) the transplantable, first high-fidelity LTL-313BR patient-derived enzalutamide-resistant CRPC tissue xenograft line showing primary enzalutamide resistance, (ii) MR42D and MR49F CRPC cells/xenografts showing acquired enzalutamide resistance. Specific BIRC6 downregulation in these models was produced using a BIRC6-targeting antisense oligonucleotide (ASO-6w2). Gene expression was determined by qRT-PCR and gene expression profiling. Molecular pathways associated with growth inhibition were assessed via gene enrichment analysis.Results: Of eight IAPs examined, BIRC6 was the only one showing elevated expression in both enzalutamide-resistant CRPC models. Treatment with ASO-6w2 markedly suppressed growth of LTL-313BR xenografts and increased tumor apoptosis without inducing major host toxicity. Pathway enrichment analysis indicated that GPCR and matrisome signaling were the most significantly altered pathways. Furthermore, ASO-6w2 inhibited expression of prosurvival genes that were upregulated in the LTL-313BR line.Conclusions:BIRC6 targeting inhibited the growth of enzalutamide-resistant CRPC models and may represent a new option for clinical treatment of advanced, enzalutamide-resistant prostate cancer. Clin Cancer Res; 23(6); 1542-51. ©2016 AACR.
Collapse
Affiliation(s)
- Iris Sze Ue Luk
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Raunak Shrestha
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hui Xue
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuwei Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Fang Zhang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada. .,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Salehi S, Jafarian AH, Forghanifard MM. Expression analysis of BRUCE protein in esophageal squamous cell carcinoma. Ann Diagn Pathol 2016; 24:47-51. [PMID: 27649954 DOI: 10.1016/j.anndiagpath.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Apoptosis is a form of cell death in response to diverse stressful physiological or pathological stimuli. One of the most important gene families involved in apoptosis is inhibitors of apoptosis. As a member of inhibitors of apoptosis, BRUCE can suppress apoptosis and promote cell division. Because esophageal squamous cell carcinoma (ESCC) cells, as well as other cancer cells, are immortal, our aim in this study was to analyze BRUCE protein expression in ESCC and evaluate its correlation with tumoral clinicopathologic features. Fifty ESCC specimens were examined for BRUCE protein expression using immunohistochemistry. A defined scoring method was applied. BRUCE protein was detected in 82% of tumors. Tumor progression stage and invasion depth correlated significantly with BRUCE protein expression (P=.019 and .005, respectively). Furthermore, association of BRUCE expression with tumor location was near significant (P=.058). The correlation of BRUCE overexpression in ESCC and disease aggressiveness may confirm the importance of BRUCE in ESCC progression and invasiveness. Therefore, BRUCE protein may be a molecular marker for aggressive ESCC and, thus, a potential therapeutic target to inhibit tumor cell progression and invasion.
Collapse
Affiliation(s)
- Somayeh Salehi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
39
|
Li R, Chen BL, Zhou YW, Guo RW, Shuai MT, Zeng JX, Leng AM. Expression and clinical significance of Apollon in esophageal squamous cell carcinoma. Mol Med Rep 2016; 14:1933-40. [PMID: 27432467 PMCID: PMC4991688 DOI: 10.3892/mmr.2016.5473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Apollon, an unusually large member of the inhibitors of apoptosis protein family, may be important for oncogenesis development. The aim of the present study was to assess the association between esophageal squamous cell carcinoma (ESCC) and Apollon expression levels, and to highlight the association between Apollon and the occurrence, development and prognosis of ESCC. Apollon expression was detected by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction in ESCC tissues, adjacent non-cancerous tissues and paired normal tissues respectively, in order to analyze the association between Apollon expression and the clinicopathological features of ESCC. Survival analysis was used to assess the prognostic significance of Apollon expression. It was determined that the mRNA and protein expression levels of Apollon were significantly higher in the carcinoma tissues compared with the adjacent non-cancerous tissues and normal control tissues (P<0.001). There was a significant difference in lymph node involvement and the tumor, nodes, and metastases stage in patients categorized according to different Apollon expression levels. The prognostic significance of Apollon was also determined using the log-rank method. The overexpression of Apollon was associated with shorter overall survival and disease-free survival rates. The present study indicates that Apollon expression is associated with the biological characteristics of ESCC, and may be a valuable prognostic factor and a novel chemotherapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Rong Li
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Bo-Lin Chen
- Thoracic Medicine Department II, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South Univerisity, Changsha, Hunan 410013, P.R. China
| | - Yan-Wu Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South Univerisity, Changsha, Hunan 410008, P.R. China
| | - Ren-Wei Guo
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Meng-Ting Shuai
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jun-Xian Zeng
- Department of Clinical Medicine, Hunan Xiangnan College, Chenzhou, Hunan 423043, P.R. China
| | - Ai-Min Leng
- Department of Gastroenterology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
40
|
Chen SJ, Lin JH, Yao XD, Peng B, Xu YF, Liu M, Zheng JH. Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in human 786-O renal cell carcinoma cells. Exp Ther Med 2016; 12:597-602. [PMID: 27446249 PMCID: PMC4950747 DOI: 10.3892/etm.2016.3356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2016] [Indexed: 12/20/2022] Open
Abstract
Neuregulin receptor degradation protein-1 (Nrdp1) is involved in a plethora of cellular processes and plays an essential role in the development and progression of human cancers. However, its role in renal cell carcinoma (RCC) remains unclear. Therefore, the present study aimed to explore the biological significance of Nrdp1 in RCC. Western blot analyses of tissue samples from 24 patients with primary RCC revealed lower Nrdp1 and higher baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) protein levels in RCC tissues compared with adjacent normal tissues. In addition, MTT and apoptosis assays demonstrated that Nrdp1 overexpression resulted in decreased cell viability and enhanced apoptosis in RCC 786-O cells; conversely, Nrdp1 knockdown increased 786-O cell viability and inhibited apoptosis. Further analysis showed that BRUCE downregulation partially attenuated the effects of Nrdp1 knockdown on RCC cell viability and apoptosis. Moreover, an inverse association was obtained between BRUCE and Nrdp1 protein levels. These findings suggest that Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in RCC cells, highlighting Nrdp1 as a potential target for RCC treatment.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jian-Hai Lin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yun-Fei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Min Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
41
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
42
|
Kim G, Kim JY, Choi HS. Peptidyl-Prolyl cis/trans Isomerase NIMA-Interacting 1 as a Therapeutic Target in Hepatocellular Carcinoma. Biol Pharm Bull 2016; 38:975-9. [PMID: 26133706 DOI: 10.1248/bpb.b15-00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of proteins on serine or threonine residues preceding proline is a pivotal signaling mechanism regulating cell proliferation. The recent identification and characterization of the enzyme peptidyl-prolyl cis/trans isomerase never in mitosis A (NIMA)-interacting 1 (PIN1) has led to the discovery of a new mechanism regulating phosphorylation in cell signaling. PIN1 specifically binds phosphorylated serine or threonine residues immediately preceding proline (pSer/Thr-Pro) and then regulates protein functions, including catalytic activity, phosphorylation status, protein interactions, subcellular location, and protein stability, by promoting cis/trans isomerization of the peptide bond. Recent results have indicated that such conformational changes following phosphorylation represent a novel signaling mechanism in the regulation of many cellular functions. Understanding this mechanism also provides new insight into the pathogenesis and treatment of human hepatocellular carcinoma. A better understanding of the role of PIN1 in the pathogenesis of hepatocellular carcinoma may lead to the identification of molecular targets for prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University
| | | | | |
Collapse
|
43
|
Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mulé JJ, Etame AB. BIRC3 is a novel driver of therapeutic resistance in Glioblastoma. Sci Rep 2016; 6:21710. [PMID: 26888114 PMCID: PMC4757860 DOI: 10.1038/srep21710] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide analysis of glioblastoma (GBM) reveals pervasive aberrations in apoptotic signaling pathways that collectively contribute to therapeutic resistance. Inhibitors of apoptosis proteins (IAP) exert critical control on the terminal segment of apoptosis leading to apoptosis evasion. In this study, we uncover a unique role for BIRC3, as an IAP that is critical in GBM in response to therapy. Using the TCGA dataset of 524 unique samples, we identify BIRC3 is the only IAP whose differential expression is associated with long-term survival in GBM patients. Using patient tissue samples we further show that BIRC3 expression increases with recurrence. When extrapolated to a preclinical model of a human GBM cell line, we find an increase in BIRC3 expression in response to irradiation (RT) and temozolomide (TMZ) treatment. More importantly, we mechanistically implicate STAT3 and PI3K signaling pathways as drivers of RT-induced up-regulation of BIRC3 expression. Lastly, we demonstrate that both in-vivo and in-vitro BIRC3 up-regulation results in apoptosis evasion and therapeutic resistance in GBM. Collectively, our study identifies a novel translational and targetable role for BIRC3 expression as a predictor of aggressiveness and therapeutic resistance to TMZ and RT mediated by STAT3 and PI3K signaling in GBM.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anders Berglund
- Department of Medical Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Arnold B Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
44
|
Milani S, Bandehpour M, Sharifi Z, Kazemi B. Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line. IRANIAN BIOMEDICAL JOURNAL 2016; 20:145-51. [PMID: 26748613 PMCID: PMC4949978 DOI: 10.7508/ibj.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairpin RNA) inactivates the expression of target genes. The purpose of this study was to determine the effect of constructed shRNAs on apoptosis and growth inhibition through the suppression of apollon mRNA in HeLa cell line. Methods: Three shRNAs with binding ability to three different target sites of the first region of apollon gene were designed and cloned in pRNAin-H1.2/Neo vector. shRNA plasmids were then transfected in HeLa cells using electroporation. Down-regulation effects of apollon and the viability of HeLa cells were analyzed by RT-PCR, lactate dehydrogenase assay, and MTT assay, respectively. Also, the induction and morphological markers of apoptosis were evaluated by caspase assay and immunocytochemistry method. Results: The expression of shRNA in HeLa cells caused a significant decrease in the level of apollon mRNA1. In addition, shRNA1 effectively increased the mRNA level of Smac (as the antagonist of apollon), reduced the viability of HeLa cells and exhibited immunocytochemical apoptotic markers in this cell line. Conclusion: Apollon gene silencing can induce apoptosis and growth impairment in HeLa cells. In this regard, apollon can be considered a candidate therapeutic target in HeLa cells as a positive human papillomavirus cancer cell line.
Collapse
Affiliation(s)
- Saeideh Milani
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Ewin, Chamran highway, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Ewin, Chamran highway, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Hemmat EXP., Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Ewin, Chamran highway, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex. PLoS One 2015; 10:e0144957. [PMID: 26683461 PMCID: PMC4684287 DOI: 10.1371/journal.pone.0144957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/25/2015] [Indexed: 01/24/2023] Open
Abstract
BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.
Collapse
|
46
|
Luk SUI, Xue H, Cheng H, Lin D, Gout PW, Fazli L, Collins CC, Gleave ME, Wang Y. The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis. Oncotarget 2015; 5:6896-908. [PMID: 25071009 PMCID: PMC4196171 DOI: 10.18632/oncotarget.2229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Treatment resistance, the major challenge in the management of advanced prostate cancer, is in part based on resistance to apoptosis. The Inhibitor of Apoptosis (IAP) family is thought to play key roles in survival and drug resistance of cancer via inhibition of apoptosis. Of the IAP family members, cIAP1, cIAP2, XIAP and survivin are known to be up-regulated in prostate cancer. BIRC6, a much less studied IAP member, was recently shown to be elevated in castration-resistant prostate cancer (CRPC). In the present study, we showed a correlation between elevated BIRC6 expression in clinical prostate cancer specimens and poor patient prognostic factors, as well as co-upregulation of certain IAP members. In view of this, we designed antisense oligonucleotides that simultaneously target BIRC6 and another co-upregulated IAP member (dASOs). Two dASOs, targeting BIRC6+cIAP1 and BIRC6+survivin, showed substantial inhibition of CRPC cells proliferation, exceeding that obtained with single BIRC6 targeting. The growth inhibition was associated with increased apoptosis, cell cycle arrest and suppression of NFkB activation. Moreover, treatment with both dASOs led to significantly lower viable tumor volume in vivo, without major host toxicity. This study shows that BIRC6-based dual IAP-targeting ASOs represent potential novel therapeutic agents against advanced prostate cancer.
Collapse
Affiliation(s)
- Sze Ue Iris Luk
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Hui Xue
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Hongwei Cheng
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Dong Lin
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada
| | - Colin C Collins
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, the University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
47
|
Overexpression of BIRC6 Is a Predictor of Prognosis for Colorectal Cancer. PLoS One 2015; 10:e0125281. [PMID: 25933218 PMCID: PMC4416929 DOI: 10.1371/journal.pone.0125281] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/23/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Inhibitors of apoptosis proteins (IAPs) have been well investigated in human cancers, where they are frequently overexpressed and associated with poor prognosis. Here we explored the role of baculoviral IAP repeat containing 6 (BIRC6), a member of IAPs, in human colorectal cancer (CRC). METHODS We used Western blotting and immunohistochemistry to examine BIRC6 expression in 7 CRC cell lines and 126 CRC clinical samples. We determined the biological significance of BIRC6 in CRC cell lines by a lentivirus-mediated silencing method. RESULTS We reported that BIRC6 was overexpressed in CRC cell lines and clinical CRC tissues. BIRC6 overexpression was correlated with tumor size and invasion depth of CRC. BIRC6 overexpression is associated with worse overall survival (OS) (P = 0.001) and shorter disease-free survival (DFS) (P = 0.010). BIRC6 knockdown inhibited cell proliferation, arrested cell cycle at S phase, downregulated cyclin A2, B1, D1 and E1 levels, and sensitized CRC cells to chemotherapy in vitro and in vivo. CONCLUSIONS Taken together, these data suggests that BIRC6 overexpression is a predictor of poor prognosis in colorectal cancer and BIRC6 could be a potential target of CRC therapy.
Collapse
|
48
|
Tang W, Xue R, Weng S, Wu J, Fang Y, Wang Y, Ji L, Hu T, Liu T, Huang X, Chen S, Shen X, Zhang S, Dong L. BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation. Int J Cancer 2015; 136:E475-E487. [PMID: 25196217 DOI: 10.1002/ijc.29194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/17/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022]
Abstract
The genes that encode inhibitor of apoptosis proteins (IAPs) are frequently overexpressed in human cancers. However, the expression pattern and clinical significance of BIRC6, a member of IAPs, in hepatocellular carcinoma (HCC) remains unclear. Here we investigated the role of BIRC6 in hepatocellular carcinogenesis. We used immunoblot and immunochemical analyses to determine the levels of BIRC6 in 7 hepatoma cell lines and 160 HCC specimens. We evaluated the proognostic value of BIRC6 expression and its association with clinical parameters. A lentivirus-mediated silencing method was used to knockdown BIRC6, and the biological consequences of BIRC6 silencing in three hepatoma cell lines were investigated in vitro and in vivo. We found that BIRC6 overexpression was significantly correlated with serum ALT level and HCC vascular invasion. Patients with positive BIRC6 expression in tumor tissue had a poor survival and a high rate of recurrence. BIRC6 knockdown remarkably suppressed cell proliferation, caused G1/S arrest and sensitized hepatoma cells to sorafenib-induced apoptosis in hepatoma cells, which was partly reversed by RNA interference targeting p53. The mechanistic study revealed that BIRC6 interacted with p53 and facilitated its degradation. The in vivo study showed that BIRC6 knockdown inhibited xenograft tumor growth and increased the sensitivity of tumor cells to sorafenib in nude mice. Taken together, these findings demonstrate that BIRC6 overexpression in HCC specimens is indicative of poor prognosis and that its interaction with p53 facilitates the degradation of p53, leading to carcinogenesis and an anti-apoptotic status.
Collapse
Affiliation(s)
- Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai, Institute of Liver Disease, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1. Proc Natl Acad Sci U S A 2015; 112:E1210-9. [PMID: 25733871 DOI: 10.1073/pnas.1418335112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA damage response (DDR) is crucial for genomic integrity. BRIT1 (breast cancer susceptibility gene C terminus-repeat inhibitor of human telomerase repeat transcriptase expression), a tumor suppressor and early DDR factor, is recruited to DNA double-strand breaks (DSBs) by phosphorylated H2A histone family, member X (γ-H2AX), where it promotes chromatin relaxation by recruiting the switch/sucrose nonfermentable (SWI-SNF) chromatin remodeler to facilitate DDR. However, regulation of BRIT1 recruitment is not fully understood. The baculovirus IAP repeat (BIR)-containing ubiquitin-conjugating enzyme (BRUCE) is an inhibitor of apoptosis protein (IAP). Here, we report a non-IAP function of BRUCE in the regulation of the BRIT1-SWI-SNF DSB-response pathway and genomic stability. We demonstrate that BRIT1 is K63 ubiquitinated in unstimulated cells and that deubiquitination of BRIT1 is a prerequisite for its recruitment to DSB sites by γ-H2AX. We show mechanistically that BRUCE acts as a scaffold, bridging the ubiquitin-specific peptidase 8 (USP8) and BRIT1 in a complex to coordinate USP8-catalyzed deubiquitination of BRIT1. Loss of BRUCE or USP8 impairs BRIT1 deubiquitination, BRIT1 binding with γ-H2AX, the formation of BRIT1 DNA damage foci, and chromatin relaxation. Moreover, BRUCE-depleted cells display reduced homologous recombination repair, and BRUCE-mutant mice exhibit repair defects and genomic instability. These findings identify BRUCE and USP8 as two hitherto uncharacterized critical DDR regulators and uncover a deubiquitination regulation of BRIT1 assembly at damaged chromatin for efficient DDR and genomic stability.
Collapse
|
50
|
Garrison JB, Ge C, Che L, Pullum DA, Peng G, Khan S, Ben-Jonathan N, Wang J, Du C. Knockdown of the Inhibitor of Apoptosis BRUCE Sensitizes Resistant Breast Cancer Cells to Chemotherapeutic Agents. ACTA ACUST UNITED AC 2015; 7:121-126. [PMID: 26191375 PMCID: PMC4504245 DOI: 10.4172/1948-5956.1000335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and objectives Management of patients with breast cancer often fails because of inherent or acquired resistance to chemotherapy. BRUCE (BIR repeat containing ubiquitin-conjugating enzyme) is a member of the inhibitor of apoptosis protein (IAP) family. It has various cellular functions including suppression of apoptosis and promotion of cytokinesis. Furthermore, it pays a critical role in promotion of DNA damage repair and preservation of genome stability, a new function recently reported by our group. Although BRUCE is expressed in breast cancer cell lines, its expression in human primary breast tumors and its contribution to chemoresistance in breast cancers has not been explored. Chemotherapeutic drugs are used in the treatment of breast cancer patients. However, they are not effective to all patients and patients often develop resistance. Consequently we explored if BRUCE protein level, as judged by immunohistochemistry (IHC), is higher in primary breast tumors than normal breast tissue. We also examined if depletion of BRUCE, using a lentiviral shRNA approach, enhances cell sensitivity to multiple chemotherapeutic agents, including cisplatin, an agent that induces DNA damage by generating DNA cross-links, and taxol, a microtubule stabilizer and mitotic inhibitor. The reason for including these two chemotherapeutic agents in this study is that they hit two essential cellular processes of DNA repair and cytokinesis in which BRUCE plays critical roles. Results and methods IHC analysis of BRUCE revealed significantly higher levels of BRUCE in primary breast tumors than normal breast tissue. Knockdown of BRUCE protein expression by lentiviral shRNA resulted in increased sensitivity to cisplatin in the resistant breast cancer MDB-MD-231 cell line. Moreover, depletion of BRUCE in this cell line achieved a more profound level of cell killing when coupled to low doses of cisplatin and taxol combined, rather than either drug used alone. Conclusions Our data suggest that elevated protein levels of BRUCE in breast tumors may contribute to chemoresistance in breast cancer patients. In support of this suggestion, our data demonstrate that a reduction in BRUCE expression in breast cancer cell lines increases the toxicity of several chemotherapeutic agents. In all likelihood, the contribution of increased BRUCE levels to chemoresistance are likely due to its roles in suppression of apoptosis, promotion of cytokinesis and facilitation of DNA damage repair. These observations suggest that therapeutic suppression of BRUCE could improve chemosensitivity in chemo-resistant breast cancer patients. Therefore, future development of effective inhibitors of BRUCE could benefit patients with high BRUCE expression and chemoresistance.
Collapse
Affiliation(s)
- Jason B Garrison
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Chunmin Ge
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Lixiao Che
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Derek A Pullum
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sohaib Khan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Nira Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Chunying Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|