1
|
Swarnkar A, Leidner F, Rout AK, Ainatzi S, Schmidt CC, Becker S, Urlaub H, Griesinger C, Grubmüller H, Stein A. Determinants of chemoselectivity in ubiquitination by the J2 family of ubiquitin-conjugating enzymes. EMBO J 2024; 43:6705-6739. [PMID: 39533056 PMCID: PMC11649903 DOI: 10.1038/s44318-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitin-conjugating enzymes (E2) play a crucial role in the attachment of ubiquitin to proteins. Together with ubiquitin ligases (E3), they catalyze the transfer of ubiquitin (Ub) onto lysines with high chemoselectivity. A subfamily of E2s, including yeast Ubc6 and human Ube2J2, also mediates noncanonical modification of serines, but the structural determinants for this chemical versatility remain unknown. Using a combination of X-ray crystallography, molecular dynamics (MD) simulations, and reconstitution approaches, we have uncovered a two-layered mechanism that underlies this unique reactivity. A rearrangement of the Ubc6/Ube2J2 active site enhances the reactivity of the E2-Ub thioester, facilitating attack by weaker nucleophiles. Moreover, a conserved histidine in Ubc6/Ube2J2 activates a substrate serine by general base catalysis. Binding of RING-type E3 ligases further increases the serine selectivity inherent to Ubc6/Ube2J2, via an allosteric mechanism that requires specific positioning of the ubiquitin tail at the E2 active site. Our results elucidate how subtle structural modifications to the highly conserved E2 fold yield distinct enzymatic activity.
Collapse
Affiliation(s)
- Anuruti Swarnkar
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Leidner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ashok K Rout
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institut für Chemie und Metabolomics, Universität zu Lübeck, 23562, Lübeck, Germany
| | - Sofia Ainatzi
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudia C Schmidt
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Abdul Rehman SA, Cazzaniga C, Di Nisio E, Antico O, Knebel A, Johnson C, Şahin AT, Ibrahim PEGF, Lamoliatte F, Negri R, Muqit MMK, De Cesare V. Discovery and characterization of noncanonical E2-conjugating enzymes. SCIENCE ADVANCES 2024; 10:eadh0123. [PMID: 38536929 PMCID: PMC10971424 DOI: 10.1126/sciadv.adh0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.
Collapse
Affiliation(s)
- Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Chiara Cazzaniga
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Elena Di Nisio
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Clare Johnson
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Alp T. Şahin
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Peter E. G. F. Ibrahim
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Rome, Italy
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
4
|
Wang T, Jin C, Yang P, Chen Z, Ji J, Sun Q, Yang S, Feng Y, Tang J, Sun Y. UBE2J1 inhibits colorectal cancer progression by promoting ubiquitination and degradation of RPS3. Oncogene 2023; 42:651-664. [PMID: 36567344 PMCID: PMC9957728 DOI: 10.1038/s41388-022-02581-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Ubiquitin-conjugating enzyme E2 J1 (UBE2J1) has been proven to participate in the ubiquitination of multiple substrate proteins. However, the underlying mechanisms of UBE2J1 as a ubiquitin-conjugating enzyme participating in cancer development and progression remain largely unknown. Here, we identified that UBE2J1 is downregulated in colorectal cancer (CRC) tissues and cell lines which are mediated by DNA hypermethylation of its promoter, and decreased UBE2J1 is associated with poor prognosis. Functionally, UBE2J1 serving as a suppressor gene inhibits the proliferation and metastasis of CRC cells. Mechanistically, UBE2J1-TRIM25, forming an E2-E3 complex, physically interacts with and targets RPS3 for ubiquitination and degradation at the K214 residue. The downregulated RPS3 caused by UBE2J1 overexpression restrains NF-κB translocation into the nucleus and therefore inactivates the NF-κB signaling pathway. Our study revealed a novel role of UBE2J1-mediated RPS3 poly-ubiquitination and degradation in disrupting the NF-κB signaling pathway, which may serve as a novel and promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Peng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Zhihao Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Qingyang Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
6
|
Yang D, Ma X, Xu J, Jia K, Liu X, Zhang P. Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biol Ther 2021; 22:238-247. [PMID: 33632059 DOI: 10.1080/15384047.2021.1883186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Emerging documents revealed that E2 enzyme family has been implicated in regulating the progression of numerous human cancers. Ubiquitin-conjugating enzyme E2 J1 (UBE2J1), a member of E2 enzyme family, has been reported to participate in the biological process of medulloblastoma, while little is known about its functionality in endometrial cancer (EC). Gene expression at the mRNA and protein levels were identified using RT-qPCR and western blot analysis, separately. The alteration on cell proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) process was determined through 5-Ethynyl-2'-deoxyuridine, cell adhesion, wound healing and transwell assays as well as western blot analysis. The role of UBE2J1 in xenograft tumor in mice was determined. Luciferase reporter and chromatin immunoprecipitation assays were conducted to reveal the undering mechanism of UBE2J1. Our results indicated that UBE2J1 displayed high level in EC tissues and cells and predicted poor prognosis of EC patients. In addition, UBE2J1 depletion inhibited cell proliferation, adhesion, motion, EMT process invitro, and repressed tumor growth invivo. Rescue assays manifested that ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate treatment reversed the effects of UBE2J1 on PI3K/AKT pathway activation and malignant phenotypes of EC cells. Finally, zinc finger X-chromosomal protein (zfx), with high expression in EC tissues, was verified to activate UBE2J1 transcription by binding to UBE2J1 promoter. In conclusion, all facts signified that zfx-induced upregulation of UBE2J1 accelerated the progression of EC via regulating the PI3K/AKT signaling pathway, which suggested that UBE2J1 might be of great significance in probing into the underlying therapeutic strategies of EC.
Collapse
Affiliation(s)
- Dexin Yang
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xin Ma
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Jie Xu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| |
Collapse
|
7
|
Molecular Simulation Elaborating the Mechanism of 1β-Hydroxy Alantolactone Inhibiting Ubiquitin-Conjugating Enzyme UbcH5s. Sci Rep 2020; 10:141. [PMID: 31924820 PMCID: PMC6954291 DOI: 10.1038/s41598-019-57104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
1β-hydroxy alantolactone, a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. Recently, it has been found to target UbcH5s by covalently bonding with Cys85 specifically, but the exact molecular basis remains unclear. Here, we analyzed the structural specificity of the catalytic site of UbcH5s by comparing them with other E2 proteins. Molecular dynamics was performed to detect the structural stability of the catalytic site. Docking method was then used to predict conformations of ligand docked at the catalytic site of UbcH5s. The electrostatic surface and charge distribution of ligand and proteins were analyzed by quantitative calculation. Molecular dynamics was used to detect the stability of docking complexes of 1β-hydroxy alantolactone and UbcH5s, the covalently bonded intermediates and the products. The QM/MM methodology was used to calculate the free energy barrier of hydrogen transfer and formation of covalent bond between 15-position carbon of ligand and Cys85. Results revealed that the structure of the catalytic site is stable, and 1β-hydroxy alantolactone can dock at the catalytic site with correct conformation. Molecular dynamics further demonstrates that 1β-hydroxy alantolactone can steadily combine with UbcH5s. Intermediate and product of catalytic reaction are also certified to be stable. Besides, Asp112 and Asn114 function as anchors to fix ligand, ensuring it steadily docked at catalytic site to complete covalent reaction. More importantly, we have found that Cys85 of UbcH5c is more efficient to form a covalent bond with the ligand in comparison with UbcH5a and UbcH5b. Our results successfully explained the mechanism of 1β-hydroxy alantolactone covalently bonding with UbcH5s. Such molecular mechanism may provide a better insight into the molecular development or modification for ubiquitin-related drugs.
Collapse
|
8
|
Ling J, Cheloha RW, McCaul N, Sun ZYJ, Wagner G, Ploegh HL. A nanobody that recognizes a 14-residue peptide epitope in the E2 ubiquitin-conjugating enzyme UBC6e modulates its activity. Mol Immunol 2019; 114:513-523. [PMID: 31518855 DOI: 10.1016/j.molimm.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
A substantial fraction of eukaryotic proteins is folded and modified in the endoplasmic reticulum (ER) prior to export and secretion. Proteins that enter the ER but fail to fold correctly must be degraded, mostly in a process termed ER-associated degradation (ERAD). Both protein folding in the ER and ERAD are essential for proper immune function. Several E2 and E3 enzymes localize to the ER and are essential for various aspects of ERAD, but their functions and regulation are incompletely understood. Here we identify and characterize single domain antibody fragments derived from the variable domain of alpaca heavy chain-only antibodies (VHHs or nanobodies) that bind to the ER-localized E2 UBC6e, an enzyme implicated in ERAD. One such VHH, VHH05 recognizes a 14 residue stretch and enhances the rate of E1-catalyzed ubiquitin E2 loading in vitroand interferes with phosphorylation of UBC6e in response to cell stress. Identification of the peptide epitope recognized by VHH05 places it outside the E2 catalytic core, close to the position of activation-induced phosphorylation on Ser184. Our data thus suggests a site involved in allosteric regulation of UBC6e's activity. This VHH should be useful not only to dissect the participation of UBC6e in ERAD and in response to cell stress, but also as a high affinity epitope tag-specific reagent of more general utility.
Collapse
Affiliation(s)
- Jingjing Ling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nicholas McCaul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhen-Yu J Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Mashahreh B, Reiss Y, Wiener R, Ravid T. Assays for dissecting the in vitro enzymatic activity of yeast Ubc7. Methods Enzymol 2019; 619:71-95. [PMID: 30910030 DOI: 10.1016/bs.mie.2018.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ubiquitin (Ub)-mediated protein degradation is a key cellular defense mechanism that detects and eliminates defective proteins. A major intracellular site of protein quality control degradation is the endoplasmic reticulum (ER), hence the term ER-associated degradation, or endoplasmic reticulum-associated degradation (ERAD). Yeast ERAD is composed of three Ub-protein conjugation complexes, named according to their E3 Ub-protein ligase components, Hrd1, Doa10, and the Asi complex, which resides at the nuclear envelope (NE). These ER/NE membrane-associated RING-type E3 ligases recognize and ubiquitylate defective proteins in cooperation with the E2 conjugating enzyme Ubc7 and the obligatory Ubc7 cofactor Cue1. Interaction of Ubc7 with the RING domains of its cognate E3 Ub-protein ligases stimulates the formation of isopeptide (amide) Ub-Ub linkages. Each isopeptide bond is formed by transfer of an Ubc7-linked activated Ub to a lysine side chain of an acceptor Ub. Multiple Ub transfer reactions form a poly-Ub chain that targets the conjugated protein for degradation by the proteasome. To study the mechanism of Ub-Ub bond formation, this reaction is reconstituted in a cell-free system consisting of recombinant E1, Ub, Ubc7, its cofactor Cue1, and the RING domain of either Doa10 or Hrd1. Here we provide detailed protocols for the purification of the required recombinant proteins and for the reactions that produce an Ub-Ub bond, specifically, the formation of an Ubc7~Ub thiolester (Ub charging) and subsequent formation of the isopeptide Ub-Ub linkage (Ub transfer). These protocols also provide a useful guideline for similar in vitro ubiquitylation reactions intended to explore the mechanism of other Ub-conjugation systems.
Collapse
Affiliation(s)
- Bayan Mashahreh
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Reiss
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Tommer Ravid
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Kumari R, Gupta P, Tiwari S. Ubc7/Ube2g2 ortholog in Entamoeba histolytica: connection with the plasma membrane and phagocytosis. Parasitol Res 2018; 117:1599-1611. [PMID: 29594345 DOI: 10.1007/s00436-018-5842-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) and unfolded protein response (UPR) pathways are important for quality and quantity control of membrane and secretory proteins. We have identified orthologs of ER-associated ubiquitin conjugating enzymes (E2s) Ubc6/Ube2j2 and Ubc7/Ube2g2, ubiquitin ligases (E3) Hrd1 and GP78/AMFR, and sensor of UPR, Ire1 in E. histolytica that show conservation of important features of these proteins. Biochemical characterization of the ortholog of ERAD E2, Ubc7/Ube2g2 (termed as EhUbc7), was carried out. This E2 was transcriptionally upregulated several folds upon induction of UPR with tunicamycin. Ire1 ortholog was also upregulated upon UPR induction suggesting a linked UPR and ERAD pathway in this organism. EhUbc7 showed enzymatic activity and, similar to its orthologs in higher eukaryotes, formed polyubiquitin chains in vitro and localized to both cytoplasm and membranes. However, unlike its ortholog in higher eukaryotes, it also showed localization to the plasma membrane along with calreticulin. Inactivation of EhUbc7 significantly inhibited erythrophagocytosis, suggesting a novel function that has not been reported before for this E2. No change in growth, motility, or cell-surface expression of Gal/GalNAC lectin was observed due to inactivation of EhUbc7. The protein was present in the phagocytic cups but not in the phagosomes. A significant decrease in the number of phagocytic cups in inactive EhUbc7 expressing cells was observed, suggesting altered kinetics of phagocytosis. These findings have implications for evolutionary and mechanistic understanding of connection between phagocytosis and ER-associated proteins.
Collapse
Affiliation(s)
- Rinki Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Gupta
- Microbiology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP, 474002, India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Elangovan M, Chong HK, Park JH, Yeo EJ, Yoo YJ. The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery. J Cell Commun Signal 2017; 11:265-273. [PMID: 28321712 DOI: 10.1007/s12079-017-0386-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
The human Ube2j1 and Ube2j2 are the only ubiquitin-conjugating enzymes (E2s) that are localized to endoplasmic reticulum (ER) through its C-terminal transmembrane domains. Ube2j1 is a known substrate of MAPK signalling pathway and it is phosphorylated at serine-184 during ER stress. Here, we demonstrate that Ube2j1, not Ube2j2 is essential for the recovery of cells from transient ER stress. The ectopic expression of wild-type Ube2j1 and phospho-mimic mutant, Ube2j1S184D but not phospho-mutant Ube2j1S184A can recover cells from ER stress. We also found that ubiquitin-ligase (E3), c-IAP1 preferentially interacts with phosphorylated Ube2j1. Moreover, we noticed that phosphorylated Ube2j1 is rapidly degraded by the proteasome during ER stress cell recovery. Taken together, these data suggest that Ube2j1 and its phosphorylation is important for transient ER stress cell recovery and the phosphorylated Ube2j1 is degraded by the proteasome.
Collapse
Affiliation(s)
- Muthukumar Elangovan
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Hae Kwan Chong
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Hee Park
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eui Ju Yeo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
12
|
Weber A, Cohen I, Popp O, Dittmar G, Reiss Y, Sommer T, Ravid T, Jarosch E. Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase. Mol Cell 2016; 63:827-39. [PMID: 27570077 DOI: 10.1016/j.molcel.2016.07.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
The Doa10 quality control ubiquitin (Ub) ligase labels proteins with uniform lysine 48-linked poly-Ub (K48-pUB) chains for proteasomal degradation. Processing of Doa10 substrates requires the activity of two Ub conjugating enzymes. Here we show that the non-canonical conjugating enzyme Ubc6 attaches single Ub molecules not only to lysines but also to hydroxylated amino acids. These Ub moieties serve as primers for subsequent poly-ubiquitylation by Ubc7. We propose that the evolutionary conserved propensity of Ubc6 to mount Ub on diverse amino acids augments the number of ubiquitylation sites within a substrate and thereby increases the target range of Doa10. Our work provides new insights on how the consecutive activity of two specialized conjugating enzymes facilitates the attachment of poly-Ub to very heterogeneous client molecules. Such stepwise ubiquitylation reactions most likely represent a more general cellular phenomenon that extends the versatility yet sustains the specificity of the Ub conjugation system.
Collapse
Affiliation(s)
- Annika Weber
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Itamar Cohen
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Oliver Popp
- Mass Spectrometric Core Facility, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometric Core Facility, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Yuval Reiss
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Thomas Sommer
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany; Institute of Biology, Humboldt University Berlin, 10099 Berlin, Germany.
| | - Tommer Ravid
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Ernst Jarosch
- Intracellular Proteolysis, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
13
|
Koenig PA, Nicholls PK, Schmidt FI, Hagiwara M, Maruyama T, Frydman GH, Watson N, Page DC, Ploegh HL. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice. J Biol Chem 2014; 289:34490-502. [PMID: 25320092 DOI: 10.1074/jbc.m114.604132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Peter K Nicholls
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Florian I Schmidt
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Masatoshi Hagiwara
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Galit H Frydman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Nicki Watson
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - David C Page
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and
| |
Collapse
|
14
|
Rukova B, Staneva R, Hadjidekova S, Stamenov G, Milanova V, Toncheva D. Whole genome methylation analyses of schizophrenia patients before and after treatment. BIOTECHNOL BIOTEC EQ 2014; 28:518-524. [PMID: 26019538 PMCID: PMC4434134 DOI: 10.1080/13102818.2014.933501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022] Open
Abstract
The aetiology of schizophrenia is still unknown but it involves both heritable and non-heritable factors. DNA methylation is an inheritable epigenetic modification that stably alters gene expression. It takes part in the regulation of neurodevelopment and may be a contributing factor to the pathogenesis of brain diseases. It was found that many of the antipsychotic drugs may lead to epigenetic modifications. We have performed 42 high-resolution genome-wide methylation array analyses to determine the methylation status of 27,627 CpG islands. Differentially methylated regions were studied with samples from 20 Bulgarian individuals divided in four groups according to their gender (12 males/8 females) and their treatment response (6 in complete/14 in incomplete remission). They were compared to two age and sex matched control pools (110 females in female pool/110 males in male pool) before and after treatment. We found significant differences in the methylation profiles between male schizophrenia patients with complete remission and control male pool before treatment (C16orf70, CST3, DDRGK1, FA2H, FLJ30058, MFSD2B, RFX4, UBE2J1, ZNF311) and male schizophrenia patients with complete remission and control male pool after treatment (AP1S3, C16orf59, KCNK15, LOC146336, MGC16384, XRN2) that potentially could be used as target genes for new therapeutic strategies as well as markers for good treatment response. Our data revealed major differences in methylation profiles between male schizophrenia patients in complete remission before and after treatment and healthy controls which supports the hypothesis that antipsychotic drugs may play a role in epigenetic modifications.
Collapse
Affiliation(s)
- Blaga Rukova
- Department of Medical Genetics, Medical University of Sofia , Sofia , Bulgaria
| | - Rada Staneva
- Department of Medical Genetics, Medical University of Sofia , Sofia , Bulgaria
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical University of Sofia , Sofia , Bulgaria
| | | | - Vihra Milanova
- Department of Psychiatry, Medical University of Sofia , Sofia , Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia , Sofia , Bulgaria
| |
Collapse
|
15
|
Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFα production. Biochem J 2013; 456:163-72. [DOI: 10.1042/bj20130755] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The protein kinase MK2 phosphorylates the endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 under various stress conditions and during the innate immune response in macrophages. Although its apparent enzyme activity stays unaltered, Ube2j1 contributes to MK2-dependent biosynthesis of tumour necrosis factor α.
Collapse
|
16
|
Banerjee A. Novel targets in drug design: enzymes in the protein ubiquitylation pathway. Expert Opin Drug Discov 2013; 1:151-60. [PMID: 23495798 DOI: 10.1517/17460441.1.2.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein ubiquitylation is a pathway by which many proteins are selectively degraded. Its role has been shown in processes such as cell division and differentiation, oncogenesis, apoptosis, DNA repair, membrane transport and the removal of abnormal proteins. The ubiquitylation pathway enzymes are an insufficiently researched area for drug development. A genetic method has been developed (supported by computational biology) to identify potentially useful small molecules that will have a positive impact on our battle against cancer and other diseases. In silico screening is used for initial selection of drug-like compounds. This method is based on docking three-dimensional chemical libraries onto the target enzyme's functional site for initial screens using a computational scheme, followed by genetic and in vivo methods for hit optimisation. Focus has been on using the ubiquitin conjugation pathway as target for therapeutic intervention against cancer and potent inhibitors of ubiquitylation subpathways have been obtained (including those that are vital for the survival of aggressive cancer cells/tumours). Leads from the development of in vitro inhibitors provided a direction for the development of in vivo inhibitors as investigational tools, and as promising therapeutic agents.
Collapse
Affiliation(s)
- Amit Banerjee
- Wayne State University, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences and Karmanos Cancer Institute, 259 Mack Avenue, Room 3142, Detroit, Michigan 48201, USA.
| |
Collapse
|
17
|
Wang X, Herr RA, Rabelink M, Hoeben RC, Wiertz EJHJ, Hansen TH. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. ACTA ACUST UNITED AC 2010; 187:655-68. [PMID: 19951915 PMCID: PMC2806592 DOI: 10.1083/jcb.200908036] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An E2–E3 complex can ubiquitinate substrates via either an isopeptide bond (to a lysine) or an ester bond (to a serine or threonine) and preferentially uses the latter to induce ERAD. Ubiquitin (Ub) modification of proteins plays a prominent role in the regulation of multiple cell processes, including endoplasmic reticulum–associated degradation (ERAD). Until recently, ubiquitination of substrates was thought to occur only via isopeptide bonds, typically to lysine residues. Several recent studies suggest that Ub can also be coupled to nonlysine residues by ester/thiolester bonds; however, the molecular basis for these novel modifications remains elusive. To probe the mechanism and importance of nonlysine ubiquitination, we have studied the viral ligase murine K3 (mK3), which facilitates the polyubiquitination of hydroxylated amino acids serine/threonine on its ERAD substrate. In this paper, we identify Ube2j2 as the primary cellular E2 recruited by the mK3 ligase, and this E2–E3 pair is capable of conjugating Ub on lysine or serine residues of substrates. However, surprisingly, Ube2j2–mK3 preferentially promotes ubiquitination of hydroxylated amino acids via ester bonds even when lysine residues are present on wild-type substrates, thus establishing physiological relevance of this novel ubiquitination strategy.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Michelle C, Vourc'h P, Mignon L, Andres CR. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 2009; 68:616-28. [PMID: 19452197 PMCID: PMC2691932 DOI: 10.1007/s00239-009-9225-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/06/2009] [Accepted: 03/17/2009] [Indexed: 11/03/2022]
Abstract
Ubiquitin (Ub)-conjugating enzymes (E2) are key enzymes in ubiquitination or Ub-like modifications of proteins. We searched for all proteins belonging to the E2 enzyme super-family in seven species (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Arabidopsis thaliana) to identify families and to reconstruct each family’s phylogeny. Our phylogenetic analysis of 207 genes led us to define 17 E2 families, with 37 E2 genes, in the human genome. The subdivision of E2 into four classes did not correspond to the phylogenetic tree. The sequence signature HPN (histidine–proline–asparagine), followed by a tryptophan residue at 16 (up to 29) amino acids, was highly conserved. When present, the active cysteine was found 7 to 8 amino acids from the C-terminal end of HPN. The secondary structures were characterized by a canonical alpha/beta fold. Only family 10 deviated from the common organization because the proteins were devoid of enzymatic activity. Family 7 had an insertion between beta strands 1 and 2; families 3, 5 and 14 had an insertion between the active cysteine and the conserved tryptophan. The three-dimensional data of these proteins highlight a strong structural conservation of the core domain. Our analysis shows that the primitive eukaryote ancestor possessed a diversified set of E2 enzymes, thus emphasizing the importance of the Ub pathway. This comprehensive overview of E2 enzymes emphasizes the diversity and evolution of this superfamily and helps clarify the nomenclature and true orthologies. A better understanding of the functions of these enzymes is necessary to decipher several human diseases.
Collapse
Affiliation(s)
- Caroline Michelle
- Faculté de Médecine, Génétique de l'Autisme et des Déficiences Mentales, INSERM U930, Université François Rabelais, 10, boulevard Tonnellé, BP 3223, 37032, Tours, France
| | | | | | | |
Collapse
|
19
|
Issues in high-throughput comparative modelling: a case study using the ubiquitin E2 conjugating enzymes. Proteins 2006; 58:367-75. [PMID: 15558745 DOI: 10.1002/prot.20318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sequences of the ubiquitin-conjugating enzyme (UBC or E2) family were used as a test set to investigate issues associated with the high-throughput comparative modelling of protein structures. A semi-automatic method was initially developed with particular emphasis on producing models of a quality suitable for structural comparison. Structural and sequence features of the E2 family were used to improve the sequence alignment and the quality of the structural templates. Initially, failure to correct for subtle structural inconsistencies between templates lead to problems in the comparative analysis of the UBC electrostatic potentials. Modelling of known UBC structures using Modeller 4.0 showed that multiple templates produced, on average, no better models than the use of just one template, as judged by the root-mean-squared deviation between the comparative model and crystal structure backbones. Using four different quality-checking methods, for a given target sequence, it was not possible to distinguish the model most similar to the experimental structure. The UBC models were thus finally modelled using only the crystal structure template with the highest sequence identity to the target to be modelled, and producing only one model solution. Quality checking was used to reject models with obvious structural anomalies (e.g., bad side-chain packing). The resulting models have been used for a comparison of UBC structural features and of their electrostatic potentials. The work was extended through the development of a fully automated pipeline that identifies E2 sequences in the sequence databases, aligns and models them, and calculates the associated electrostatic potential.
Collapse
|
20
|
Oh RS, Bai X, Rommens JM. Human homologs of Ubc6p ubiquitin-conjugating enzyme and phosphorylation of HsUbc6e in response to endoplasmic reticulum stress. J Biol Chem 2006; 281:21480-21490. [PMID: 16720581 DOI: 10.1074/jbc.m601843200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme Ubc6p is a tail-anchored protein that is localized to the cytoplasmic face of the endoplasmic reticulum (ER) membrane and has been implicated in the degradation of many misfolded membrane proteins in yeast. We have undertaken characterization studies of two human homologs, hsUbc6 and hsUbc6e. Both possess tail-anchored protein motifs, display high conservation in their catalytic domains, and are functional ubiquitin-conjugating enzymes as determined by in vitro thiol-ester assay. Both also display induction by the unfolded protein response, a feature of many ER-associated degradation (ERAD) components. Post-translational modification involving phosphorylation of hsUbc6e was observed to be ER-stress-related and dependent on signaling of the PRK-like ER kinase (PERK). The phosphorylation site was mapped to Ser-184, which resides within the uncharacterized region linking the highly conserved catalytic core and the C-terminal transmembrane domain. Phosphorylation of hsUbc6e also did not alter stability, subcellular localization, or interaction with a partner ubiquitin-protein isopeptide ligase. Assays of hsUbc6e(S184D) and hsUbc6e(S184E), which mimic the phosphorylated state, suggest that phosphorylation may reduce capacity for forming ubiquitin-enzyme thiol-esters. The occurrence of two distinct Ubc6p homologs in vertebrates, including one with phosphorylation modification in response to ER stress, emphasizes diversity in function between these Ub-conjugating enzymes during ERAD processes.
Collapse
Affiliation(s)
- Ray S Oh
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Xinli Bai
- Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Johanna M Rommens
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
21
|
Winn PJ, Religa TL, Battey JND, Banerjee A, Wade RC. Determinants of functionality in the ubiquitin conjugating enzyme family. Structure 2005; 12:1563-74. [PMID: 15341722 DOI: 10.1016/j.str.2004.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 06/11/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
The E2 enzymes are key enzymes in the ubiquitin and ubiquitin-like protein ligation pathways. To understand the functionality of the different E2 enzymes, we analyzed 190 protein sequences and 211 structures and electrostatic potentials. Key findings include: The ScUbc1 orthologs are defined by a C-terminal UBA domain. An N-terminal sequence motif that is highly conserved in all E2s except for Cdc34 orthologs is important for the stabilization of the L7 loop and is likely to be involved in E1 binding. ScUbc11p has a different electrostatic potential from E2-Cp and other proteins with which it has high sequence similarity but different functionality. All the E2s known to ubiquitinate histones have a negative potential. The members of the NCUBE family have a positive electrostatic potential, although its form is different from that of the SUMO conjugating E2s. The specificities of only the ScUbc4/Ubc5 and ScUbc1p orthologs are reflected in their L4 and L7 loops.
Collapse
Affiliation(s)
- Peter J Winn
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Preston GA, Waga I, Alcorta DA, Sasai H, Munger WE, Sullivan P, Phillips B, Jennette JC, Falk RJ. Gene expression profiles of circulating leukocytes correlate with renal disease activity in IgA nephropathy. Kidney Int 2004; 65:420-30. [PMID: 14717912 DOI: 10.1111/j.1523-1755.2004.00398.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The goal of these studies was to explore the possibility of using gene expression profiles of circulating leukocytes as a functional fingerprint of nephritic disease activity. METHODS This feasibility study utilized IgA nephropathy (IgAN) as a model system. Genes differentially expressed in IgAN patients were identified by Affymetrix GeneChip microarrays, and compared with gene expression of focal segmental glomerulosclerosis (FSGS), minimal change disease, antineutrophil cytoplasmic antibody (ANCA) glomerulonephritis, and with healthy volunteers. Of the genes identified, 15 transcriptionally up-regulated were validated in a larger cohort of patients using TaqMan polymerase chain reaction (PCR). To test whether increased expression of these genes correlated with disease activity, cluster analyses were performed utilizing the TaqMan PCR values. Taking a mathematical approach, we tested whether gene expression values were correlative with kidney function, as reflected by serum creatinine and creatinine clearance values. RESULTS We identified 15 genes significantly correlative with disease activity in IgAN. This gene signature of IgAN patients' leukocytes reflected kidney function. This was demonstrated in that mathematically generated theoretical values of serum creatinine and creatinine clearance correlated significantly with actual IgAN patient values of serum creatinine and creatinine clearance. There was no apparent correlation with hematuria and proteinuria. The expression levels of this same gene set in ANCA glomerulonephritis or Lupus nephritis patients were not correlative with serum creatinine or creatinine clearance values. CONCLUSION These data indicate that leukocytes carry informative disease-specific markers of pathogenic changes in renal tissue.
Collapse
Affiliation(s)
- Gloria A Preston
- Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7155, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18:39-51. [PMID: 14718385 DOI: 10.1096/fj.03-0610com] [Citation(s) in RCA: 1187] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific mRNAs in muscles atrophying from different causes. We compared muscles from fasted mice, from rats with cancer cachexia, streptozotocin-induced diabetes mellitus, uremia induced by subtotal nephrectomy, and from pair-fed control rats. Although the content of >90% of mRNAs did not change, including those for the myofibrillar apparatus, we found a common set of genes (termed atrogins) that were induced or suppressed in muscles in these four catabolic states. Among the strongly induced genes were many involved in protein degradation, including polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-1/MAFbx and MuRF-1, multiple but not all subunits of the 20S proteasome and its 19S regulator, and cathepsin L. Many genes required for ATP production and late steps in glycolysis were down-regulated, as were many transcripts for extracellular matrix proteins. Some genes not previously implicated in muscle atrophy were dramatically up-regulated (lipin, metallothionein, AMP deaminase, RNA helicase-related protein, TG interacting factor) and several growth-related mRNAs were down-regulated (P311, JUN, IGF-1-BP5). Thus, different types of muscle atrophy share a common transcriptional program that is activated in many systemic diseases.
Collapse
Affiliation(s)
- Stewart H Lecker
- Renal Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Webster JM, Tiwari S, Weissman AM, Wojcikiewicz RJH. Inositol 1,4,5-trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component of the endoplasmic reticulum-associated degradation pathway, and is inhibited by chelation of intracellular Zn2+. J Biol Chem 2003; 278:38238-46. [PMID: 12869571 DOI: 10.1074/jbc.m305600200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In response to activation of certain cell surface receptors, inositol 1,4,5-trisphosphate receptors (InsP3Rs), which are located in the endoplasmic reticulum, can be rapidly ubiquitinated and then degraded by the proteasome. Ubiquitination is mediated by the concerted action of ubiquitin-conjugating enzymes (Ubcs or E2s) and ubiquitin-protein ligases (E3s). In the present study we have examined the enzymology of ubiquitination of endogenous InsP3Rs in muscarinic agonist-stimulated SH-SY5Y human neuroblastoma cells, focusing our attention on two mammalian E2s, MmUbc6 and MmUbc7, that have been implicated in endoplasmic reticulum-associated degradation (ERAD) and are homologous to the yeast ERAD E2s, Ubc6p and Ubc7p. Analysis of SH-SY5Y cells stably expressing these enzymes and their dominant-negative mutants revealed that MmUbc7 mediates InsP3R ubiquitination and down-regulation, but that MmUbc6 does not. These data indicate that InsP3Rs are processed by a component of the ERAD pathway and suggest that MmUbc7 may be employed selectively to ubiquitinate proteins, like InsP3Rs, that are subject to regulated ERAD. Additional studies showed that the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine blocked InsP3R ubiquitination, suggesting that a RING finger domain-containing E3 is also involved in this process. Finally, muscarinic agonist-induced InsP3R ubiquitination was seen in rat brain slices, indicating that the results obtained from SH-SY5Y cells reflect a physiological process.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210-2339, USA
| | | | | | | |
Collapse
|
25
|
Lenk U, Yu H, Walter J, Gelman MS, Hartmann E, Kopito RR, Sommer T. A role for mammalian Ubc6 homologues in ER-associated protein degradation. J Cell Sci 2002; 115:3007-14. [PMID: 12082160 DOI: 10.1242/jcs.115.14.3007] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane and secretory proteins which fail to fold productively are retained in the endoplasmic reticulum and targeted for degradation by cytoplasmic proteasomes. Genetic and biochemical analyses suggest that substrates of this pathway must be dislocated across the membrane of the endoplasmic reticulum (ER) by a process requiring a functional Sec61 complex and multiubiquitinylation. In yeast, the tail-anchored ubiquitin-conjugating enzyme Ubc6p, which is localized to the cytoplasmic surface of the ER,participates in ER-associated degradation (ERAD) of misfolded proteins. Here we describe the identification of two families of mammalian Ubc6p-related proteins. Members of both families are also located in the ER membrane and display a similar membrane topology as the yeast enzyme. Furthermore we show that expression of elevated levels of wild-type and dominant-negative alleles of these components affects specifically ERAD of the α subunit of the T-cell receptor and a mutant form of the CFTR protein. Similarly, we describe that the expression level of Ubc6p in yeast is also critical for ERAD,suggesting that the Ubc6p function is highly conserved from yeast to mammals.
Collapse
Affiliation(s)
- Uwe Lenk
- The Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Collapse
Affiliation(s)
- C M Pickart
- School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
27
|
Jones D, Crowe E, Stevens TA, Candido EPM. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 2002; 3:RESEARCH0002. [PMID: 11806825 PMCID: PMC150449 DOI: 10.1186/gb-2001-3-1-research0002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 09/20/2001] [Accepted: 10/24/2001] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The eukaryotic ubiquitin-conjugation system sets the turnover rate of many proteins and includes activating enzymes (E1s), conjugating enzymes (UBCs/E2s), and ubiquitin-protein ligases (E3s), which are responsible for activation, covalent attachment and substrate recognition, respectively. There are also ubiquitin-like proteins with distinct functions, which require their own E1s and E2s for attachment. We describe the results of RNA interference (RNAi) experiments on the E1s, UBC/E2s and ubiquitin-like proteins in Caenorhabditis elegans. We also present a phylogenetic analysis of UBCs. RESULTS The C. elegans genome encodes 20 UBCs and three ubiquitin E2 variant proteins. RNAi shows that only four UBCs are essential for embryogenesis: LET-70 (UBC-2), a functional homolog of yeast Ubc4/5p, UBC-9, an ortholog of yeast Ubc9p, which transfers the ubiquitin-like modifier SUMO, UBC-12, an ortholog of yeast Ubc12p, which transfers the ubiquitin-like modifier Rub1/Nedd8, and UBC-14, an ortholog of Drosophila Courtless. RNAi of ubc-20, an ortholog of yeast UBC1, results in a low frequency of arrested larval development. A phylogenetic analysis of C. elegans, Drosophila and human UBCs shows that this protein family can be divided into 18 groups, 13 of which include members from all three species. The activating enzymes and the ubiquitin-like proteins NED-8 and SUMO are required for embryogenesis. CONCLUSIONS The number of UBC genes appears to increase with developmental complexity, and our results suggest functional overlap in many of these enzymes. The ubiquitin-like proteins NED-8 and SUMO and their corresponding activating enzymes are required for embryogenesis.
Collapse
Affiliation(s)
- Donald Jones
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
28
|
Petaja-Repo UE, Hogue M, Laperriere A, Bhalla S, Walker P, Bouvier M. Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 2001; 276:4416-23. [PMID: 11054417 DOI: 10.1074/jbc.m007151200] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that only a fraction of the newly synthesized human delta opioid receptors is able to leave the endoplasmic reticulum (ER) and reach the cell surface (Petäjä-Repo, U. E, Hogue, M., Laperrière, A., Walker, P., and Bouvier, M. (2000) J. Biol. Chem. 275, 13727-13736). In the present study, we investigated the fate of those receptors that are retained intracellularly. Pulse-chase experiments revealed that the disappearance of the receptor precursor form (M(r) 45,000) and of two smaller species (M(r) 42,000 and 39,000) is inhibited by the proteasome blocker, lactacystin. The treatment also promoted accumulation of the mature receptor form (M(r) 55,000), indicating that the ER quality control actively routes a significant proportion of rescuable receptors for proteasome degradation. In addition, degradation intermediates that included full-length deglycosylated (M(r) 39,000) and ubiquitinated forms of the receptor were found to accumulate in the cytosol upon inhibition of proteasome function. Finally, coimmunoprecipitation experiments with the beta-subunit of the Sec61 translocon complex revealed that the receptor precursor and its deglycosylated degradation intermediates interact with the translocon. Taken together, these results support a model in which misfolded or incompletely folded receptors are transported to the cytoplasmic side of the ER membrane via the Sec61 translocon, deglycosylated and conjugated with ubiquitin prior to degradation by the cytoplasmic 26 S proteasomes.
Collapse
Affiliation(s)
- U E Petaja-Repo
- Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.
| | | | | | | | | | | |
Collapse
|