1
|
Sutton RM, Bittar HT, Sullivan DI, Silva AG, Bahudhanapati H, Parikh AH, Zhang Y, Gibson K, McDyer JF, Kass DJ, Alder JK. Rare surfactant-related variants in familial and sporadic pulmonary fibrosis. Hum Mutat 2022; 43:2091-2101. [PMID: 36135709 PMCID: PMC9771972 DOI: 10.1002/humu.24476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
The role of constitutional genetic defects in idiopathic pulmonary fibrosis (IPF) is increasingly appreciated. Monogenic disorders associated with IPF affect two pathways: telomere maintenance, accounting for approximately 10% of all patients with IPF, and surfactant biology, responsible for 1%-3% of cases and often co-occurring with lung cancer. We examined the prevalence of rare variants in five surfactant-related genes, SFTPA1, SFPTA2, SFTPC, ABCA3, and NKX2-1, that were previously linked to lung disease in whole genome sequencing data from 431 patients with IPF. We identified functionally deleterious rare variants in SFTPA2 with a prevalence of 1.3% in individuals with and without a family history of IPF. All individuals had no personal history of lung cancer, but substantial bronchiolar metaplasia was noted on lung explants and biopsies. Five patients had novel missense variants in NKX2-1, but the contribution to disease is unclear. In general, patients were younger and had longer telomeres compared with the majority of patients with IPF suggesting that these features may be useful for identifying this subset of patients in the clinic. These data suggest that SFTPA2 variants may be more common in unselected IPF cohorts and may manifest in the absence of personal/family history of lung cancer or IPF.
Collapse
Affiliation(s)
- Rachel M Sutton
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Humberto Trejo Bittar
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Agustin Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Harinath Bahudhanapati
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Anishka H Parikh
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Gibson
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Heidari MM, Madani Manshadi SA, Eshghi AR, Talebi F, Khatami M, Bragança J, Ordooei M, Chamani R, Ghasemi F. Mutational and bioinformatics analysis of the NKX2.1 gene in a cohort of Iranian pediatric patients with congenital hypothyroidism (CH). Physiol Int 2022; 109:261-277. [PMID: 35895569 DOI: 10.1556/2060.2022.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2025]
Abstract
Congenital hypothyroidism (CH) occurs with a relatively alarming prevalence in infants, and if not diagnosed and treated in time, it can have devastating consequences for the development of the nervous system. CH is associated with genetic changes in several genes that encode transcription factors responsible for thyroid development, including mutations in the NK2 homeobox 1 (NKX2.1) gene, which encodes the thyroid transcription factor-1 (TTF-1). Although CH is frequently observed in pediatric populations, there is still a limited understanding of the genetic factors and molecular mechanisms contributing to this disease. The sequence of the NKX2.1 gene was investigated in 75 pediatric patients with CH by polymerase chain reaction (PCR), single-stranded conformation polymorphism (SSCP), and direct DNA sequencing. Four missense heterozygous variations were identified in exon 3 of the NKX2.1 gene, including three novel missense variations, namely c.708A>G, p.Gln202Arg; c.713T>G, p.Tyr204Asp; c.833T>G, p.Tyr244Asp, and a previously reported variant rs781133468 (c.772C>G, p.His223Gln). Importantly, these variations occur in highly conserved residues of the TTF-1 DNA-binding domain and were predicted by bioinformatics analysis to alter the protein structure, with a probable alteration in the protein function. These results indicate that nucleotide changes in the NKX2.1 gene may contribute to CH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Mehri Khatami
- 1 Department of Biology, Yazd University, Yazd, Iran
| | - José Bragança
- 2 Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Centre Research Institute, University of Algarve, Faro, Portugal
| | - Mahtab Ordooei
- 3 Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
3
|
Heidari MM, Madani Manshadi SA, Eshghi AR, Talebi F, Khatami M, Bragança J, Ordooei M, Chamani R, Ghasemi F. Mutational and bioinformatics analysis of the NKX2.1 gene in a cohort of Iranian pediatric patients with congenital hypothyroidism (CH). Physiol Int 2022; 109:261-277. [DOI: https:/doi.org/10.1556/2060.2022.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Congenital hypothyroidism (CH) occurs with a relatively alarming prevalence in infants, and if not diagnosed and treated in time, it can have devastating consequences for the development of the nervous system. CH is associated with genetic changes in several genes that encode transcription factors responsible for thyroid development, including mutations in the NK2 homeobox 1 (NKX2.1) gene, which encodes the thyroid transcription factor-1 (TTF-1). Although CH is frequently observed in pediatric populations, there is still a limited understanding of the genetic factors and molecular mechanisms contributing to this disease. The sequence of the NKX2.1 gene was investigated in 75 pediatric patients with CH by polymerase chain reaction (PCR), single-stranded conformation polymorphism (SSCP), and direct DNA sequencing. Four missense heterozygous variations were identified in exon 3 of the NKX2.1 gene, including three novel missense variations, namely c.708A>G, p.Gln202Arg; c.713T>G, p.Tyr204Asp; c.833T>G, p.Tyr244Asp, and a previously reported variant rs781133468 (c.772C>G, p.His223Gln). Importantly, these variations occur in highly conserved residues of the TTF-1 DNA-binding domain and were predicted by bioinformatics analysis to alter the protein structure, with a probable alteration in the protein function. These results indicate that nucleotide changes in the NKX2.1 gene may contribute to CH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - José Bragança
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Centre Research Institute, University of Algarve, Faro, Portugal
| | - Mahtab Ordooei
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | |
Collapse
|
4
|
Zhong Q, Liu Y, Correa MR, Marconett CN, Minoo P, Li C, Ann DK, Zhou B, Borok Z. FOXO1 Couples KGF and PI-3K/AKT Signaling to NKX2.1-Regulated Differentiation of Alveolar Epithelial Cells. Cells 2022; 11:1122. [PMID: 35406686 PMCID: PMC8997990 DOI: 10.3390/cells11071122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/03/2023] Open
Abstract
NKX2.1 is a master regulator of lung morphogenesis and cell specification; however, interactions of NKX2.1 with various transcription factors to regulate cell-specific gene expression and cell fate in the distal lung remain incompletely understood. FOXO1 is a key regulator of stem/progenitor cell maintenance/differentiation in several tissues but its role in the regulation of lung alveolar epithelial progenitor homeostasis has not been evaluated. We identified a novel role for FOXO1 in alveolar epithelial cell (AEC) differentiation that results in the removal of NKX2.1 from surfactant gene promoters and the subsequent loss of surfactant expression in alveolar epithelial type I-like (AT1-like) cells. We found that the FOXO1 forkhead domain potentiates a loss of surfactant gene expression through an interaction with the NKX2.1 homeodomain, disrupting NKX2.1 binding to the SFTPC promoter. In addition, blocking PI-3K/AKT signaling reduces phosphorylated FOXO-1 (p-FOXO1), allowing accumulated nuclear FOXO1 to interact with NKX2.1 in differentiating AEC. Inhibiting AEC differentiation in vitro with keratinocyte growth factor (KGF) maintained an AT2 cell phenotype through increased PI3K/AKT-mediated FOXO1 phosphorylation, resulting in higher levels of surfactant expression. Together these results indicate that FOXO1 plays a central role in AEC differentiation by directly binding NKX2.1 and suggests an essential role for FOXO1 in mediating AEC homeostasis.
Collapse
Affiliation(s)
- Qian Zhong
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (Q.Z.); (Y.L.)
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (Q.Z.); (Y.L.)
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
| | - Michele Ramos Correa
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Crystal Nicole Marconett
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Parviz Minoo
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Changgong Li
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - David K. Ann
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA;
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (Q.Z.); (Y.L.)
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zea Borok
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (M.R.C.); (C.N.M.); (P.M.); (C.L.)
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| |
Collapse
|
5
|
Delestrain C, Aissat A, Nattes E, Gibertini I, Lacroze V, Simon S, Decrouy X, de Becdelièvre A, Fanen P, Epaud R. Deciphering an isolated lung phenotype of NKX2-1 frameshift pathogenic variant. Front Pediatr 2022; 10:978598. [PMID: 36733766 PMCID: PMC9888430 DOI: 10.3389/fped.2022.978598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND to perform a functional analysis of a new NK2 homeobox 1 (NKX2-1) variant (c.85_86del denominated NKX2-1DEL) identified in a family presenting with isolated respiratory disease, in comparison to another frameshift variant (c.254dup denominated NKX2-1DUP) identified in a subject with classical brain-lung-thyroid syndrome. METHODS pathogenic variants were introduced into the pcDNA3-1(+)-wt-TTF1 plasmid. The proteins obtained were analyzed by western blot assay. Subcellular localization was assessed by confocal microscopy in A549 and Nthy cells. Transactivation of SFTPA, SFTPB, SFTPC, and ABCA3 promoters was assessed in A549 cells. Thyroglobulin promoter activity was measured with the paired box gene 8 (PAX8) cofactor in Nthy cells. RESULTS The two sequence variants were predicted to produce aberrant proteins identical from the 86th amino acid, with deletion of their functional homeodomain, including the nuclear localization signal. However, 3D conformation prediction of the conformation prediction of the mutant protein assumed the presence of a nuclear localization signal, a bipartite sequence, confirmed by confocal microscopy showing both mutant proteins localized in the nucleus and cytoplasm. Transcriptional activity with SFTPA, SFTPB, SFTPC, ABCA3 and thyroglobulin promoters was significantly decreased with both variants. However, with NKX2-1DEL, thyroglobulin transcriptional activity was maintained with the addition of PAX8. CONCLUSION These results provide novel insights into understanding the molecular mechanism of phenotypes associated with NKX2-1 pathogenic variants.
Collapse
Affiliation(s)
- Céline Delestrain
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
| | - Abdel Aissat
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Elodie Nattes
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Isabelle Gibertini
- Département de Pédiatrie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Valérie Lacroze
- AP-HM, Hôpital de la Conception, Service de Médecine Néonatale, Marseille, France
| | | | | | - Alix de Becdelièvre
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Département de Génétique, AP-HP, Hopital Henri Mondor, DMU de Biologie-Pathologie, Créteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France
| |
Collapse
|
6
|
Sano K, Hayashi T, Suehara Y, Hosoya M, Takamochi K, Kohsaka S, Kishikawa S, Kishi M, Saito S, Takahashi F, Kaneko K, Suzuki K, Yao T, Ishijima M, Saito T. Transcription start site-level expression of thyroid transcription factor 1 isoforms in lung adenocarcinoma and its clinicopathological significance. J Pathol Clin Res 2021; 7:361-374. [PMID: 34014042 PMCID: PMC8185369 DOI: 10.1002/cjp2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
There are multiple transcription start sites (TSSs) in agreement with multiple transcript variants encoding different isoforms of NKX2-1/TTF-1 (thyroid transcription factor 1); however, the clinicopathological significance of each transcript isoform of NKX2-1/TTF-1 in lung adenocarcinoma (LAD) is unknown. Herein, TSS-level expression of NKX2-1/TTF-1 isoforms was evaluated in 71 LADs using bioinformatic analysis of cap analysis of gene expression (CAGE)-sequencing data, which provides genome-wide expression levels of the 5'-untranslated regions and the TSSs of different isoforms. Results of CAGE were further validated in 664 LADs using in situ hybridisation. Fourteen of 17 TSSs in NKX2-1/TTF-1 (80% of known TSSs in FANTOM5, an atlas of mammalian promoters) were identified in LADs, including TSSs 1-13 and 15; four isoforms of NKX2-1/TTF-1 transcripts (NKX2-1_001, NKX2-1_002, NKX2-1_004, and NKX2-1_005) were expressed in LADs, although NKX2-1_005 did not contain a homeodomain. Among those, six TSSs regulated NKX2-1_004 and NKX2-1_005, both of which contain exon 1. LADs with low expression of isoforms from TSS region 11 regulating exon 1 were significantly associated with poor prognosis in the CAGE data set. In the validation set, 62 tumours (9.3%) showed no expression of NKX2-1/TTF-1 exon 1; such tumours were significantly associated with older age, EGFR wild-type tumours, and poor prognosis. In contrast, 94 tumours, including 22 of 30 pulmonary invasive mucinous adenocarcinomas (IMAs) exhibited exon 1 expression without immunohistochemical TTF-1 protein expression. Furthermore, IMAs commonly exhibited higher exon 1 expression relative to that of exon 4/5, which contained a homeodomain in comparison with EGFR-mutated LADs. These transcriptome and clinicopathological results reveal that LAD use at least 80% of NKX2-1 TSSs and expression of the NKX2-1/TTF-1 transcript isoform without exon 1 (NKX2-1_004 and NKX2-1_005) defines a distinct subset of LAD characterised by aggressive behaviour in elder patients. Moreover, usage of alternative TSSs regions regulating NKX2-1_005 may occur in subsets of LADs.
Collapse
Affiliation(s)
- Kei Sano
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Takuo Hayashi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masaki Hosoya
- Department of Medical OncologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuya Takamochi
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Satsuki Kishikawa
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Monami Kishi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Satomi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuo Kaneko
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenji Suzuki
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Takashi Yao
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Tsuyoshi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
7
|
Knock-in mutations of scarecrow, a Drosophila homolog of mammalian Nkx2.1, reveal a novel function required for development of the optic lobe in Drosophila melanogaster. Dev Biol 2020; 461:145-159. [PMID: 32061586 DOI: 10.1016/j.ydbio.2020.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 01/21/2023]
Abstract
scarecrow (scro) gene encodes a Drosophila homolog of mammalian Nkx2.1 that belongs to an evolutionally conserved NK2 family. Nkx2.1 has been well known for its role in the development of hypothalamus, lung, thyroid gland, and brain. However, little is known about biological roles of scro. To understand scro functions, we generated two types of knock-in mutant alleles, substituting part of either exon-2 or exon-3 for EGFP (or Gal4) by employing the CRISPR/Cas9 genome editing tool. Using these mutations, we characterized spatio-temporal expression patterns of the scro gene and its mutant phenotypes. Homozygous knock-in mutants are lethal during embryonic and early larval development. In developing embryos, scro is exclusively expressed in the pharyngeal primordia and numerous neural clusters in the central nervous system (CNS). In postembryonic stages, the most prominent scro expression is detected in the larval and adult optic lobes, suggesting that scro plays a role for the development and/or function of this tissue type. Notch signaling is the earliest factor known to act for the development of the optic lobe. scro mutants lacked mitotic cells and Delta expression in the optic anlagen, and showed altered expression of several proneural and neurogenic genes including Delta and Notch. Furthermore, scro mutants showed grossly deformed neuroepithelial (NE) cells in the developing optic lobe and severely malformed adult optic lobes, the phenotypes of which are shown in Notch or Delta mutants, suggesting scro acting epistatic to the Notch signaling. From these data together, we propose that scro plays an essential role for the development of the optic lobe, possibly acting as a regional specification factor.
Collapse
|
8
|
Ikonomou L, Herriges MJ, Lewandowski SL, Marsland R, Villacorta-Martin C, Caballero IS, Frank DB, Sanghrajka RM, Dame K, Kańduła MM, Hicks-Berthet J, Lawton ML, Christodoulou C, Fabian AJ, Kolaczyk E, Varelas X, Morrisey EE, Shannon JM, Mehta P, Kotton DN. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun 2020; 11:635. [PMID: 32005814 PMCID: PMC6994558 DOI: 10.1038/s41467-020-14348-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sara L Lewandowski
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert Marsland
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Ignacio S Caballero
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reeti M Sanghrajka
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Keri Dame
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maciej M Kańduła
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
- Chair of Bioinformatics Research Group, Boku University, 1190, Vienna, Austria
| | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Matthew L Lawton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Constantina Christodoulou
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Eric Kolaczyk
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Transcriptional control of lung alveolar type 1 cell development and maintenance by NK homeobox 2-1. Proc Natl Acad Sci U S A 2019; 116:20545-20555. [PMID: 31548395 DOI: 10.1073/pnas.1906663116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The extraordinarily thin alveolar type 1 (AT1) cell constitutes nearly the entire gas exchange surface and allows passive diffusion of oxygen into the blood stream. Despite such an essential role, the transcriptional network controlling AT1 cells remains unclear. Using cell-specific knockout mouse models, genomic profiling, and 3D imaging, we found that NK homeobox 2-1 (Nkx2-1) is expressed in AT1 cells and is required for the development and maintenance of AT1 cells. Without Nkx2-1, developing AT1 cells lose 3 defining features-molecular markers, expansive morphology, and cellular quiescence-leading to alveolar simplification and lethality. NKX2-1 is also cell-autonomously required for the same 3 defining features in mature AT1 cells. Intriguingly, Nkx2-1 mutant AT1 cells activate gastrointestinal (GI) genes and form dense microvilli-like structures apically. Single-cell RNA-seq supports a linear transformation of Nkx2-1 mutant AT1 cells toward a GI fate. Whole lung ChIP-seq shows NKX2-1 binding to 68% of genes that are down-regulated upon Nkx2-1 deletion, including 93% of known AT1 genes, but near-background binding to up-regulated genes. Our results place NKX2-1 at the top of the AT1 cell transcriptional hierarchy and demonstrate remarkable plasticity of an otherwise terminally differentiated cell type.
Collapse
|
10
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Mehta A, Cordero J, Dobersch S, Romero-Olmedo AJ, Savai R, Bodner J, Chao CM, Fink L, Guzmán-Díaz E, Singh I, Dobreva G, Rapp UR, Günther S, Ilinskaya ON, Bellusci S, Dammann RH, Braun T, Seeger W, Gattenlöhner S, Tresch A, Günther A, Barreto G. Non-invasive lung cancer diagnosis by detection of GATA6 and NKX2-1 isoforms in exhaled breath condensate. EMBO Mol Med 2016; 8:1380-1389. [PMID: 27821429 PMCID: PMC5167131 DOI: 10.15252/emmm.201606382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer‐related deaths worldwide. Early LC diagnosis is crucial to reduce the high case fatality rate of this disease. In this case–control study, we developed an accurate LC diagnosis test using retrospectively collected formalin‐fixed paraffin‐embedded (FFPE) human lung tissues and prospectively collected exhaled breath condensates (EBCs). Following international guidelines for diagnostic methods with clinical application, reproducible standard operating procedures (SOP) were established for every step comprising our LC diagnosis method. We analyzed the expression of distinct mRNAs expressed from GATA6 and NKX2‐1, key regulators of lung development. The Em/Ad expression ratios of GATA6 and NKX2‐1 detected in EBCs were combined using linear kernel support vector machines (SVM) into the LC score, which can be used for LC detection. LC score‐based diagnosis achieved a high performance in an independent validation cohort. We propose our method as a non‐invasive, accurate, and low‐price option to complement the success of computed tomography imaging (CT) and chest X‐ray (CXR) for LC diagnosis.
Collapse
Affiliation(s)
- Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Julio Cordero
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephanie Dobersch
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Addi J Romero-Olmedo
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Facultad de Ciencias Químicas, Universidad Autonoma "Benito Juarez" de Oaxaca, Oaxaca, Mexico
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Johannes Bodner
- Section Thoracic Surgery, Justus Liebig University, Giessen, Germany
| | - Cho-Ming Chao
- Chair for Lung Matrix Remodeling, Excellence Cluster Cardio Pulmonary System, Justus Liebig University, Giessen, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | | | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gergana Dobreva
- Emmy Noether Research Group Origin of Cardiac Cell Lineages, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulf R Rapp
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Saverio Bellusci
- Chair for Lung Matrix Remodeling, Excellence Cluster Cardio Pulmonary System, Justus Liebig University, Giessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | | | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | | | - Achim Tresch
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,University of Cologne, Cologne, Germany
| | - Andreas Günther
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Justus Liebig University, Giessen, Germany.,Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| |
Collapse
|
12
|
Marten E, Nielsen HC, Dammann CEL. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells. J Cell Commun Signal 2015. [PMID: 26198867 DOI: 10.1007/s12079-015-0299-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation.
Collapse
Affiliation(s)
- Elger Marten
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.,Hannover Medical School, Hannover, 30625, Germany
| | - Heber C Nielsen
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.,Sackler School for Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Christiane E L Dammann
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA. .,Hannover Medical School, Hannover, 30625, Germany. .,Sackler School for Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Sakaeda M, Sato H, Ishii J, Miyata C, Kamma H, Shishido-Hara Y, Shimoyamada H, Fujiwara M, Endo T, Tanaka R, Kondo H, Goya T, Aoki I, Yazawa T. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. J Transl Med 2013; 93:408-21. [PMID: 23358112 DOI: 10.1038/labinvest.2013.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thyroid transcription factor 1 (TTF1) plays crucial roles in thyroid, lung, and developing brain morphogenesis. Because TTF1-expressing neoplasms are generated from organs and tissues that normally express TTF1, such as the thyroid follicular epithelium and peripheral lung airway epithelium, TTF1 is widely used as a cell lineage-specific and diagnostic marker for thyroid carcinomas and for lung adenocarcinomas with terminal respiratory unit (TRU) differentiation. However, among lung neuroendocrine tumors, small-cell carcinomas (small-cell lung cancers (SCLCs)), most of which are generated from the central airway, also frequently express TTF1 at high levels. To clarify how SCLCs express TTF1, we investigated the molecular mechanisms of its expression using cultivated lung cancer cells and focusing upon neural cell-specific transcription factors. Both SCLC cells and lung adenocarcinoma cells predominantly expressed isoform 2 of TTF1, and TTF1 promoter assays in SCLC cells revealed that the crucial region for activation of the promoter, which is adjacent to the transcription start site of TTF1 isoform 2, has potent FOX-, LHX-, and BRN2-binding sites. Transfection experiments using expression vectors for FOXA1, FOXA2, LHX2, LHX6, and BRN2 showed that BRN2 substantially upregulated TTF1 expression, whereas FOXA1/2 weakly upregulated TTF1 expression. BRN2 and FOXA1/2 binding to the TTF1 promoter was confirmed through chromatin immunoprecipitation experiments, and TTF1 expression in SCLC cells was considerably downregulated after BRN2 knockdown. Furthermore, the TTF1 promoter in SCLC cells was scarcely methylated, and immunohistochemical examinations using a series of primary lung tumors indicated that TTF1 and BRN2 were coexpressed only in SCLC cells. These findings suggest that TTF1 expression in SCLC is a cell lineage-specific phenomenon that involves the developing neural cell-specific homeoprotein BRN2.
Collapse
Affiliation(s)
- Masashi Sakaeda
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang L, Lin M, Ruan WJ, Dong LL, Chen EG, Wu XH, Ying KJ. Nkx2-1: a novel tumor biomarker of lung cancer. J Zhejiang Univ Sci B 2012; 13:855-66. [PMID: 23125078 PMCID: PMC3494024 DOI: 10.1631/jzus.b1100382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/30/2012] [Indexed: 12/13/2022]
Abstract
Nkx2-1 (Nkx homeobox-1 gene), also known as TTF-1 (thyroid transcription factor-1), is a tissue-specific transcription factor of the thyroid, lung, and ventral forebrain. While it has been shown to play a critical role in lung development and lung cancer differentiation and morphogenesis, molecular mechanisms mediating Nkx2-1 cell- and tissue-specific expression in normal and cancerous lungs have yet to be fully elucidated. The recent identification of prognostic biomarkers in lung cancer, particularly in lung adenocarcinoma (ADC), and the different reactivity of patients to chemotherapeutic drugs have opened new avenues for evaluating patient survival and the development of novel effective therapeutic strategies. The function of Nkx2-1 as a proto-oncogene was recently characterized and the gene is implicated as a contributory factor in lung cancer development. In this review, we summarize the role of this transcription factor in the development, diagnosis, and prognosis of lung cancer in the hope of providing insights into the utility of Nkx2-1 as a novel biomarker of lung cancer.
Collapse
Affiliation(s)
- Li Yang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- †E-mail:
| | - Min Lin
- Department of Radiology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Wen-jing Ruan
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Liang-liang Dong
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - En-guo Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiao-hong Wu
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ke-jing Ying
- Key Laboratory of Biotherapy of Zhejiang Province, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- †E-mail:
| |
Collapse
|
15
|
Tagne JB, Gupta S, Gower AC, Shen SS, Varma S, Lakshminarayanan M, Cao Y, Spira A, Volkert TL, Ramirez MI. Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors. PLoS One 2012; 7:e29907. [PMID: 22242187 PMCID: PMC3252372 DOI: 10.1371/journal.pone.0029907] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 12/07/2011] [Indexed: 01/10/2023] Open
Abstract
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors.
Collapse
Affiliation(s)
- Jean-Bosco Tagne
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sumeet Gupta
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam C. Gower
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Steven S. Shen
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Saaket Varma
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Yuxia Cao
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas L. Volkert
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Maria I. Ramirez
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Mimae T, Okada M, Hagiyama M, Miyata Y, Tsutani Y, Inoue T, Murakami Y, Ito A. Upregulation of notch2 and six1 is associated with progression of early-stage lung adenocarcinoma and a more aggressive phenotype at advanced stages. Clin Cancer Res 2011; 18:945-55. [PMID: 22190591 DOI: 10.1158/1078-0432.ccr-11-1946] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung adenocarcinoma often manifests as tumors with mainly lepidic growth. The size of invasive foci determines a diagnosis of in situ, minimally invasive adenocarcinoma, or invasive types and suggests that some adenocarcinomas undergo malignant progression in that order. This study investigates how transcriptional aberrations in adenocarcinoma cells at the early stage define the clinical phenotypes of adenocarcinoma tumors at the advanced stage. EXPERIMENTAL DESIGN We comprehensively searched for differentially expressed genes between preinvasive and invasive cancer cells in one minimally invasive adenocarcinoma using laser capture microdissection and DNA microarrays. We screened expression of candidate genes in 11 minimally invasive adenocarcinomas by reverse transcriptase PCR and examined their involvement in preinvasive-to-invasive progression by transfection studies. We then immunohistochemically investigated the presence of candidate molecules in 64 samples of advanced adenocarcinoma and statistically analyzed the findings, together with clinicopathologic variables. RESULTS The transcription factors Notch2 and Six1 were upregulated in invasive cancer cells in all 11 minimally invasive adenocarcinomas. Exogenous Notch2 transactivated Six1 followed by Smad3, Smad4, and vimentin, and enlarged the nuclei of NCI-H441 lung epithelial cells. Immunochemical staining for the transcription factors was double positive in the invasive, but not in the lepidic growth component of a third of advanced Ads, and the disease-free survival rates were lower in such tumors. CONCLUSIONS Paired upregulation of Notch2 and Six1 is a transcriptional aberration that contributes to preinvasive-to-invasive adenocarcinoma progression by inducing epithelial-mesenchymal transition and nuclear atypia. This aberration persisted in a considerable subset of advanced adenocarcinoma and conferred a more malignant phenotype on the subset.
Collapse
Affiliation(s)
- Takahiro Mimae
- Surgical Oncology, Division of Genome Radiobiology and Medicine, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Benign hereditary chorea (BHC) is a hyperkinetic movement disorder that historically has been characterized as a nonprogressive, dominantly inherited, childhood-onset chorea with normal intelligence. However, in some cases, atypical features were described such that controversy arose regarding whether BHC was a single syndrome. In 2002, a candidate gene, thyroid transcription factor (TITF-1), was identified to cause at least some cases of BHC. Since that time, the classical phenotype has expanded further to include "brain-thyroid-lung syndrome," which, in addition to the neurological symptoms, also manifests variable degrees of thyroid and lung abnormalities. Pathophysiologic mechanisms by which symptoms can occur are postulated to include haploinsufficiency (loss of function) and/or dominant negative effect on wild-type protein. However, genotype-phenotype correlations are complex and there is no clear relationship between mutation size, location or type of mutation, and severity of phenotype. Gross and microscopic pathology has been unremarkable, though immunohistochemistry suggests that BHC may manifest as a result of a reduced complement of migratory interneurons to the striatum and cortex. This chapter reviews the historical literature and current understanding regarding this familial, developmental disorder.
Collapse
Affiliation(s)
- Galit Kleiner-Fisman
- Morton and Gloria Shulman Movement Disorders Center, Toronto Western Hospital and Baycrest Geriatric Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Takahashi Y, Izumi Y, Kohno M, Kimura T, Kawamura M, Okada Y, Nomori H, Ikeda E. Thyroid Transcription Factor-1 Influences the Early Phase of Compensatory Lung Growth in Adult Mice. Am J Respir Crit Care Med 2010; 181:1397-406. [DOI: 10.1164/rccm.200908-1265oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Saito RA, Watabe T, Horiguchi K, Kohyama T, Saitoh M, Nagase T, Miyazono K. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res 2009; 69:2783-91. [PMID: 19293183 DOI: 10.1158/0008-5472.can-08-3490] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid transcription factor-1 (TTF-1) is expressed in lung cancer, but its functional roles remain unexplored. TTF-1 gene amplification has been discovered in a part of lung adenocarcinomas, and its action as a lineage-specific oncogene is highlighted. Epithelial-to-mesenchymal transition (EMT) is a crucial event for cancer cells to acquire invasive and metastatic phenotypes and can be elicited by transforming growth factor-beta (TGF-beta). Mesenchymal-to-epithelial transition (MET) is the inverse process of EMT; however, signals that induce MET are largely unknown. Here, we report a novel functional aspect of TTF-1 that inhibits TGF-beta-mediated EMT and restores epithelial phenotype in lung adenocarcinoma cells. This effect was accompanied by down-regulation of TGF-beta target genes, including presumed regulators of EMT, such as Snail and Slug. Moreover, silencing of TTF-1 enhanced TGF-beta-mediated EMT. Thus, TTF-1 can exert a tumor-suppressive effect with abrogation of cellular response to TGF-beta and attenuated invasive capacity. We further revealed that TTF-1 down-regulates TGF-beta2 production in A549 cells and that TGF-beta conversely decreases endogenous TTF-1 expression, suggesting that enhancement of autocrine TGF-beta signaling accelerates the decrease of TTF-1 expression and vice versa. These findings delineate potential links between TTF-1 and TGF-beta signaling in lung cancer progression through regulation of EMT and MET and suggest that modulation of TTF-1 expression can be a novel therapeutic strategy for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Roy-Akira Saito
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 2009; 116:27-35. [PMID: 19037882 DOI: 10.1042/cs20080068] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTF-1 [thyroid transcription factor-1; also known as Nkx2.1, T/EBP (thyroid-specific-enhancer-binding protein) or TITF1] is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the thyroid, lung and ventral forebrain. TTF-1 controls the expression of select genes in the thyroid, lung and the central nervous system. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defence. Human TTF-1 is encoded by a single gene located on chromosome 14 and is organized into two/three exons and one/two introns. Multiple transcription start sites and alternative splicing produce mRNAs with heterogeneity at the 5' end. The 3' end of the TTF-1 mRNA is characterized by a rather long untranslated region. The amino acid sequences of TTF-1 from human, rat, mouse and other species are very similar, indicating a high degree of sequence conservation. TTF-1 promoter activity is maintained by the combinatorial or co-operative actions of HNF-3 [hepatocyte nuclear factor-3; also known as FOXA (forkhead box A)], Sp (specificity protein) 1, Sp3, GATA-6 and HOXB3 (homeobox B3) transcription factors. There is limited information on the regulation of TTF-1 gene expression by hormones, cytokines and other biological agents. Glucocorticoids, cAMP and TGF-beta (transforming growth factor-beta) have stimulatory effects on TTF-1 expression, whereas TNF-alpha (tumour necrosis factor-alpha) and ceramide have inhibitory effects on TTF-1 DNA-binding activity in lung cells. Haplo-insufficiency of TTF-1 in humans causes hypothyroidism, respiratory dysfunction and recurring pulmonary infections, underlining the importance of optimal TTF-1 levels for the maintenance of thyroid and lung function. Recent studies have implicated TTF-1 as a lineage-specific proto-oncogene for lung cancer.
Collapse
|
21
|
Du T, Xu Q, Ocbina PJ, Anderson SA. NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 2008; 135:1559-67. [PMID: 18339674 DOI: 10.1242/dev.015123] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the ventral telencephalon, the medial ganglionic eminence (MGE) is a major source of cortical interneurons. Expression of the transcription factor NKX2.1 in the MGE is required for the specification of two major subgroups of cortical interneurons - those that express parvalbumin (PV) or somatostatin (SST) - but direct targets of NKX2.1 remain to be established. We find that electroporation of Nkx2.1 cDNA into the ventral telencephalon of slice cultures from Nkx2.1-/- mouse embryos, followed by transplantation into neonatal cortex to permit postnatal analysis of their fate, rescues the loss of PV- and SST-expressing cells. The LIM-homeobox gene Lhx6 is induced by this rescue experiment, and gain- and loss-of-function studies suggest that Lhx6 is necessary and sufficient to rescue these and other interneuron phenotypes in cells transplanted from Nkx2.1-/- slices. Finally, NKX2.1 protein binds a highly conserved sequence in the Lhx6 promoter, and this sequence appears to mediate the direct activation of Lhx6 by NKX2.1. The slice transfection and transplantation methods employed here are beginning to uncover embryonic mechanisms for specifying neuronal fates that only become definable postnatally.
Collapse
Affiliation(s)
- Tonggong Du
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
22
|
Kleiner-Fisman G, Lang AE. Benign hereditary chorea revisited: a journey to understanding. Mov Disord 2008; 22:2297-305; quiz 2452. [PMID: 17702033 DOI: 10.1002/mds.21644] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Benign hereditary chorea (BHC) has been characterized as an autosomal dominant disorder manifesting nonprogressive chorea without dementia. However, there has been controversy regarding its existence. Diagnosis has been based solely on clinical criteria with many patients and families demonstrating "atypical" features and until recently, no diagnostic test was available for confirmation. Since 2002, mutations in the thyroid transcription factor (TITF-1) gene have been identified as resulting in some cases of BHC. Additionally, the clinical spectrum has expanded to include abnormalities in thyroid and lung with the putative mechanism of disease resulting from gene haploinsufficiency and reduced protein product. This review summarizes both a historical perspective and our current understanding of BHC.
Collapse
Affiliation(s)
- Galit Kleiner-Fisman
- Morton and Gloria Shulman Movement Disorders Center, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
23
|
Zhou B, Zhong Q, Minoo P, Li C, Ann DK, Frenkel B, Morrisey EE, Crandall ED, Borok Z. Foxp2 inhibits Nkx2.1-mediated transcription of SP-C via interactions with the Nkx2.1 homeodomain. Am J Respir Cell Mol Biol 2008; 38:750-8. [PMID: 18239190 DOI: 10.1165/rcmb.2007-0350oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor (TF) Foxp2 has been shown to partially repress surfactant protein C (SP-C) transcription, presumably through interaction of an independent repressor domain with a conserved Foxp2 consensus site in the SP-C promoter. We explored the role of interactions between Foxp2 and the homeodomain TF Nkx2.1 that may contribute to the marked reduction in SP-C expression accompanying phenotypic transition of alveolar epithelial type II (AT2) to type I (AT1) cells. Foxp2 dose-dependently inhibited Nkx2.1-mediated activation of SP-C in MLE-15 cells. While electrophoretic mobility shift assays and chromatin immunoprecipitations revealed an interaction between Foxp2 and the conserved consensus motif in the SP-C promoter, Nkx2.1-mediated activation of the 318-bp proximal SP-C promoter (which lacks a Foxp2 consensus) was attenuated by increasing amounts of Foxp2. Co-immunoprecipitation and mammalian two-hybrid assays confirmed a physical interaction between Nkx2.1 and Foxp2 mediated through the Nkx2.1 homeodomain. Formation of an Nkx2.1 complex with an SP-C oligonucleotide was inhibited dose-dependently by recombinant Foxp2. These findings demonstrate that direct interaction between Foxp2 and Nkx2.1 inhibits Nkx2.1 DNA-binding and transcriptional activity and suggest a mechanism for down-regulation of SP-C (and probably other AT2 cell genes) during transition of AT2 cells to an AT1 cell phenotype.
Collapse
Affiliation(s)
- Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, 2020 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garcia-Barceló MM, Lau DK, Ngan ES, Leon TY, Liu T, So M, Miao X, Lui VC, Wong KK, Ganster RW, Cass DT, Croaker GDH, Tam PK. Evaluation of the NK2 homeobox 1 gene (NKX2-1) as a Hirschsprung's disease locus. Ann Hum Genet 2007; 72:170-7. [PMID: 18081917 DOI: 10.1111/j.1469-1809.2007.00403.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hirschsprung's disease (HSCR, colonic aganglionosis) is an oligogenic entity that usually requires mutations in RET and other interacting loci. Decreased levels of RET expression may lead to the manifestation of HSCR. We previously showed that RET transcription was decreased due to alteration of the NKX2-1 binding site by two HSCR-associated RET promoter single nucleotide polymorphisms (SNPs). This prompted us to investigate whether DNA alterations in NKX2-1 could play a role in HSCR by affecting the RET-regulatory properties of the NKX2-1 protein. Our initial study on 86 Chinese HSCR patients revealed a Gly322Ser amino acid substitution in the NKX2-1 protein. In this study, we have examined 102 additional Chinese and 70 Caucasian patients and 194 Chinese and 60 Caucasian unselected, unrelated, subjects as controls. The relevance of the DNA changes detected in NKX2-1 by direct sequencing were evaluated using bioinformatics, reporter and binding-assays, mouse neurosphere culture, immunohistochemistry and immunofluorescence techniques. Met3Leu and Pro48Pro were identified in 2 Caucasian and 1 Chinese patients respectively. In vitro analysis showed that Met3Leu reduced the activity of the RET promoter by 100% in the presence of the wild-type or HSCR-associated RET promoter SNP alleles. The apparent binding affinity of the NKX2-1 mutated protein was not decreased. The Met3Leu mutation may affect the interaction of NKX2-1 with its protein partners. The absence of NKX2-1 expression in mouse but not in human gut suggests that the role of NKX2-1 in gut development differs between the two species. NKX2-1 mutations could contribute to HSCR by affecting RET expression through defective interactions with other transcription factors.
Collapse
Affiliation(s)
- M-M Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Garcia-Barceló MM, Lau DKC, Ngan ESW, Leon TYY, Liu TT, So MT, Miao XP, Lui VCH, Wong KKY, Ganster RW, Cass DT, Croaker GDH, Tam PKH. Evaluation of the thyroid transcription factor-1 gene (TITF1) as a Hirschsprung's disease locus. Ann Hum Genet 2007; 71:746-54. [PMID: 17640327 DOI: 10.1111/j.1469-1809.2007.00384.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hirschsprung's disease (HSCR, colonic aganglionosis) is an oligogenic entity that usually requires mutations in RET and other interacting loci. Decreased levels of RET expression may lead to the manifestation of HSCR. We previously showed that RET transcription was decreased due to alteration of the TITF1 binding site by two HSCR-associated RET promoter single nucleotide polymorphisms (SNPs). This prompted us to investigate whether DNA alterations in TITF1 could play a role in HSCR by affecting the RET-regulatory properties of the TITF1 protein. Our initial study on 86 Chinese HSCR patients revealed a Gly322Ser amino acid substitution in the TITF1protein. In this study we have examined an additional 102 Chinese and 70 Caucasian patients, and 194 Chinese and 60 Caucasian unselected, unrelated, subjects as controls. The relevance of the DNA changes detected in TITF1 by direct sequencing were evaluated using bioinformatics, reporter and binding-assays, mouse neurosphere culture, immunohistochemistry and immunofluorescence techniques. Met3Leu and Pro48Pro were identified in 2 Caucasian patients and 1 Chinese patient, respectively. In vitro analysis showed that Met3Leu reduced the activity of the RET promoter by 100% in the presence of the wild-type or HSCR-associated RET promoter SNP alleles. The apparent binding affinity of the TITF1 mutated protein was not decreased. The Met3Leu mutation may affect the interaction of TITF1 with its protein partners. The absence of Titf1 expression in mouse gut but not in human gut suggests that the role of TITF1 in gut development differs between the two species. TITF1 mutations could contribute to HSCR by affecting RET expression through defective interactions with other transcription factors.
Collapse
Affiliation(s)
- Maria-Mercè Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kolla V, Gonzales LW, Gonzales J, Wang P, Angampalli S, Feinstein SI, Ballard PL. Thyroid transcription factor in differentiating type II cells: regulation, isoforms, and target genes. Am J Respir Cell Mol Biol 2007; 36:213-25. [PMID: 16960125 PMCID: PMC1899316 DOI: 10.1165/rcmb.2006-0207oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/18/2006] [Indexed: 11/24/2022] Open
Abstract
Thyroid transcription factor-1 (TTF-1, product of the Nkx2.1 gene) is essential for branching morphogenesis of the lung and enhances expression of surfactant proteins by alveolar type II cells. We investigated expression of two TTF-1 mRNA transcripts, generated by alternative start sites and coding for 42- and 46-kD protein isoforms in the mouse, during hormone-induced differentiation of human fetal lung type II cells in culture. Transcript for 42-kD TTF-1 was 20-fold more abundant than TTF-1(46) mRNA by RT-PCR. Only 42-kD protein was detected in lung cells, and its content increased during in vivo development and in response to in vitro glucocorticoid plus cAMP treatment. To examine TTF-1 target proteins, recombinant, phosphorylated TTF-1(42) was expressed in nuclei of cells by adenovirus transduction. By microarray analysis, 14 genes were comparably induced by recombinant TTF-1 (rTTF-1) and hormone treatment, and 9 additional hormone-responsive genes, including surfactant proteins-A/B/C, were partially induced by rTTF-1. The most highly (approximately 10-fold) TTF-1-induced genes were DC-LAMP (LAMP3) and CEACAM6 with induction confirmed by Western analysis and immunostaining. Treatment of cells with hormones plus small inhibitory RNA directed toward TTF-1 reduced TTF-1 content by approximately 50% and inhibited hormone induction of the 23 genes induced by rTTF-1. In addition, knockdown of TTF-1 inhibited 72 of 274 other genes induced by hormones. We conclude that 42-kD TTF-1 is required for induction of a subset of regulated genes during type II cell differentiation.
Collapse
Affiliation(s)
- Venkatadri Kolla
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Costa MDC, Costa C, Silva AP, Evangelista P, Santos L, Ferro A, Sequeiros J, Maciel P. Nonsense mutation in TITF1 in a Portuguese family with benign hereditary chorea. Neurogenetics 2005; 6:209-15. [PMID: 16220345 DOI: 10.1007/s10048-005-0013-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/04/2005] [Indexed: 11/26/2022]
Abstract
Benign hereditary chorea (BHC) is an autosomaldominant disorder of early onset characterized by a slowly progressing or nonprogressing chorea, without cognitive decline or other progressive neurologic dysfunction, but also by the existence of heterogeneity of the clinical presentation within and among families. The genetic cause of BHC is the presence of either point mutations or deletions in the thyroid transcription factor 1 gene (TITF1). We studied a Portuguese BHC family composed of two probands: a mother and her only son. The patients were identified in a neurology out-patient clinic showing mainly involuntary choreiform movements since childhood, myoclonic jerks, falls, and dysarthria. We performed magnetic resonance imaging (MRI), electroencephalogram (EEG), nerve conduction studies, thyroid ultrasound scan, biochemical thyroid tests, and electrocardiogram (ECG). We excluded Huntington disease by appropriate genetic testing and sequenced the entire TITF1 gene for both patients. The patients showed MRI alterations: (1) in the mother, abnormal hyperintense pallida and cortical cerebral/cerebellar atrophy; and (2) in the son, small hyperintense foci in the cerebellum and subtle enlargement of the fourth ventricle. Sequence analysis of the TITF1 gene in these patients revealed the presence of a heterozygous C > T substitution at nucleotide 745, leading to the replacement of a glutamine at position 249 for a premature stop codon. A previously undescribed nonsense mutation in the TITF1 gene was identified as being the genetic cause of BHC in this family.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Garcia-Barcelo M, Ganster RW, Lui VCH, Leon TYY, So MT, Lau AMF, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tam PKH. TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung's disease. Hum Mol Genet 2004; 14:191-204. [PMID: 15548547 DOI: 10.1093/hmg/ddi015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) of the coding regions of receptor tyrosine kinase gene (RET) are associated with Hirschsprung's disease (HSCR, aganglionic megacolon). These SNPs, individually or combined, may act as a low penetrance susceptibility locus and/or be in linkage disequilibrium (LD) with another susceptibility locus located in RET regulatory regions. Because two RET promoter SNPs have been found associated with HSCR, in LD with HSCR-associated RET coding region haplotypes, their implication in the transcriptional regulation of RET is of major interest. Analysis of 172 sporadic HSCR patients also revealed the presence of HSCR-associated RET promoter SNPs in LD with the main coding region RET haplotype observed in Chinese patients. By using a weighted logistic regression approach, we determined that of all SNPs tested in our study, the promoter SNPs are the most correlated to the disease. Functional analysis of the RET promoter SNPs in the context of additional 5' regulatory regions demonstrated that the HSCR-associated alleles decrease RET transcription. These SNPs overlap a TTF-1 binding site and TTF-1-activated RET transcription is also decreased by the HSCR-associated SNPs. Moreover, we identified an HSCR patient with a Gly322Ser TTF-1 mutation that compromises activation of transcription from HSCR-associated RET promoter haplotypes. Interestingly, we show that the pattern of RET and TTF-1 expression is coincident in developing human gut. We also present a detailed profile of the RET gene in our population, which provides an insight into the higher incidence of the disease in China.
Collapse
|
29
|
Pan Q, Li C, Xiao J, Kimura S, Rubenstein J, Puelles L, Minoo P. In vivo characterization of the Nkx2.1 promoter/enhancer elements in transgenic mice. Gene 2004; 331:73-82. [PMID: 15094193 DOI: 10.1016/j.gene.2004.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/15/2004] [Accepted: 01/26/2004] [Indexed: 11/21/2022]
Abstract
Nkx2.1 encodes a homeodomain transcription factor whose expression is restricted to the thyroid, lung and specific regions of the forebrain. NKX2.1 plays a key role in the development of the latter organs. In lung epithelial cells, two regions of promoter activity, designated as proximal and distal promoters, map to DNA elements located upstream of exons 1 and 2 (within intron 1). That both promoters are active in vivo has been demonstrated by the presence of multiple Nkx2.1 mRNA species with distinct and appropriate exonic composition. The mechanisms of Nkx2.1 tissue selective gene expression remain entirely unknown. We have examined the potential of three overlapping DNA fragments, representing a total of approximately 4 kb of potential regulatory DNA from the baboon Nkx2.1 5' flanking region to direct expression of LacZ in transgenic mice during embryonic development. The three constructs include sequences in proximal, distal and both promoters separately. All three fragments directed LacZ expression to the brain of transgenic E15 and E18 mouse embryos. In addition to a number of other sites, all three constructs were active in subgroups of cells localized in the hypothalamus, a well-established site of endogenous Nkx2.1 gene expression. Two of the fragments conferred tracheal epithelial-specific LacZ gene expression, but parenchymal lung expression was not observed. None of the three fragments had activity in the thyroid. These data demonstrate the complexity of the Nkx2.1 tissue specific gene regulation and suggest that cis-active elements required for tracheal versus lung morphogenesis may be distinct. The same applies to the brain, which provides the most permissive environment for recognition of Nkx2.1 tissue specific cis-active elements.
Collapse
Affiliation(s)
- Qiuping Pan
- Department of Pediatrics, Women's and Children's Hospital, USC School of Medicine, LAC+USC Medical Center, 1801 E. Marengo Street, Room 1G1, Los Angeles, CA 9003, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Doyle DA, Gonzalez I, Thomas B, Scavina M. Autosomal dominant transmission of congenital hypothyroidism, neonatal respiratory distress, and ataxia caused by a mutation of NKX2-1. J Pediatr 2004; 145:190-3. [PMID: 15289765 DOI: 10.1016/j.jpeds.2004.04.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To study the NKX2-1 gene in two half-siblings with elevated thyroid-stimulating hormone (TSH) on state screen, prolonged neonatal respiratory distress despite term gestations, and persistent ataxia, dysarthria, and developmental delay. STUDY DESIGN We amplified and sequenced DNA samples from blood or buccal swab for subjects and their unaffected siblings. RESULTS The same mutation that prevents splicing together of exons 2 and 3 of the NKX2-1 gene was present in the affected siblings, their mother, and maternal grandmother but not in their unaffected siblings. The mutation was present in the heterozygous form, thus explaining the disease phenotype. CONCLUSIONS Autosomal dominant transmission of mutations of NKX2-1 may cause congenital hypothyroidism, neonatal respiratory distress at term, and persistent neurologic findings such as ataxia, choreoathetosis, and dysarthria in families with affected subjects in multiple generations.
Collapse
Affiliation(s)
- Daniel A Doyle
- Division of Endocrinology, Department of Research, Nemours Children's Clinic-Wilmington, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19899, USA.
| | | | | | | |
Collapse
|
31
|
Bachurski CJ, Yang GH, Currier TA, Gronostajski RM, Hong D. Nuclear factor I/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. Mol Cell Biol 2004; 23:9014-24. [PMID: 14645514 PMCID: PMC309647 DOI: 10.1128/mcb.23.24.9014-9024.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surfactant protein C (SP-C; Sftpc) gene expression is restricted to pulmonary type II epithelial cells. The proximal SP-C promoter region contains critical binding sites for nuclear factor I (NFI) and thyroid transcription factor 1 (TTF-1; also called Nkx2.1). To test the hypothesis that NFI isoforms interact with TTF-1 to differentially regulate SP-C transcription, we performed transient transfection assays in JEG-3 cells, a choriocarcinoma cell line with negligible endogenous NFI or TTF-1 activity. Cotransfection of NFI family members with TTF-1 induced synergistic activation of the SP-C promoter that was further enhanced by p300. TTF-1 directly interacts with the conserved DNA binding and dimerization domain of all NFI family members in coimmunoprecipitation and mammalian two-hybrid experiments. To determine whether SP-C expression is regulated by NFI in vivo, a chimeric fusion protein containing the DNA binding and dimerization domain of NFI-A and the Drosophila engrailed transcriptional repression domain (NFIen) was conditionally expressed in mice under control of a doxycycline-inducible transgene. Induction of NFIen in a subset of type II cells inhibited SP-C gene expression without affecting expression of TTF-1 in doxycycline-treated double-transgenic mice. Taken together, these findings support the hypothesis that NFI family members interact with TTF-1 to regulate type II cell function.
Collapse
Affiliation(s)
- Cindy J Bachurski
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | |
Collapse
|
32
|
Giordano TJ, Shedden KA, Schwartz DR, Kuick R, Taylor JMG, Lee N, Misek DE, Greenson JK, Kardia SLR, Beer DG, Rennert G, Cho KR, Gruber SB, Fearon ER, Hanash S. Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1231-8. [PMID: 11583950 PMCID: PMC1850519 DOI: 10.1016/s0002-9440(10)62509-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molecular classification of tumors based on their gene expression profiles promises to significantly refine diagnosis and management of cancer patients. The establishment of organ-specific gene expression patterns represents a crucial first step in the clinical application of the molecular approach. Here, we report on the gene expression profiles of 154 primary adenocarcinomas of the lung, colon, and ovary. Using high-density oligonucleotide arrays with 7129 gene probe sets, comprehensive gene expression profiles of 57 lung, 51 colon, and 46 ovary adenocarcinomas were generated and subjected to principle component analysis and to a cross-validated prediction analysis using nearest neighbor classification. These statistical analyses resulted in the classification of 152 of 154 of the adenocarcinomas in an organ-specific manner and identified genes expressed in a putative tissue-specific manner for each tumor type. Furthermore, two tumors were identified, one in the colon group and another in the ovarian group, that did not conform to their respective organ-specific cohorts. Investigation of these outlier tumors by immunohistochemical profiling revealed the ovarian tumor was consistent with a metastatic adenocarcinoma of colonic origin and the colonic tumor was a pleomorphic mesenchymal tumor, probably a leiomyosarcoma, rather than an epithelial tumor. Our results demonstrate the ability of gene expression profiles to classify tumors and suggest that determination of organ-specific gene expression profiles will play a significant role in a wide variety of clinical settings, including molecular diagnosis and classification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David G. Beer
- The University of Michigan, Ann Arbor, Michigan; and the National Cancer Control Center,††
| | - Gad Rennert
- Clalit Health Services and Technion University, Haifa University, Haifa, Israel
| | | | | | | | | |
Collapse
|