1
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
2
|
Guo H, Peng X, Dong X, Li J, Cheng C, Wei Q. Promoting Stem Cell Mechanosensing and Osteogenesis by Hybrid Soft Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47880-47892. [PMID: 37788009 DOI: 10.1021/acsami.3c07999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone regenerative biomaterials are essential in treating bone defects as they serve as extracellular matrix (ECM) mimics, creating a favorable environment for cell attachment, proliferation, and differentiation. However, the currently used bone regenerative biomaterials mostly exhibit high stiffness, which may lead to difficulties in degradation and thus increase the risk of foreign body ingestion. In this study, we prepared soft fibrous scaffolds modified with Zn-MOF-74 nanoparticles via electrostatic spinning. The soft fibers (only 1 kPa) permit remodeling under cellular adhesive force, optimizing the mechanical cues in the microenvironment to support cell adhesion and mechanosensing. In addition, the incorporation of Zn-MOF-74 nanoparticles enables the stable and sustained release of zinc ions, promoting stem cell mechanotransduction and osteogenic differentiation. Therefore, the hybrid soft fibers facilitate the regeneration of new bone in the rat femoral defect model, which provides a promising approach for regenerative medicine.
Collapse
Affiliation(s)
- Hui Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Xiangyu Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Durdu S, Cihan G, Yalcin E, Cavusoglu K, Altinkok A, Sagcan H, Yurtsever İ, Usta M. Surface characterization, electrochemical properties and in vitro biological properties of Zn-deposited TiO 2 nanotube surfaces. Sci Rep 2023; 13:11423. [PMID: 37452093 PMCID: PMC10349054 DOI: 10.1038/s41598-023-38733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
In this work, to improve antibacterial, biocompatible and bioactive properties of commercial pure titanium (cp-Ti) for implant applications, the Zn-deposited nanotube surfaces were fabricated on cp-Ti by using combined anodic oxidation (AO) and physical vapor deposition (PVD-TE) methods. Homogenous elemental distributions were observed through all surfaces. Moreover, Zn-deposited surfaces exhibited hydrophobic character while bare Ti surfaces were hydrophilic. Due to the biodegradable behavior of Zn on the nanotube surface, Zn-deposited nanotube surfaces showed higher corrosion current density than bare cp-Ti surface in SBF conditions as expected. In vitro biological properties such as cell viability, ALP activity, protein adsorption, hemolytic activity and antibacterial activity for Gram-positive and Gram-negative bacteria of all surfaces were investigated in detail. Cell viability, ALP activity and antibacterial properties of Zn-deposited nanotube surfaces were significantly improved with respect to bare cp-Ti. Moreover, hemolytic activity and protein adsorption of Zn-deposited nanotube surfaces were decreased. According to these results; a bioactive, biocompatible and antibacterial Zn-deposited nanotube surfaces produced on cp-Ti by using combined AO and PVD techniques can have potential for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Salih Durdu
- Industrial Engineering, Faculty of Engineering, Giresun University, Merkez, 28200, Giresun, Turkey.
- Mechanical Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Gizem Cihan
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | - Emine Yalcin
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | | | - Atilgan Altinkok
- Turkish Naval Academy, National Defence University, 34940, Istanbul, Turkey
| | - Hasan Sagcan
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
| | - İlknur Yurtsever
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
- Pharmacology and Toxicology Department, Boonshoft School of Medicine Ohio, Wright State University, Dayton, USA
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
4
|
Vitamin D Status in Critically Ill Patients with SIRS and Its Relationship with Circulating Zn and Related Parameters during ICU Stay. Nutrients 2022; 14:nu14173580. [PMID: 36079837 PMCID: PMC9494352 DOI: 10.3390/nu14173580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Critically ill patients are exposed to different stressors which may generate Systemic Inflammatory Response Syndrome (SIRS). This situation hinders the assessment of micronutrients status, such as vitamin D or Zinc (Zn), potentially affecting patients’ treatment and recovery. The aim of the present study was to assess the evolution of circulating 25–Hydroxyvitamin D (25–OH–D) levels after seven days of Intensive Care Unit (ICU) stay and the influence on changes in plasma and erythrocyte Zn levels, as well as other parameters related to phosphorus–calcium metabolism. A prospective analytical study was conducted on 65 critically ill patients (42% women) aged 31–77 years with SIRS. Total 25–OH–D levels were measured in plasma samples by liquid chromatography-tandem mass spectrometry, and Zn content was analyzed by flame atomic absorption spectrometry. Both 25–OH–D and 25–OH–D3 levels were directly associated with erythrocyte Zn concentration at follow-up (p = 0.046 and p = 0.011, respectively). A relationship between erythrocyte and plasma Zn was also found at this follow-up point. No such clear associations were found when considering 25–OH–D2. Different disturbances in levels of phosphorus–calcium metabolism parameters were found, suggesting a relationship between the changes of 25–OH–D3 levels and parathormone (p = 0.019) and phosphorus (p = 0.005). The findings of the present study suggest an interaction between vitamin D and Zn, in which the correct status of these micronutrients could be a potentially modifiable factor and a beneficial approach in the recovery of critically ill patients.
Collapse
|
5
|
Braveboy-Wagner J, Sharoni Y, Lelkes PI. Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. Int J Mol Sci 2021; 23:136. [PMID: 35008559 PMCID: PMC8745420 DOI: 10.3390/ijms23010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023] Open
Abstract
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.
Collapse
Affiliation(s)
- Justin Braveboy-Wagner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
6
|
Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, López-González B, Planells E. Effectiveness of eight-week zinc supplementation on vitamin D 3 status and leptin levels in a population of postmenopausal women: a double-blind randomized trial. J Trace Elem Med Biol 2021; 65:126730. [PMID: 33607357 DOI: 10.1016/j.jtemb.2021.126730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The menopausal period is characterized by hormonal imbalance related to the alteration of parameters involved in lipid metabolism. In addition, menopause increases the risk of deficiencies of key vitamins and minerals such as vitamin D and zinc in such women. The present study investigates the influence of zinc supplementation on the status of vitamin D3 and other lipid parameters in postmenopausal women. METHODS Fifty-one healthy postmenopausal women aged 44-76 years from the province of Granada (Spain) were divided into two groups (placebo and zinc) of 25 and 26 women, respectively. The zinc group was supplemented with 50 mg/day of zinc for 8 weeks. Nutrient intake assessment was performed by means of a 24 -h reminder. Zinc was determined by flame atomic absorption spectrophotometry. Vitamin D was analyzed by liquid chromatography - tandem mass spectrometry. Leptin was determined by enzyme immunoassay. RESULTS Zinc supplementation improved the initial vitamin D3 status of the postmenopausal population (p = 0.049). Plasma levels of 25-OH-D3 increased significantly after Zn supplementation in women with lower age at menopause (p = 0.045). Both intake and plasma zinc levels were inversely correlated to serum leptin levels (p = 0.044 and p = 0.033, respectively), being significantly lower in lower age at menopause (p < 0.001). CONCLUSION Zinc supplementation improved vitamin D3 status and was associated to low leptin levels in the postmenopausal women of the study.
Collapse
Affiliation(s)
- Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Jorge Molina-López
- Faculty of Education, Psychology and Sport Sciences, University of Huelva, 21007, Huelva, Spain.
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Yenifer Gamarra-Morales
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Beatriz López-González
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Elena Planells
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| |
Collapse
|
7
|
Wang B, Yang M, Liu L, Yan G, Yan H, Feng J, Li Z, Li D, Sun H, Yang B. Osteogenic potential of Zn 2+-passivated carbon dots for bone regeneration in vivo. Biomater Sci 2020; 7:5414-5423. [PMID: 31633717 DOI: 10.1039/c9bm01181a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon dots are a new kind of nanomaterial which has great potential in biomedical applications. Previously, we have synthesized novel Zn2+-passivated carbon dots (Zn-CDs) which showed good osteogenic activity in vitro. In this study, we will further investigate the osteogenic effects of Zn-CDs in vivo which is essential before their clinical use. Herein, Zn2+-passivated carbon dots (Zn-CDs) are prepared and characterized as previously reported. Then, the optimum dose for inducing osteoblasts was evaluated by MTS assay, intracellular reactive oxygen species (ROS) detection, alkaline phosphatase (ALP) activity test and alizarin red staining in vitro. Finally, a 5 mm diameter calvarial bone defect model was created in rats and Zn-CDs were applied for repairing the critical bone defect. It was shown that zinc gluconate (Zn-G) and Zn-CDs promoted the survival of bone marrow stromal cells (BMSCs) when the zinc ion concentration was 10-4 mol L-1 (Zn-G: 45.6 μg mL-1) and 10-5 mol L-1 (Zn-CDs: 300 μg mL-1) or below respectively. With regard to the osteogenic capability, the ALP activity induced by Zn-CDs was significantly higher than that by Zn-G. Besides, the results of alizarin red staining showed that the area of calcified nodules was increased in a dose-dependent manner in the Zn-CD group. Moreover, there were more calcium nodules in the Zn-CD group than in the Zn-G group at the same concentration of Zn2+ (10-5 mol L-1). Taken together, Zn-CDs achieved the highest osteogenic effect at the concentration of 10-5 mol L-1 without affecting cell proliferation in long-term stimulation. Importantly, the volume of new bone formation in the Zn-CD group (6.66 ± 1.25 mm3) was twice higher than that in the control group (3.33 ± 0.94 mm3) in vivo. Further histological evaluation confirmed the markedly new bone formation at 8 weeks in the Zn-CD group. The in vitro and in vivo experiments revealed that Zn-CDs could be a new predictable nanomaterial with good biocompatibility and fluorescence properties for guiding bone regeneration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oral Biology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dobrzynski M, Kuropka P, Tarnowska M, Styczynska M, Dudek K, Leskow A, Targonska S, Wiglusz RJ. The Protective Effect of α-Tocopherol on the Content of Selected Elements in the Calvaria for Exposed Hens to TCDD in the Early Embryonic Period. Biol Trace Elem Res 2019; 190:517-525. [PMID: 30465169 DOI: 10.1007/s12011-018-1580-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
This paper focuses on negative effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on element content in male chicken calvaria and α-tocopherol (vitamin E) ability to reduce its toxic potential on bone mineralization in offspring. In the experiment carried out once, a solution containing only DMSO, TCDD, TCDD + α-tocopherol, and exclusively α-tocopherol was administrated. Subsequently, on the 5th day after hatching, the mineral composition of the chicken calvaria was evaluated. The results obtained suggest that the use of α-tocopherol contributes to the maintenance of the concentration of calcium, magnesium, and manganese in the chicken calvaria treated with TCDD in the embryonic period. In turn, vitamin E increases the level of zinc. It has been found that α-tocopherol in chicken embryos has a protective effect against disturbance of level of chosen trace elements in the bones of offspring caused by the TCDD.
Collapse
Affiliation(s)
- Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, 50-425, Wroclaw, Poland.
| | - Piotr Kuropka
- Department of Histology and Embriology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wroclaw, Poland
| | - Malgorzata Tarnowska
- Department of Nervous System Diseases, Wroclaw Medical University, Poland Medical University, Bartla 5, 51-618, Wroclaw, Poland
| | - Marzena Styczynska
- Department of Human Nutrition, Wroclaw University of Environmental and Life Science, C.K. Norwida 25, 50-375, Wroclaw, Poland
| | - Krzysztof Dudek
- Faculty of Mechanical Engineering, Technical University of Wroclaw, Lukasiewicza 5, 50-371, Wroclaw, Poland
| | - Anna Leskow
- Department of Nervous System Diseases, Wroclaw Medical University, Poland Medical University, Bartla 5, 51-618, Wroclaw, Poland
| | - Sara Targonska
- Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Okolna 2, 50-422, Wroclaw, Poland
| | - Rafal J Wiglusz
- Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Okolna 2, 50-422, Wroclaw, Poland.
| |
Collapse
|
9
|
Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine. ScientificWorldJournal 2015; 2015:318595. [PMID: 26347061 PMCID: PMC4539504 DOI: 10.1155/2015/318595] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/12/2015] [Indexed: 11/18/2022] Open
Abstract
In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes.
Collapse
|
10
|
Wang H, Zhao S, Xiao W, Cui X, Huang W, Rahaman MN, Zhang C, Wang D. Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Colloids Surf B Biointerfaces 2015; 130:149-56. [DOI: 10.1016/j.colsurfb.2015.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/15/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
11
|
Liu Y, Yan F, Yang WL, Lu XF, Wang WB. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Biol Trace Elem Res 2013; 154:234-43. [PMID: 23775599 DOI: 10.1007/s12011-013-9683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.
Collapse
Affiliation(s)
- Yang Liu
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | | | | | | | | |
Collapse
|
12
|
Zinc supplementation inhibits the increase in osteoclastogenesis and decrease in osteoblastogenesis in streptozotocin-induced diabetic rats. Eur J Pharmacol 2013; 714:41-7. [PMID: 23735664 DOI: 10.1016/j.ejphar.2013.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 01/16/2023]
Abstract
Zinc (Zn) has been shown to stimulate bone formation and inhibit osteoclastic bone resorption and osteoclastogenesis. However, the effects of Zn on bone metabolism in diabetic animals remain to be clarified in vivo. Here, the effects of Zn supplementation on bone metabolism, including osteoclastogenesis and osteoblastogenesis, were investigated using streptozotocine (STZ)-induced diabetic rats. Zn-supplemented water (7.5 mg/L) was given for 1 week to diabetic rats injected with STZ (30 mg/kg body weight) 1 week earlier. The Zn supplement prevented a decrease in the activity and mRNA of alkaline phosphatase (ALP), osteocalcin mRNA, and hydroxyproline and calcium levels, and an increase in the activity and mRNA of tartrate-resistant acid phosphatase (TRAP) and cathepsin K in the proximal tibia of diabetic rats. Histological analysis revealed that the Zn supplement inhibited the diabetes-induced increase and decrease in the number of osteoclasts and osteoblasts, respectively, in the metaphysis of the proximal tibia. The increase in mRNA levels of receptor for activation of NF-κB (RANK), c-fos, c-jun, TRAP, and cathepsin K and decrease in the expression of Runx2, Dlx5, osterix, ALP, osteocalcin, and collagen were prevented by the supplement. The decrease in β-catenin, phosphorylated GSK3β, phosphorylated Akt, insulin-like growth factor 1 (IGF-1), and IGF-1 receptor (IGF-1R) protein levels in diabetic rats was also inhibited, although Zn did not affect the diabetes-increased gene and protein expression of Sost and Dkk1. These results suggested that Zn prevented the diabetes-induced increase in osteoclastogenesis and decrease in osteoblastogenesis by inhibiting RANK expression and stimulating IGF-1/IGF-1R/Akt/GSK3β/β-catenin signaling, respectively.
Collapse
|
13
|
Is there a link between premature ovarian failure and serum concentrations of vitamin D, zinc, and copper? Menopause 2013; 20:94-9. [PMID: 22968257 DOI: 10.1097/gme.0b013e31826015ca] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The risk of primary ovarian insufficiency (POI) increases in association with autoimmune conditions. Adequate intake of vitamin D (vit D) and trace elements is required for the immune system to function efficiently. The aim of this study was to evaluate vit D, zinc, and copper blood levels in women with POI who had given birth to at least one child and in women with normal menstrual cycles. METHODS This was a cross-sectional, case-control study involving 63 participants divided into two groups: the study group, which is composed of 35 women with POI, and the control group, which is composed of 28 women with normal menstrual cycles. Serum concentrations of zinc, vit D, and copper were determined for each participant. RESULTS Women with POI had significantly higher serum copper levels and copper-to-zinc ratio but significantly lower serum vit D and zinc levels when compared with the healthy control group. Serum follicle-stimulating hormone levels were inversely correlated with zinc and vit D levels and positively correlated with the copper-to-zinc ratio and copper levels. Vit D levels were inversely correlated with follicle-stimulating hormone levels, copper-to-zinc ratio, and copper levels and positively correlated with zinc levels. CONCLUSIONS Most women with POI are deficient in vit D. Zinc, copper, and vit D seem to correlate with hormonal status in the participants. The present study may generate hypotheses for future studies that will investigate the possible mechanisms behind alterations in trace elements and vit D deficiency in women with POI and whether these changes could be used to screen for the risk of developing POI.
Collapse
|
14
|
Hara M, Higaki Y, Taguchi N, Shinchi K, Morita E, Naito M, Hamajima N, Takashima N, Suzuki S, Nakamura A, Ohnaka K, Uemura H, Nishida H, Hosono S, Mikami H, Kubo M, Tanaka H. Effect of the PPARG2 Pro12Ala polymorphism and clinical risk factors for diabetes mellitus on HbA1c in the Japanese general population. J Epidemiol 2012; 22:523-31. [PMID: 23006958 PMCID: PMC3798564 DOI: 10.2188/jea.je20120078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Although the peroxisome proliferator-activated receptor-γ2 (PPARG2) Pro12Ala gene variant is associated with diabetes mellitus, the associations and interactions of this polymorphism and known clinical risk factors with glycated hemoglobin (HbA1c) remain poorly understood. We investigated if carrying the Ala allele was inversely associated with HbA1c level and examined possible interactions. Methods This cross-sectional analysis used data collected from 1281 men and 1356 women aged 40 to 69 years who completed the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. PPARG2 polymorphism was determined by multiplex polymerase chain reaction (PCR)-based Invader assay. Multiple linear regression and ANCOVA were used to control for confounding variables (age, body mass index [BMI], energy intake, alcohol, smoking, physical activity, and family history of diabetes) and examine possible interactions. Results After adjustment, the Ala allele was significantly inversely associated with HbA1c in women but not in men. Older age, BMI, and family history of diabetes were associated with higher HbA1c in both sexes. When stratified by PPARG2 genotype, these associations were observed in subjects with the Pro12Pro genotype but not in Ala allele carriers. A significant interaction of genotype and BMI on HbA1c was observed in women. Older age, BMI, and family history of diabetes were significantly associated with high-normal HbA1c (≥5.7% NGSP), whereas PPARG2 polymorphism was not. Conclusions Although PPARG2 Pro12Ala polymorphism might attenuate associations between known risk factors and HbA1c level, it had a small effect on high-normal HbA1c, as compared with clinical risk factors, in the general population.
Collapse
Affiliation(s)
- Megumi Hara
- Department of Preventive Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kechrid Z, Hamdi M, Naziroğlu M, Flores-Arce M. Vitamin D supplementation modulates blood and tissue zinc, liver glutathione and blood biochemical parameters in diabetic rats on a zinc-deficient diet. Biol Trace Elem Res 2012; 148:371-7. [PMID: 22410949 DOI: 10.1007/s12011-012-9383-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.
Collapse
Affiliation(s)
- Zine Kechrid
- Department of Biochemistry, Faculty of Sciences, University of Annaba, Annaba, Algeria.
| | | | | | | |
Collapse
|
16
|
Liang D, Yang M, Guo B, Cao J, Yang L, Guo X. Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways. Biol Trace Elem Res 2012; 146:340-8. [PMID: 22081405 DOI: 10.1007/s12011-011-9254-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/26/2011] [Indexed: 11/29/2022]
Abstract
Zinc is an essential element for bone formation; however, its role in osteoblast has not been well understood. In the present study, we hypothesized that zinc could increase osteogenetic function by stimulating osteoblast proliferation and osteoprotegerin (OPG) activity. To test this hypothesis, osteoblastic MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 10, 30, 50, 70, 110, 130, and 150 μM) for 24 and 48 h. 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay showed that cell proliferation was significantly stimulated with 50 μM zinc treatment. Furthermore, under the same treatment condition, OPG expression was significantly increased as evidenced by the results of RT-PCR and ELISA. However, the zinc-induced OPG expression was significantly attenuated when MC3T3-E1 cells were co-treated with either protein kinase C (PKC) inhibitor, GF109203X, or the Inhibitor of mitogen-activated extracellular signal-regulated kinase 1 (MEK1), PD98059. Moreover, OPG expression was further increased when MC3T3-E1 cells were treated with PMA (the activator of protein of kinase C) in the presence of zinc. These results suggested that zinc would increase osteogenic function by stimulating PKC and MAPK signaling pathways.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:313-8. [DOI: 10.1016/j.tripleo.2011.02.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/22/2011] [Indexed: 11/20/2022]
|
18
|
Hie M, Tsukamoto I. Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur J Pharmacol 2011; 668:140-6. [PMID: 21806983 DOI: 10.1016/j.ejphar.2011.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/20/2011] [Accepted: 07/14/2011] [Indexed: 01/08/2023]
Abstract
Zinc (Zn) has been known to inhibit osteoclastic bone resorption and stimulate osteoblastic bone formation. However, the mechanisms responsible for these effects have not been well characterized in vivo. Here, the effects of a dietary administration of Zn on osteoclastogenesis and osteoblastogenesis were investigated in Zn-adequate rats. The administration of Zn decreased the activities of bone tartrate-resistant acid phosphatase (TRAP) and cathepsin K, without affecting the serum osteocalcin level. Histological analysis showed a decrease in the number of osteoclasts with a normal number of osteoblasts in the metaphysis of the proximal tibia. The mRNA levels of receptor for activation of NF-κB (RANK), c-fos, c-jun, TRAP and cathepsin K were significantly decreased, although those of RANK ligand, macrophage colony-stimulating factor and c-fms were unaltered. The gene expression of bone morphogenic protein-2, Runx2, Dlx5, osterix, alkaline phosphatase, osteocalcin and collagen was not affected. The level of the RANK protein decreased, while the levels of the Runx2 and β-catenin proteins were unchanged. Further, the osteoclastic differentiation of precursor cells in vitro was suppressed. The suppressed osteoclastogenesis was associated with decreased levels of reactive oxygen species, extracellular signal-regulated kinase (ERK) activation and RANK expression. A lower lipid peroxide level and a higher glutathione level were also observed. These results suggested that Zn-administration did not affect osteoblastogenesis but decreased osteoclastogenesis by inhibiting RANK expression through suppression of the production of reactive oxygen species and ERK activation in Zn-adequate rats.
Collapse
Affiliation(s)
- Mamiko Hie
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | |
Collapse
|
19
|
Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46:732-41. [PMID: 19913120 DOI: 10.1016/j.bone.2009.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/18/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
A characteristic sign of zinc deficiency is retarded skeletal growth, but the role of zinc in osteoblasts is not well understood. Two major events for bone formation include osteoblast differentiation by bone marker gene expression, which is mainly regulated by bone-specific transcription factor Runx2 and extracellular matrix (ECM) mineralization by Ca deposits for bone nodule formation. We investigated whether zinc deficiency down-regulates bone marker gene transcription and whether this might occur through modulation of Runx2. We also investigated whether zinc deficiency decreases ECM mineralization in osteoblastic MC3T3-E1 cells. In the presence of 5 mumol/L TPEN as zinc chelator, zinc deficiency (ZnD: 1 micromol Zn/L) decreased bone marker gene (collagen type I, osteopontin, alkaline phosphatase, osteoclacin and parathyroid hormone receptor) expression, as compared to normal osteogenic medium (OSM) or zinc adequate medium (ZnA: 15 micromol/L) (P<0.05) both at 5 days (proliferation) and 15 days (matrix maturation). Decreased bone marker gene transcription by zinc deficiency could be caused by decreased nuclear Runx2 protein (P=0.05) and transcript (P<0.05) levels in ZnD. Furthermore, within the first 24 h of differentiation when Runx2 expression is induced, maximal Runx2 mRNA and nuclear protein levels were delayed in ZnD compared to OSM and ZnA. ECM Ca deposition was also lower in ZnD, which was also indirectly confirmed by detection of decreased cellular (synthesized) and medium (secreted) ALP activity as well as matrix ALP activity. Taken together, zinc deficiency attenuated osteogenic activity by decreasing bone marker gene transcription through reduced and delayed Runx2 expression and by decreasing ECM mineralization through inhibition of ALP activity in osteoblasts. Decreased and delayed bone marker gene, Runx2 expression and ECM mineralization in osteoblasts by zinc deficiency can be a potential explanation for the retarded skeletal growth which is the major zinc deficiency syndrome.
Collapse
Affiliation(s)
- In-Sook Kwun
- Department of Food Science and Nutrition, Andong National University, 388 Songchundong, Andong, Kyungpook 760-749, South Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 2009; 338:241-54. [PMID: 20035439 DOI: 10.1007/s11010-009-0358-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/03/2009] [Indexed: 12/15/2022]
Abstract
Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and therapy of osteoporosis.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322-0001, USA.
| |
Collapse
|
21
|
Thacher TD, Aliu O, Griffin IJ, Pam SD, O'Brien KO, Imade GE, Abrams SA. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets. J Nutr 2009; 139:926-32. [PMID: 19321589 PMCID: PMC2714392 DOI: 10.3945/jn.108.101030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nutritional rickets resulting from calcium insufficiency is common in Nigeria and high dietary phytate is thought to inhibit calcium and zinc absorption. We compared the effects of a high-phytate meal and enzymatic dephytinization on calcium and zinc absorption in Nigerian children with and without rickets. Nineteen children with rickets and 15 age-matched control children, aged 2-10 y, were given calcium (600 mg/d) and ergocalciferol (1250 microg/wk). After 6 wk, calcium and zinc absorption were measured in both groups with and without maize porridge using stable isotopes. One week later, absorption measurements were repeated to assess the effects of enzymatic dephytinization and fermentation of the maize porridge. The phytate concentration of maize porridge (3.87 +/- 0.38 g/kg wet weight) was reduced by enzymatic dephytinization (2.83 +/- 0.41 g/kg; P < 0.001) but not by fermentation (3.35 +/- 0.27 g/kg; P = 0.08). Calcium and zinc absorption were unaffected by the presence of rickets or by fermentation of maize porridge. Calcium absorption was greater with a meal (61.3 +/- 25.1%) than without (27.8 +/- 14.6%; P < 0.001). Zinc absorption was lower with a meal (16.2 +/- 8.0%) than without (63.4 +/- 23.9%; P < 0.001). Enzymatic dephytinization increased relative zinc absorption from a meal by 101 +/- 81% (P < 0.001) but did not affect calcium absorption. Rickets was not associated with impaired calcium or zinc absorption. Calcium absorption was enhanced by maize porridge, but zinc absorption was reduced. Enzymatic dephytinization increased zinc absorption. Multiple strategies may be required to optimize calcium and zinc absorption in deficient populations.
Collapse
Affiliation(s)
- Tom D. Thacher
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Oluseyi Aliu
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Ian J. Griffin
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Sunday D. Pam
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Kimberly O. O'Brien
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Godwin E. Imade
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| | - Steven A. Abrams
- Department of Family Medicine, Mayo Clinic, Rochester, MN 55903; USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030; Department of Paediatrics, Jos University Teaching Hospital, Jos, Nigeria 930001; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853; and Department of Obstetrics and Gynaecology, University of Jos, Jos, Nigeria 930001
| |
Collapse
|
22
|
Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 2008; 312:157-66. [DOI: 10.1007/s11010-008-9731-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
|
23
|
Hanai Y, Tokuda H, Yasuda E, Noda T, Ohta T, Takai S, Kozawa O. Up-regulation by zinc of FGF-2-induced VEGF release through enhancing p44/p42 MAP kinase activation in osteoblasts. Life Sci 2006; 80:230-4. [PMID: 17020773 DOI: 10.1016/j.lfs.2006.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 01/07/2023]
Abstract
We previously reported that basic fibroblast growth factor (FGF-2) activates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether zinc affects the VEGF release by FGF-2 in MC3T3-E1 cells. The FGF-2-induced VEGF release was significantly enhanced by ZnSO(4) but not Na(2)SO(4). The enhancing effect of ZnSO(4) was dose-dependent between 1 and 100 muM. ZnSO(4) markedly enhanced the FGF-2-induced phosphorylation of p44/p42 MAP kinase while having little effect on the SAPK/JNK phosphorylation. PD98059 significantly reduced the amplification by ZnSO(4) of the FGF-2-stimulated VEGF release. Taken together, our findings strongly suggest that zinc enhances FGF-2-stimulated VEGF release resulting from up-regulating activation of p44/p42 MAP kinase in osteoblasts.
Collapse
Affiliation(s)
- Yoshiteru Hanai
- Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Ito A, Senda K, Sogo Y, Oyane A, Yamazaki A, LeGeros RZ. Dissolution rate of zinc-containing β-tricalcium phosphate ceramics. Biomed Mater 2006; 1:134-9. [DOI: 10.1088/1748-6041/1/3/007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Combs GF, Hassan N. The Chakaria food system study: household-level, case-control study to identify risk factor for rickets in Bangladesh. Eur J Clin Nutr 2006; 59:1291-301. [PMID: 16047028 DOI: 10.1038/sj.ejcn.1602242] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE A comprehensive, multiround survey of local food systems in a rickets-endemic area of Bangladesh was conducted to identify household-level risk factors for rickets. DESIGN A household-level, case-control study was conducted in a rickets-endemic area, Chakaria, with planned comparisons between households with one or more rachitic child and neighboring households with no affected children. SETTING A rickets-endemic area of southeastern Bangladesh, Chakaria. SUBJECTS AND METHODS An interview-based survey was conducted in six villages in Chakaria with 199 households with at least one child showing physical signs consistent with rickets and 281 households with no affected children. RESULTS Households with rachitic children in Chakaria had more children, more pregnant or lactating women, and fewer adults than unaffected households in that community. Affected households tended to rely on farming for their livelihood and tended to have less economic activity as indicated by less outstanding debt than their neighbors. Households with rickets were at significantly greater risk of pneumonia than were other households. Calcium undernutrition was severe and widespread in Chakaria due to a food system that offered very little of the element in accessible forms. Household diets were based on cereals and starchy vegetables. Rice and fish constituted the major source of calcium for most households, although dairy products, when used, were very important calcium sources, particularly for young children. In fact, the use of dairy products was the only household choice that led to substantial increases in the calcium intakes of children, and households that used dairy products tended to show increased calcium intakes for all of their members. CONCLUSIONS The risk of a Chakarian household having a child with rickets appeared to be related to its economic status. Although this might be expected to be manifest as limitations in food access and/or use, rickets households failed to show a dietary pattern associated with rickets. Calcium undernutrition was prevalent and, thus, would appear to be a predisposing factor for rickets; however, calcium undernutrition was prevalent in Chakarian households with and without rickets. Therefore, it is probable that another precipitating factor(s) play a role(s) in the etiology of rickets in Chakaria.
Collapse
Affiliation(s)
- G F Combs
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
26
|
Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 2006; 38:181-98. [PMID: 16203195 DOI: 10.1016/j.bone.2005.08.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 08/04/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
Zinc is an essential trace element that is involved in diverse metabolic and signaling pathways. Zinc deficiency is associated with retardation of bone growth. Previous in vitro studies have suggested a direct effect of zinc on both the proliferation and differentiation of osteoblast-like cells. However, the mechanisms for uptake of zinc into osteoblasts have not been examined in detail. Several families of zinc transporters have previously been characterized in mammalian cells; such transporters function in the uptake, intracellular sequestration or efflux of zinc. In the current study, we examined zinc transport in osteoprogenitor cells and have attempted to define a functional role for a zinc transport mechanism in osteogenic differentiation. We identified at least two zinc transporters in both human mesenchymal stem cells (MSCs) and in osteoblastic cells--the ubiquitous zinc transporter, ZIP1, and LIV-1, which was previously characterized as a protein that is expressed in breast cancer cells. The subcellular localization of both these zinc transporters suggested distribution in both the plasma membrane and also diffusely in the cytoplasm. During the differentiation process of pluripotent MSCs into osteoblast-like cells, both zinc uptake and expression of the ZIP1 protein were increased. An adenoviral-mediated overexpression of ZIP1 in MSCs resulted in Alizarin-red-positive mineralization and also increased expression of specific osteoblast-associated markers, such as alkaline phosphatase, and of several osteoblast differentiation genes, including osteopontin, Cbfa1/Runx2, promyelocytic leukemia zinc finger and bone sialoprotein. An siRNA-mediated reduction of ZIP1 protein expression in MSCs caused decreased zinc uptake and inhibition of osteoblastic differentiation under osteogenic culture conditions. Finally, following overexpression of ZIP1 in MSCs, cDNA microarray analysis revealed differential regulation of several genes associated with the proliferation of osteoprogenitor cells and osteoblast differentiation. In conclusion, these studies provide important insights into the role of a plasma membrane zinc transporter in the initiation of an osteogenic lineage from MSCs.
Collapse
Affiliation(s)
- Zhihui Tang
- Department of Biomedical Sciences, 4G-29, Dental School, University of Maryland, 666 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
27
|
Yamaguchi M, Fukagawa M. Role of zinc in regulation of protein tyrosine phosphatase activity in osteoblastic MC3T3-E1 cells: zinc modulation of insulin-like growth factor-I's effect. Calcif Tissue Int 2005; 76:32-8. [PMID: 15477998 DOI: 10.1007/s00223-004-0052-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Zinc, an essential trace element, has been demonstrated to stimulate bone growth in animal and human. The cellular mechanism by which zinc stimulates bone growth has not been fully clarified. The effect of hormone and zinc on protein tyrosine phosphatase activity in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers, and then exchanged to culture medium containing either vehicle, zinc sulfate or various hormones in the absence of 10% FBS. After medium change, cells were cultured for 48 h. Protein tyrosine phosphatase activity in the lysate of cells was significantly increased by culture with zinc (10(-6) - 10(-4) M). The effect of zinc in increasing the enzyme activity was completely blocked by culture with cycloheximide (10(-7 )M), an inhibitor of protein synthesis, or 5, 6-dichloro-l-beta-D- riboifuranosylbenzimidarzole (DRB) (10(-6) M), an inhibitor of translational activity. Addition of calcium chloride (10 microM) into the reaction mixture caused a significant increase in protein tyrosine phosphatase activity; this increase was completely blocked in the presence of trifluoperazine (50 microM), an antagonist of calmodulin. Culture with zinc caused a significant increase in Ca2+/calmodulin-dependent protein tyrosine phosphatase activity in osteoblastic cells. Protein tyrosine phosphatase activity was significantly raised by culture with parathyroid hormone (human PTH [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]; 10(-7) M), 17beta-estradiol (10(-7) M), insulin-like growth factor-I (IGF-I; 10(-8) M) or insulin (10(-8) M). The enzyme activity was not significantly enhanced by the addition of calcium (10 microM) into the reaction mixture. The effect of PTH or IGF-I in increasing protein tyrosine phosphatase activity was completely blocked by culture with DRB. The IGF-I-induced increase in enzyme activity was significantly enhanced by culture with zinc. Such an effect was not seen in the case of PTH. Moreover, the effect of IGF-I in increasing proliferation of osteoblastic cells was significantly enhanced by culture with zinc. The effect of PTH was not enhanced by zinc. This study demonstrates that protein tyrosine phosphatase activity in osteoblastic cells is enhanced by various bone anabolic factors, and that zinc modulates the effect of IGF-I on protein tyrosine phosphatase activity and cell proliferation.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, 52--1 Yada, Shizuoka, 422-8526, Japan,
| | | |
Collapse
|
28
|
Ikeuchi M, Ito A, Dohi Y, Ohgushi H, Shimaoka H, Yonemasu K, Tateishi T. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc‐releasing calcium phosphate ceramics. J Biomed Mater Res A 2003; 67:1115-22. [PMID: 14624496 DOI: 10.1002/jbm.a.10041] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rat and human bone marrow cells (BMCs) were cultured on a composite ceramic of zinc-containing beta-tricalcium phosphate and hydroxyapatite (ZnTCP/HAP) with a (Ca+Zn)/P molar ratio of 1.60 and varying zinc contents. After a 2-week culture of the BMCs in the presence of beta-glycerophosphate and dexamethasone, many macroscopic mineralized areas with high alkaline phosphatase (ALP) activity were seen on the ZnTCP/HAP ceramic disks. The ALP activity increased with increasing zinc content in the ceramics. The highest ALP activity was observed when the BMCs were cultured on the ceramics with 1.26 wt % zinc, and the ceramics released zinc ions at concentrations from 2.2 to 7.2 microg/mL into the culture medium. Zinc ions were incorporated into mineralized areas produced by BMCs. BMCs also were directly cultured onto the culture dish surface, and the addition of 100 microM of free ZnCl(2) (6.5 microg/mL) to the culture medium significantly increased the ALP activity of the BMCs relative to the culture medium without the ZnCl(2)addition. The maximum zinc concentration required to enhance mineralization was higher in human BMCs than in rat BMCs. The present study demonstrates the superiority of ZnTCP/HAP ceramics over TCP/HAP in supporting the osteogenic differentiation of BMCs, and thus these ceramics are safe and useful in clinical settings, such as for bone reconstructive surgery.
Collapse
Affiliation(s)
- Masako Ikeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tissue Engineering Research Center (TERC), 3-11-46 Nakouji, Amagasaki, Hyougo 661-0974, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Hatakeyama D, Kozawa O, Otsuka T, Shibata T, Uematsu T. Zinc suppresses IL-6 synthesis by prostaglandin F2alpha in osteoblasts: inhibition of phospholipase C and phospholipase D. J Cell Biochem 2002; 85:621-8. [PMID: 11968002 DOI: 10.1002/jcb.10166] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported that prostaglandin F2alpha (PGF2alpha) induces phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein, resulting in the activation of protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells and that PGF2alpha stimulates the synthesis of interleukin-6 (IL-6) via PKC-dependent p44/p42 mitogen-activated protein (MAP) kinase activation. In the present study, we investigated whether zinc affects the PGF2alpha-induced IL-6 synthesis in these cells. Zinc complex of l-carnosine (l-CAZ) dose-dependently suppressed the PGF2alpha-stimulated IL-6 synthesis. In addition, zinc alone reduced the IL-6 synthesis. L-CAZ suppressed the PGF2alpha-induced p44/p42 MAP kinase phosphorylation. However, the p44/p42 MAP kinase phosphorylation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of PKC, or NaF, a direct activator of GTP-binding protein, was not affected by l-CAZ. l-CAZ reduced the PGF2alpha-stimulated formation of inositol phosphates and choline. However, l-CAZ did not affect the formation of inositol phosphates or choline induced by NaF. These results strongly suggest that zinc reduces PGF2alpha-induced IL-6 synthesis via suppression of phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblasts.
Collapse
Affiliation(s)
- Daijiro Hatakeyama
- Department of Pharmacology, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | |
Collapse
|
30
|
Im HJ, Craig TA, Pittelkow MR, Kumar R. Characterization of a novel hexameric repeat DNA sequence in the promoter of the immediate early gene, IEX-1, that mediates 1alpha,25-dihydroxyvitamin D(3)-associated IEX-1 gene repression. Oncogene 2002; 21:3706-14. [PMID: 12032839 DOI: 10.1038/sj.onc.1205450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Revised: 02/15/2002] [Accepted: 02/21/2002] [Indexed: 11/09/2022]
Abstract
1alpha,25-Dihydroxyvitamin D(3)(1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D(3), mediates anti-proliferative effects in cells by regulating the expression of 1alpha,25(OH)(2)D(3)-responsive genes. The expression of the proliferation-promoting Immediate Early gene X-1 (IEX-1) is reduced by 1alpha,25(OH)(2)D(3) through unknown mechanisms. Here we report the presence of a novel inhibitory hexameric repeat DNA response element in the promoter of the human IEX-1 gene that mediates 1alpha,25(OH)(2)D(3)-associated IEX-1 gene repression. To localize a vitamin D sensitive DNA response element we transfected the keratinocyte-like cell line, HaCaT, (referred as HaCaT) with a series of plasmids containing full-length and truncated IEX-1 promoter elements fused to the luciferase reporter gene in the absence or presence of 1alpha,25(OH)(2)D(3), and we performed electrophoretic gel mobility assays in the presence of receptors for 1alpha,25(OH)(2)D(3) (vitamin D receptor, VDR) and 9-cis-retinoic acid (RXRalpha). We mapped a negative response element between nt -405 and -391(15 bp) of theIEX-1 promoter (5'-TGAACC AGG GAGTCA-3') that mediates transcriptional inhibition in response to 1alpha,25(OH)(2)D(3) and which requires expression of both nuclear receptors for 1alpha,25(OH)(2)D(3) and 9-cis-retinoic acid. Our data indicate that the physiological repression of IEX-1 gene expression by 1alpha,25(OH)(2)D(3) is directly mediated by nuclear VDR/RXRalpha heterodimers through a specific transcriptional element.
Collapse
Affiliation(s)
- Hee-Jeong Im
- Department of Internal Medicine, Mayo Clinic and Foundation, 200 First Street, SW, Rochester, Minnesota, MN 55905, USA
| | | | | | | |
Collapse
|
31
|
Craig TA, Benson LM, Naylor S, Kumar R. Modulation effects of zinc on the formation of vitamin D receptor and retinoid X receptor alpha-DNA transcription complexes: analysis by microelectrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1011-1016. [PMID: 11400211 DOI: 10.1002/rcm.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The vitamin D receptor (VDR) binds zinc, and the activity of vitamin D dependent genes in cells is influenced by intracellular zinc concentrations. To determine whether zinc influences vitamin D action in cells by modulating the formation of VDR and retinoid x receptor alpha (RXR alpha) heterodimer-DNA complexes, we used microelectrospray ionization mass spectrometry (microESI-MS) to assess receptor-DNA interactions in the presence of varying amounts of zinc. In the absence of DNA, VDR and RXR alpha proteins were primarily monomeric with small amounts of protein homodimers also observed. Zn(2+) (up to 300 microM) did not change VDR or RXR alpha monomer/homodimer ratios. Mass spectra of VDR combined with RXR alpha were a sum of individual protein spectral data. Zn(2+) had no effect on the interactions of receptors. With increasing amounts of Zn(2+), additional Zn(2+) ions were detected bound to VDR and RXR alpha. microESI-MS analyses of RXR alpha in the presence of an osteopontin vitamin D DNA response element (OP-VDRE) showed RXR alpha homodimer/OP-VDRE complexes. DNA-protein complex formation increased on addition of Zn(2+) up to 200 microM; at 300 microM, Zn(2+) dissociation of the RXR alpha homodimer/OP-VDRE complexes occurred, coincident with the appearance of RXR alpha monomeric protein. When microESI-MS analyses were carried out with VDR and OP-VDRE, VDR homodimer/OP-VDRE complexes were not detected. Addition of Zn(2+) did not result in VDR/OP-VDRE complex formation. Heterodimeric VDR/RXR alpha complexes with OP-VDRE were detected by microESI-MS. Addition of 300 microM Zn(2+) resulted in dissociation of the heterodimeric VDR/RXR alpha/OP-VDRE complex. Addition of Mg(2+) in place of Zn(2+) did not alter protein/OP-VDRE complexes. Our results show that zinc modulates steroid hormone receptor-DNA interactions.
Collapse
Affiliation(s)
- T A Craig
- Nephrology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|