1
|
Gao Y, Wei M, Xiong J, Zhang M, Wu X. Sequence characteristics, evolutionary history and expression pattern of BCO2 in Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101524. [PMID: 40393191 DOI: 10.1016/j.cbd.2025.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/22/2025]
Abstract
β-carotene 9', 10'-oxygenase (BCO2) is a pivotal enzyme in the carotenoid cleavage. To fill the research gap of BCO2 in Chinese mitten crab Eriocheir sinensis, we first investigated ESIN_BCO2 gene from its genome, revealing its evolutionary history, gene structure, and expression patterns. The results showed that ESIN_BCO2 gene has a full-length open reading frame (ORF) of 1572 bp, encoding a protein of 523 amino acids. BCO2 was characterized by ten conserved motifs and an RPE65 domain, belonging to carotenoid cleavage oxygenase (CCO) family. Phylogenetic analysis revealed that BCO1 was the ancestral gene, from which BCO2 and NinaB diverged during evolution. Notably, the Ka/Ks ratios for BCO2 in Decapoda were approximately lower than BCO2 from other crustaceans (0.014 to 0.045 vs 0.112 to 0.185). ESIN_BCO2 was predominantly expressed in the hindgut, with significantly higher expression levels in females than in males. It was predominantly localized near the nuclei (N) of epithelial cells (epi) and basal cells (bc) in the hindgut. Moreover, dietary β-carotene supplementation significantly upregulated BCO2 expression in the female hindgut. These findings provide valuable insights into the evolution and function of BCO2 in E. sinensis as well as the other crustaceans, potentially shedding light on the conservation and divergence of carotenoid metabolism mechanisms across diverse crustaceans.
Collapse
Affiliation(s)
- Yanan Gao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Maolei Wei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Xiong
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Min Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Varshosaz P, O'Connor C, Moise AR. Feedback regulation of retinaldehyde reductase DHRS3, a critical determinant of retinoic acid homeostasis. FEBS Lett 2025; 599:340-351. [PMID: 39420244 PMCID: PMC11808460 DOI: 10.1002/1873-3468.15038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Retinoic acid is crucial for vertebrate embryogenesis, influencing anterior-posterior patterning and organogenesis through its interaction with nuclear hormone receptors comprising heterodimers of retinoic acid receptors (RARα, β, or γ) and retinoid X receptors (RXRα, β, or γ). Tissue retinoic acid levels are tightly regulated since both its excess and deficiency are deleterious. Dehydrogenase/reductase 3 (DHRS3) plays a critical role in this regulation by converting retinaldehyde to retinol, preventing excessive retinoic acid formation. Mutations in DHRS3 can result in embryonic lethality and congenital defects. This study shows that mouse Dhrs3 expression is responsive to vitamin A status and is directly regulated by the RAR/RXR complex through cis-regulatory elements. This highlights a negative feedback mechanism that ensures retinoic acid homeostasis.
Collapse
Affiliation(s)
- Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of MedicineLaurentian UniversitySudburyCanada
| | - Catherine O'Connor
- Medical Sciences DivisionNorthern Ontario School of MedicineSudburyCanada
| | - Alexander R. Moise
- Medical Sciences DivisionNorthern Ontario School of MedicineSudburyCanada
- Department of Biology and Biomolecular Sciences ProgramLaurentian UniversitySudburyCanada
| |
Collapse
|
3
|
Liu Y, Li M, Zhang M, Yang Z, Chen X, Wu X. Evolution and expression analysis of carotenoid cleavage oxygenase gene family in Chinese mitten crab Eriocheir sinensis. Int J Biol Macromol 2024; 257:128475. [PMID: 38029894 DOI: 10.1016/j.ijbiomac.2023.128475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Carotenoid cleavage oxygenase (CCO) plays a pivotal role in various biological activities, including antioxidant and immune functions in animals. This paper investigates the evolution and expression of CCO genes based on three chordates and 27 arthropods. Aquatic animals exhibit a higher abundance of CCO genes. Despite this, research on CCO in crustaceans has been notably limited, with a complete absence of any previous studies on the CCO genes for the Chinese mitten crab (Eriocheir sinensis). In this study, six CCO genes were identified in the E. sinensis genome database. Results reveal that the evolution of the CCO gene family in Crustacea is primarily characterized by purifying selection, with a preference for employing similar codons. EsCCO1 and EsCCO3 were mainly expressed in the epidermal layer, and EsCCO4 was mainly expressed in the hindgut. Meanwhile, EsCCO5 and EsCCO6 were mainly expressed in the hepatopancreas and endometrium. A notable detail that different EsCCO genes demonstrate distinct expression patterns within various tissues of E. sinensis. The findings of this study offer fundamental insights that could serve as a basis for further exploration into the functions and regulatory mechanisms of CCO genes in crustacean species.
Collapse
Affiliation(s)
- Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Min Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zonglin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Strychalski J, Gugołek A, Antoszkiewicz Z, Fopp-Bayat D, Kaczorek-Łukowska E, Snarska A, Zwierzchowski G, Król-Grzymała A, Matusevičius P. The Effect of the BCO2 Genotype on the Expression of Genes Related to Carotenoid, Retinol, and α-Tocopherol Metabolism in Rabbits Fed a Diet with Aztec Marigold Flower Extract. Int J Mol Sci 2022; 23:ijms231810552. [PMID: 36142463 PMCID: PMC9506012 DOI: 10.3390/ijms231810552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of the BCO2 genotype and the addition of Aztec marigold flower extract to rabbit diets on the expression of BCO1, BCO2, LRAT, and TTPA genes in the liver. The levels of lutein, zeaxanthin, β-carotene, retinol, and α-tocopherol in the liver and blood serum of rabbits, as well as plasma biochemical parameters and serum antioxidant enzyme activities were also determined. Sixty male Termond White growing rabbits were divided into three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del and del/del); each group was divided into two subgroups: one subgroup received a standard diet, and the other subgroup was fed a diet supplemented with 6 g/kg of marigold flower extract. The obtained results indicate that the BCO2 genotype may affect the expression levels of BCO1 and BCO2 genes in rabbits. Moreover, the addition of marigold extract to the diet of BCO2 del/del rabbits may increase the expression level of the BCO2 gene. Finally, an increase in the amount of lutein in the diet of rabbits with the BCO2 del/del genotype contributes to its increased accumulation in the liver and blood of animals without compromising their health status or liver function.
Collapse
Affiliation(s)
- Janusz Strychalski
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-895-234-442
| | - Andrzej Gugołek
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Anna Snarska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Grzegorz Zwierzchowski
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Paulius Matusevičius
- Department of Animal Breeding and Nutrition, Faculty of Animal Husbandry Technology, Lithuanian University of Health Sciences, Tilžes 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
5
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Shin KC, Seo MJ, Kim YS, Yeom SJ. Molecular Properties of β-Carotene Oxygenases and Their Potential in Industrial Production of Vitamin A and Its Derivatives. Antioxidants (Basel) 2022; 11:1180. [PMID: 35740077 PMCID: PMC9227343 DOI: 10.3390/antiox11061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
β-Carotene 15,15'-oxygenase (BCO1) and β-carotene 9',10'-oxygenase (BCO2) are potential producers of vitamin A derivatives, since they can catalyze the oxidative cleavage of dietary provitamin A carotenoids to retinoids and derivative such as apocarotenal. Retinoids are a class of chemical compounds that are vitamers of vitamin A or are chemically related to it, and are essential nutrients for humans and highly valuable in the food and cosmetics industries. β-carotene oxygenases (BCOs) from various organisms have been overexpressed in heterogeneous bacteria, such as Escherichia coli, and their biochemical properties have been studied. For the industrial production of retinal, there is a need for increased production of a retinal producer and biosynthesis of retinal using biocatalyst systems improved by enzyme engineering. The current review aims to discuss BCOs from animal, plants, and bacteria, and to elaborate on the recent progress in our understanding of their functions, biochemical properties, substrate specificity, and enzyme activities with respect to the production of retinoids in whole-cell conditions. Moreover, we specifically propose ways to integrate BCOs into retinal biosynthetic bacterial systems to improve the performance of retinal production.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
7
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
8
|
Mi J, Moreno JC, Alagoz Y, Liew KX, Balakrishna A, Zheng X, Al-Babili S. Ultra-high performance liquid chromatography-mass spectrometry analysis of plant apocarotenoids. Methods Enzymol 2022; 670:285-309. [DOI: 10.1016/bs.mie.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang Y, Wang J, Zhao Y, Liu P, Cai D, Zhang X, Gao L. Regulatory mechanisms of Beta-carotene and BCMO1 in adipose tissues: A gene enrichment-based bioinformatics analysis. Hum Exp Toxicol 2022; 41:9603271211072871. [PMID: 35306905 DOI: 10.1177/09603271211072871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beta-carotene (β-carotene, BC) is one of the carotenoids most commonly consumed by humans. BCMO1 is expressed in various human tissues and is considered to be a key enzyme that converts BC into vitamin A. Studies indicated that BC-derived carotenoid signaling molecules affected the physiological functions of fat cells. In order to investigate the role and possible molecular mechanism of BC in mouse adipocytes, we conducted 4-group and 2-group difference analysis based on the data of GSE27271 chip in the Gene Expression Omnibus database. Genes differentially expressed in the inguinal white adipose tissue of mice were screened out and combined with the STRING database to construct protein-protein interaction (PPI) networks. Among them, Alb (albumin), Mug1 (murinoglobulin-1) and Uox (urate oxidase) genes were at relatively key positions and may affect the action of BC. Besides, Ppara (peroxisome proliferator-activated receptor alpha), Acly (ATP-citrate lyase) and Fabp5 (fatty acid-binding protein 5) genes constituted functional partners with many genes in the PPI network, and these genes may be Bcmo1 targeting molecules. Gene Ontology (GO) function and signaling pathways enrichment analysis were performed on the genes with protein interaction relationship in the PPI network. Fatty acid binding, cholesterol metabolic process, and regulation of fatty acid metabolic process were significantly enriched, and PPAR signaling pathway showed the most significant, indicating that BC and Bcmo1 might synergistically affect body metabolic functions such as fat metabolism. In general, BC and Bcmo1 may play a role in fat metabolism in mice, thereby affecting other functions or diseases.
Collapse
Affiliation(s)
- Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Pingxiang Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, 74641Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
10
|
Abstract
Carotenoid cleavage dioxygenases (CCDs) constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase) that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States; Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine School of Medicine, Irvine, CA, United States; Research Service, VA Long Beach Healthcare System, Long Beach, CA, United States.
| |
Collapse
|
11
|
Kent M, Moser M, Boman IA, Lindtveit K, Árnyasi M, Sundsaasen KK, Våge DI. Insertion of an endogenous Jaagsiekte sheep retrovirus element into the BCO2 - gene abolishes its function and leads to yellow discoloration of adipose tissue in Norwegian Spælsau (Ovis aries). BMC Genomics 2021; 22:492. [PMID: 34193038 PMCID: PMC8247158 DOI: 10.1186/s12864-021-07826-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Background The accumulation of carotenoids in adipose tissue leading to yellow fat is, in sheep, a heritable recessive trait that can be attributed to a nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene. However, not all sheep breeds suffering from yellow fat have this nonsense mutation, meaning that other functional mechanisms must exist. We investigated one such breed, the Norwegian spælsau. Results In spælsau we detected an aberration in BCO2 mRNA. Nanopore sequencing of genomic DNA revealed the insertion of a 7.9 kb endogenous Jaagsiekte Sheep Retrovirus (enJSRV) sequence in the first intron of the BCO2 gene. Close examination of its cDNA revealed that the BCO2 genes first exon was spliced together with enJSRV-sequence immediately downstream of a potential -AG splice acceptor site at enJSRV position 415. The hybrid protein product consists of 29 amino acids coded by the BCO2 exon 1, one amino acid coded by the junction sequence, followed by 28 amino acids arbitrary coded for by the enJSRV-sequence, before a translation stop codon is reached. Conclusions Considering that the functional BCO2 protein consists of 575 amino acids, it is unlikely that the 58 amino acid BCO2/enJSRV hybrid protein can display any enzymatic function. The existence of this novel BCO2 allele represents an alternative functional mechanism accounting for BCO2 inactivation and is a perfect example of the potential benefits for searching for structural variants using long-read sequencing data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07826-5.
Collapse
Affiliation(s)
- Matthew Kent
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway
| | - Michel Moser
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway
| | - Inger Anne Boman
- The Norwegian Association of Sheep and Goat Breeders, No-1431, Ås, Norway
| | - Kristine Lindtveit
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway
| | - Kristil Kindem Sundsaasen
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway
| | - Dag Inge Våge
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, No-1432, Ås, Norway.
| |
Collapse
|
12
|
Dewett D, Lam-Kamath K, Poupault C, Khurana H, Rister J. Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system. Dev Biol 2021; 476:68-78. [PMID: 33774009 DOI: 10.1016/j.ydbio.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.
Collapse
Affiliation(s)
- Deepshe Dewett
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Khanh Lam-Kamath
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Clara Poupault
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Heena Khurana
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA.
| |
Collapse
|
13
|
Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, Miyashita K, Hosokawa M. Identification of Paracentrone in Fucoxanthin-Fed Mice and Anti-Inflammatory Effect against Lipopolysaccharide-Stimulated Macrophages and Adipocytes. Mol Nutr Food Res 2020; 65:e2000405. [PMID: 33215789 DOI: 10.1002/mnfr.202000405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Abstract
SCOPE Fucoxanthin is converted to fucoxanthinol and amarouciaxanthin A in the mouse body. However, further metabolism such as cleavage products (i.e., apocarotenoids) remains unclear. The fucoxanthin-derived apocarotenoid in vivo is investigated and the anti-inflammatory effect of apocarotenoids with fucoxanthin partial structure such as allenic bond and epoxide residue against activated macrophages and adipocytes in vitro is evaluated. METHODS AND RESULTS LC-MS analysis indicates the presence of paracentrone, a C31 -allenic-apocarotenoid, in white adipose tissue of diabetic/obese KK-Ay and normal C57BL/6J mice fed 0.2% fucoxanthin diet for 1 week. In lipopolysaccharide-activated RAW264.7 macrophages, paracentrone as well as C26 - and C28 -allenic-apocarotenoids suppresses the overexpression of inflammatory factors. Further, apo-10'-fucoxanthinal, a fucoxanthin-derived apocarotenoid which retained epoxide residue, exhibits a most potent anti-inflammatory activity through regulating mitogen-activated protein kinases and nuclear factor-κB inflammatory signal pathways. In contrast, β-apo-8'-carotenal without allenic bond and epoxide residue lacks suppressed inflammation. In 3T3-L1 adipocytes, paracentrone, and apo-10'-fucoxanthinal downregulate the mRNA expression of proinflammatory mediators and chemokines induced by co-culture with RAW264.7 cells. CONCLUSION Dietary fucoxanthin accumulates as paracentrone as well as fucoxanthinol and amarouciaxanthin A in the mouse body. Allenic bond and epoxide residue of fucoxanthin-derived apocarotenoids have pivotal roles for anti-inflammatory action against activated macrophages and adipocytes.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Daisuke Taya
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Ami Katsuki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
14
|
Choi BH, Hwang HJ, Lee JE, Oh SH, Hwang JS, Lee BY, Lee PC. Microbial Production of Retinyl Palmitate and Its Application as a Cosmeceutical. Antioxidants (Basel) 2020; 9:antiox9111130. [PMID: 33202630 PMCID: PMC7698207 DOI: 10.3390/antiox9111130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Chemically synthesized retinyl palmitate has been widely used in the cosmetic and biotechnology industry. In this study, we aimed to demonstrate the microbial production of retinyl palmitate and the benefits of microbial retinyl palmitate in skin physiology. A heterologous retinyl palmitate biosynthesis pathway was reconstructed in metabolically engineered Escherichia coli using synthetic expression modules from Pantoea agglomerans, Salinibacter ruber, and Homo sapiens. High production of retinyl palmitate (69.96 ± 2.64 mg/L) was obtained using a fed-batch fermentation process. Moreover, application of purified microbial retinyl palmitate to human foreskin HS68 fibroblasts led to increased cellular retinoic acid-binding protein 2 (CRABP2) mRNA level [1.7-fold (p = 0.001) at 100 μg/mL], acceleration of cell proliferation, and enhancement of procollagen synthesis [111% (p < 0.05) at 100 μg/mL], strongly indicating an anti-ageing-related effect of this substance. These results would pave the way for large-scale production of retinyl palmitate in microbial systems and represent the first evidence for the application of microbial retinyl palmitate as a cosmeceutical.
Collapse
Affiliation(s)
- Bo Hyun Choi
- Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea; (B.H.C.); (H.J.H.); (S.H.O.); (B.Y.L.)
| | - Hee Jin Hwang
- Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea; (B.H.C.); (H.J.H.); (S.H.O.); (B.Y.L.)
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (J.E.L.); (J.S.H.)
| | - Soon Hwan Oh
- Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea; (B.H.C.); (H.J.H.); (S.H.O.); (B.Y.L.)
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (J.E.L.); (J.S.H.)
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea; (B.H.C.); (H.J.H.); (S.H.O.); (B.Y.L.)
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea; (B.H.C.); (H.J.H.); (S.H.O.); (B.Y.L.)
- Correspondence: ; Tel.: +82-31-219-2461
| |
Collapse
|
15
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
16
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
17
|
Harrison EH, Kopec RE. Enzymology of vertebrate carotenoid oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158653. [PMID: 32035229 PMCID: PMC10655466 DOI: 10.1016/j.bbalip.2020.158653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/09/2023]
Abstract
Mammals and higher vertebrates including humans have only three members of the carotenoid cleavage dioxygenase family of enzymes. This review focuses on the two that function as carotenoid oxygenases. β-Carotene 15,15'-dioxygenase (BCO1) catalyzes the oxidative cleavage of the central 15,15' carbon-carbon double of β-carotene bond by addition of molecular oxygen. The product of the reaction is retinaldehyde (retinal or β-apo-15-carotenal). Thus, BCO1 is the enzyme responsible for the conversion of provitamin A carotenoids to vitamin A. It also cleaves the 15,15' bond of β-apocarotenals to yield retinal and of lycopene to yield apo-15-lycopenal. β-Carotene 9',10'-dioxygenase (BCO2) catalyzes the cleavage of the 9,10 and 9',10' double bonds of a wider variety of carotenoids, including both provitamin A and non-provitamin A carotenoids, as well as the xanthophylls, lutein and zeaxanthin. Indeed, the enzyme shows a marked preference for utilization of these xanthophylls and other substrates with hydroxylated terminal rings. Studies of the phenotypes of BCO1 null, BCO2 null, and BCO1/2 double knockout mice and of humans with polymorphisms in the enzymes, has clarified the role of these enzymes in whole body carotenoid and vitamin A homeostasis. These studies also demonstrate the relationship between enzyme expression and whole body lipid and energy metabolism and oxidative stress. In addition, relationships between BCO1 and BCO2 and the development or risk of metabolic diseases, eye diseases and cancer have been observed. While the precise roles of the enzymes in the pathophysiology of most of these diseases is not presently clear, these gaps in knowledge provide fertile ground for rigorous future investigations. This article is part of a Special Issue entitled Carotenoids: Recent Advances in Cell and Molecular Biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Earl H Harrison
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, USA.
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA; Foods for Health Discovery Theme, Ohio State University, USA
| |
Collapse
|
18
|
Choi S, Kim H. The Remedial Potential of Lycopene in Pancreatitis through Regulation of Autophagy. Int J Mol Sci 2020; 21:ijms21165775. [PMID: 32806545 PMCID: PMC7460830 DOI: 10.3390/ijms21165775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that degrades damaged organelles and recycles macromolecules to support cell survival. However, in certain disease states, dysregulated autophagy can play an important role in cell death. In pancreatitis, the accumulation of autophagic vacuoles and damaged mitochondria and premature activation of trypsinogen are shown in pancreatic acinar cells (PACs), which are the hallmarks of impaired autophagy. Oxidative stress mediates inflammatory signaling and cytokine expression in PACs, and it also causes mitochondrial dysfunction and dysregulated autophagy. Thus, oxidative stress may be a mediator for autophagic impairment in pancreatitis. Lycopene is a natural pigment that contributes to the red color of fruits and vegetables. Due to its antioxidant activity, it inhibited oxidative stress-induced expression of cytokines in experimental models of acute pancreatitis. Lycopene reduces cell death through the activation of 5′-AMP-activated protein kinase-dependent autophagy in certain cells. Therefore, lycopene may ameliorate pancreatitis by preventing oxidative stress-induced impairment of autophagy and/or by directly activating autophagy in PACs.
Collapse
|
19
|
Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proc Natl Acad Sci U S A 2020; 117:19914-19925. [PMID: 32747548 DOI: 10.1073/pnas.2004116117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled. CCD genes are also present in some archaeal genomes, but the encoded enzymes remain uninvestigated. Here, we address this knowledge gap through analysis of a metazoan-like archaeal CCD from Candidatus Nitrosotalea devanaterra (NdCCD). NdCCD was active toward β-apocarotenoids but did not cleave bicyclic carotenoids. It exhibited an unusual regiospecificity, cleaving apocarotenoids solely at the C14'-C13' alkene bond to produce β-apo-14'-carotenals. The structure of NdCCD revealed a tapered active site cavity markedly different from the broad active site observed for the retinal-forming Synechocystis apocarotenoid oxygenase (SynACO) but similar to the vertebrate retinoid isomerase RPE65. The structure of NdCCD in complex with its apocarotenoid product demonstrated that the site of cleavage is defined by interactions along the substrate binding cleft as well as selective stabilization of reaction intermediates at the scissile alkene. These data on the molecular basis of CCD catalysis shed light on the origins of the varied catalytic activities found in metazoan CCDs, opening the possibility of modifying their activity through rational chemical or genetic approaches.
Collapse
|
20
|
Jin Y, Yu Y, Zhang C, Li S, Zhang X, Li F. Characterization and Function Analysis of the Beta-Carotene Oxygenase-like Genes in Carotenoids Metabolism of the Ridgetail White Prawn Exopalaemon carinicauda. Front Physiol 2020; 11:745. [PMID: 32733270 PMCID: PMC7363964 DOI: 10.3389/fphys.2020.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are almost universally distributed in living organisms. The oxidative metabolism by carotene oxygenase contributes to the metabolic processes of carotenoids. 15,15'-beta-carotene oxygenase (BCO1) and 9',10'-beta-carotene oxygenase (BCO2) are two important carotenoid oxygenases. In order to understand the function of carotenoid oxygenases in crustaceans, seven genes encoding carotenoid oxygenases (named EcBCO-like) were isolated from the transcriptome database of Exopalaemon carinicauda. After phylogenetic analysis with carotenoid oxygenases reported in other species, EcBCO-like1, EcBCO-like3, and EcBCO-like6 were chosen for further functional study. The prawns after EcBCO-like1 knockdown suffered continuous death, which suggested its important role for the survival of the animals. For the prawns after EcBCO-like3 knockdown, no phenotype change was observed. The prawns after EcBCO-like6 knockdown showed color changes in their hepatopancreas when they were fed with carotenoids-containing diet, and the content of carotenoid in their hepatopancreas was much higher than that in the control prawns. The present study will pave the way for further understanding the carotenoids metabolism in the prawns.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Shannon SR, Yu J, Defnet AE, Bongfeldt D, Moise AR, Kane MA, Trainor PA. Identifying vitamin A signaling by visualizing gene and protein activity, and by quantification of vitamin A metabolites. Methods Enzymol 2020; 637:367-418. [PMID: 32359653 DOI: 10.1016/bs.mie.2020.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin A (retinol) is an essential nutrient for embryonic development and adult homeostasis. Signaling by vitamin A is carried out by its active metabolite, retinoic acid (RA), following a two-step conversion. RA is a small, lipophilic molecule that can diffuse from its site of synthesis to neighboring RA-responsive cells where it binds retinoic acid receptors within RA response elements of target genes. It is critical that both vitamin A and RA are maintained within a tight physiological range to protect against developmental disorders and disease. Therefore, a series of compensatory mechanisms exist to ensure appropriate levels of each. This strict regulation is provided by a number synthesizing and metabolizing enzymes that facilitate the precise spatiotemporal control of vitamin A metabolism, and RA synthesis and signaling. In this chapter we describe protocols that (1) biochemically isolate and quantify vitamin A and its metabolites and (2) visualize the spatiotemporal activity of genes and proteins involved in the signaling pathway.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States
| | - Jianshi Yu
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Amy E Defnet
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Danika Bongfeldt
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Maureen A Kane
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States.
| |
Collapse
|
23
|
Helgeland H, Sodeland M, Zoric N, Torgersen JS, Grammes F, von Lintig J, Moen T, Kjøglum S, Lien S, Våge DI. Genomic and functional gene studies suggest a key role of beta-carotene oxygenase 1 like (bco1l) gene in salmon flesh color. Sci Rep 2019; 9:20061. [PMID: 31882713 PMCID: PMC6934663 DOI: 10.1038/s41598-019-56438-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Red coloration of muscle tissue (flesh) is a unique trait in several salmonid genera, including Atlantic salmon. The color results from dietary carotenoids deposited in the flesh, whereas the color intensity is affected both by diet and genetic components. Herein we report on a genome-wide association study (GWAS) to identify genetic variation underlying this trait. Two SNPs on ssa26 showed strong associations to the flesh color in salmon. Two genes known to be involved in carotenoid metabolism were located in this QTL- region: beta-carotene oxygenase 1 (bco1) and beta-carotene oxygenase 1 like (bco1l). To determine whether flesh color variation is caused by one, or both, of these genes, functional studies were carried out including mRNA and protein expression in fish with red and pale flesh color. The catalytic abilities of these two genes were also tested with different carotenoids. Our results suggest bco1l to be the most likely gene to explain the flesh color variation observed in this population.
Collapse
Affiliation(s)
- Hanna Helgeland
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway.,Oslo University Hospital, Department of Radiation Biology, Institute for Cancer Research, N-0310, Oslo, Norway
| | - Marte Sodeland
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway.,Institute of Marine research, N-4817, His, Norway.,University of Agder, Department of Natural Sciences, Faculty of Engineering and Science, N-4604, Kristiansand, Norway
| | - Nina Zoric
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Johannes von Lintig
- Case Western Reserve University, Department of Pharmacology, 2109 Adelbert Rd. Wood Bldg. 341, Cleveland, OH, 44106, USA
| | | | | | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway.
| |
Collapse
|
24
|
Daruwalla A, Kiser PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158590. [PMID: 31874225 DOI: 10.1016/j.bbalip.2019.158590] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, United States of America.
| |
Collapse
|
25
|
Simkin AJ. Genetic Engineering for Global Food Security: Photosynthesis and Biofortification. PLANTS (BASEL, SWITZERLAND) 2019; 8:E586. [PMID: 31835394 PMCID: PMC6963231 DOI: 10.3390/plants8120586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing demands for food and resources are challenging existing markets, driving a need to continually investigate and establish crop varieties with improved yields and health benefits. By the later part of the century, current estimates indicate that a >50% increase in the yield of most of the important food crops including wheat, rice and barley will be needed to maintain food supplies and improve nutritional quality to tackle what has become known as 'hidden hunger'. Improving the nutritional quality of crops has become a target for providing the micronutrients required in remote communities where dietary variation is often limited. A number of methods to achieve this have been investigated over recent years, from improving photosynthesis through genetic engineering, to breeding new higher yielding varieties. Recent research has shown that growing plants under elevated [CO2] can lead to an increase in Vitamin C due to changes in gene expression, demonstrating one potential route for plant biofortification. In this review, we discuss the current research being undertaken to improve photosynthesis and biofortify key crops to secure future food supplies and the potential links between improved photosynthesis and nutritional quality.
Collapse
Affiliation(s)
- Andrew John Simkin
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
26
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
27
|
Cao DX, Wang SL, WANG R, Chai ST, Liu SJ, Hao LZ. Changes of β-carotene and retinol levels and BCO1 gene and protein expressions in yak tissues at different nutritional seasons. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/109953/2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
29
|
von Lintig J, Eggersdorfer M, Wyss A. News and views about carotenoids: Red-hot and true. Arch Biochem Biophys 2018; 657:74-77. [DOI: 10.1016/j.abb.2018.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Cooperstone JL, Novotny JA, Riedl KM, Cichon MJ, Francis DM, Curley RW, Schwartz SJ, Harrison EH. Limited appearance of apocarotenoids is observed in plasma after consumption of tomato juices: a randomized human clinical trial. Am J Clin Nutr 2018; 108:784-792. [PMID: 30239552 PMCID: PMC6186210 DOI: 10.1093/ajcn/nqy177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Nonvitamin A apocarotenoids occur in foods. Some function as retinoic acid receptor antagonists in vitro, though it is unclear if apocarotenoids are absorbed or accumulate to levels needed to elicit biological function. Objective The aim of this study was to quantify carotenoids and apocarotenoids (β-apo-8'-, -10'-, -12'-, and -14'-carotenal, apo-6'-, -8'-, -10'-, -12'-, and -14'-lycopenal, retinal, acycloretinal, β-apo-13-carotenone, and apo-13-lycopenone) in human plasma after controlled consumption of carotenoid-rich tomato juices. Design Healthy subjects (n = 35) consumed a low-carotenoid diet for 2 wk, then consumed 360 mL of high-β-carotene tomato juice (30.4 mg of β-carotene, 34.5 μg total β-apocarotenoids/d), high-lycopene tomato juice (42.5 mg of lycopene, 119.2 μg total apolycopenoids/d), or a carotenoid-free control (cucumber juice) per day for 4 wk. Plasma was sampled at baseline (after washout) and after 2 and 4 wk, and analyzed for carotenoids and apocarotenoids using high-pressure liquid chromatography (HPLC) and HPLC-tandem mass spectrometry, respectively. The methods used to analyze the apocarotenoids had limits of detection of ∼ 100 pmol/L. Results Apocarotenoids are present in tomato juices at 0.1-0.5% of the parent carotenoids. Plasma lycopene and β-carotene increased (P < 0.001) after consuming high-lycopene and β-carotene tomato juices, respectively, while retinol remained unchanged. β-Apo-13-carotenone was found in the blood of all subjects at every visit, although elevated (P < 0.001) after consuming β-carotene tomato juice for 4 wk (1.01 ± 0.27 nmol/L) compared with both baseline (0.37 ± 0.17 nmol/L) and control (0.46 ± 0.11 nmol/L). Apo-6'-lycopenal was detected or quantifiable in 29 subjects, while β-apo-10'- and 12'-carotenal were detected in 6 and 2 subjects, respectively. No other apolycopenoids or apocarotenoids were detected. Conclusions β-Apo-13-carotenone was the only apocarotenoid that was quantifiable in all subjects, and was elevated in those consuming high-β-carotene tomato juice. Levels were similar to previous reports of all-trans-retinoic acid. Other apocarotenoids are either poorly absorbed or rapidly metabolized or cleared, and so are absent or limited in blood. β-Apo-13-carotenone may form from vitamin A and its presence warrants further investigation. This trial was registered at clinicaltrials.gov as NCT02550483.
Collapse
Affiliation(s)
- Jessica L Cooperstone
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH,Food Science and Technology, The Ohio State University, Columbus, OH,Address correspondence to JLC (e-mail: )
| | - Janet A Novotny
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Ken M Riedl
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Morgan J Cichon
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - David M Francis
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH
| | - Robert W Curley
- Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH
| | - Steven J Schwartz
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Earl H Harrison
- Human Sciences, Human Nutrition, The Ohio State University, Columbus, OH,Address correspondence to EHH (e-mail: )
| |
Collapse
|
31
|
Abstract
Apocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin. Apocarotenoids are generated upon enzymatic and nonenzymatic cleavage of the parent compounds both in plants and in the tissues of mammals that have ingested carotenoid-containing foods. The best-characterized apocarotenoids are retinoids (vitamin A and its derivatives), generated upon central oxidative cleavage of provitamin A carotenoids, mainly β-carotene. In addition to the well-known biological actions of vitamin A, it is becoming apparent that nonretinoid apocarotenoids also have the potential to regulate a broad spectrum of critical cellular functions, thus influencing mammalian health. This review discusses the current knowledge about the generation and biological activities of nonretinoid apocarotenoids in mammals.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA;
| |
Collapse
|
32
|
Domínguez M, Pequerul R, Alvarez R, Giménez-Dejoz J, Birta E, Porté S, Rühl R, Parés X, Farrés J, de Lera AR. Synthesis of apocarotenoids by acyclic cross metathesis and characterization as substrates for human retinaldehyde dehydrogenases. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Praud C, Al Ahmadieh S, Voldoire E, Le Vern Y, Godet E, Couroussé N, Graulet B, Le Bihan Duval E, Berri C, Duclos M. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production. Exp Cell Res 2017. [DOI: 10.1016/j.yexcr.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28207193 DOI: 10.1002/wdev.264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Green AS, Fascetti AJ. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. ScientificWorldJournal 2016; 2016:7393620. [PMID: 27833936 PMCID: PMC5090096 DOI: 10.1155/2016/7393620] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Vitamin A is essential for life in all vertebrate animals. Vitamin A requirement can be met from dietary preformed vitamin A or provitamin A carotenoids, the most important of which is β-carotene. The metabolism of β-carotene, including its intestinal absorption, accumulation in tissues, and conversion to vitamin A, varies widely across animal species and determines the role that β-carotene plays in meeting vitamin A requirement. This review begins with a brief discussion of vitamin A, with an emphasis on species differences in metabolism. A more detailed discussion of β-carotene follows, with a focus on factors impacting bioavailability and its conversion to vitamin A. Finally, the literature on how animals utilize β-carotene is reviewed individually for several species and classes of animals. We conclude that β-carotene conversion to vitamin A is variable and dependent on a number of factors, which are important to consider in the formulation and assessment of diets. Omnivores and herbivores are more efficient at converting β-carotene to vitamin A than carnivores. Absorption and accumulation of β-carotene in tissues vary with species and are poorly understood. More comparative and mechanistic studies are required in this area to improve the understanding of β-carotene metabolism.
Collapse
Affiliation(s)
- Alice S. Green
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Andrea J. Fascetti
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
36
|
Gong X, Marisiddaiah R, Zaripheh S, Wiener D, Rubin LP. Mitochondrial β-Carotene 9',10' Oxygenase Modulates Prostate Cancer Growth via NF-κB Inhibition: A Lycopene-Independent Function. Mol Cancer Res 2016; 14:966-975. [PMID: 27406826 DOI: 10.1158/1541-7786.mcr-16-0075] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
Abstract
Despite numerous inquiries into protective roles of lycopene in prostate cancer prevention or therapy, little is known about mechanisms by which lycopene or its metabolites inhibit prostate cancer. The enzyme β-carotene 9',10'-oxygenase (BCO2), which catalyzes asymmetric cleavage of several carotenoids, is the principal regulator of lycopene metabolism, but the range of BCO2 biological functions is incompletely understood. This study investigated expression and functional roles of BCO2 in human prostate cancer. Expression of the bco2 gene is dramatically decreased in prostate cancer tissue and in a range of prostate cancer cell lines as compared with nonneoplastic prostate tissue and normal prostatic epithelial cells, respectively. Inhibition of DNA methyltransferase activity restored bco2 expression in prostate cancer cell lines tested. Treatment with lycopene or its metabolite, apo-10-lycopenal, also increased bco2 expression and reduced cell proliferation in androgen-sensitive cell lines, but lycopene neither altered bco2 expression nor cell growth in androgen-resistant cells. Notably, restoring bco2 expression in prostate cancer cells inhibited cell proliferation and colony formation, irrespective of lycopene exposure. Exogenous expression of either wild-type BCO2 or a mutant (enzymatically inactive) BCO2 in prostate cancer cells reduced NF-κB activity and decreased NF-κB nuclear translocation and DNA binding. Together, these results indicate epigenetic loss of BCO2 expression is associated with prostate cancer progression. Moreover, these findings describe previously unanticipated functions of BCO2 that are independent of its enzymatic role in lycopene metabolism. IMPLICATIONS This study identifies BCO2 as a tumor suppressor in prostate cancer. BCO2-mediated inhibition of NF-κB signaling implies BCO2 status is important in prostate cancer progression. Mol Cancer Res; 14(10); 966-75. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas
| | | | - Susan Zaripheh
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Lewis P Rubin
- Department of Pediatrics, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas. Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas.
| |
Collapse
|
37
|
Palczewski G, Widjaja-Adhi MAK, Amengual J, Golczak M, von Lintig J. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism. J Lipid Res 2016; 57:1684-95. [PMID: 27389691 DOI: 10.1194/jlr.m069021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/05/2023] Open
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals.
Collapse
Affiliation(s)
- Grzegorz Palczewski
- Departments of Biochemistry School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Jaume Amengual
- Department of Cell Biology, School of Medicine, New York University, New York, NY
| | - Marcin Golczak
- Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Johannes von Lintig
- Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
38
|
Babino D, Golczak M, Kiser PD, Wyss A, Palczewski K, von Lintig J. The Biochemical Basis of Vitamin A3 Production in Arthropod Vision. ACS Chem Biol 2016; 11:1049-57. [PMID: 26811964 PMCID: PMC4841470 DOI: 10.1021/acschembio.5b00967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metazoan photochemistry involves cis-trans isomerization of a retinylidene chromophore bound to G protein coupled receptors. Successful production of chromophores is critical for photoreceptor function and survival. For chromophore production, animals have to choose from more than 600 naturally occurring carotenoids and process them by oxidative cleavage and geometric isomerization of double bonds. Vertebrates employ three carotenoid cleavage oxygenases to tailor the carotenoid precursor in the synthesis of 11-cis-retinal (vitamin A1). Lepidoptera (butterfly and moth) possess only one such enzyme, NinaB, which faces the challenge to catalyze these reactions in unison to produce 11-cis-3-hydroxy-retinal (vitamin A3). We here showed that key to this multitasking is a bipartite substrate recognition site that conveys regio- and stereoselectivity for double bond processing. One side performed the specific C11, C12 cis-isomerization and preferentially binds 3-OH-β-ionone rings sites. The other side maintained a trans configuration in the resulting product and preferentially binds noncanonical ionone ring sites. Concurrent binding of carotenoids containing two cyclohexyl rings to both domains is required for specific oxidative cleavage at position C15, C15' of the substrate. The unique reaction sequence follows a dioxygenase mechanism with a carbocation/radical intermediate. This ingenious quality control system guarantees 11-cis-3-hydroxy-retinal production, the essential retinoid for insect (vitamin A3) vision.
Collapse
Affiliation(s)
- Darwin Babino
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Philip D. Kiser
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Adrian Wyss
- Department of Human Nutrition and Health, DSM Nutritional Products, Kaiseraugst 4303, Switzerland
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
39
|
Gao YY, Ji J, Jin L, Sun BL, Xu LH, Wang CK, Bi YZ. Xanthophyll supplementation regulates carotenoid and retinoid metabolism in hens and chicks. Poult Sci 2016; 95:541-9. [DOI: 10.3382/ps/pev335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/03/2015] [Indexed: 01/19/2023] Open
|
40
|
Roto SM, Rubinelli PM, Ricke SC. An Introduction to the Avian Gut Microbiota and the Effects of Yeast-Based Prebiotic-Type Compounds as Potential Feed Additives. Front Vet Sci 2015; 2:28. [PMID: 26664957 PMCID: PMC4672232 DOI: 10.3389/fvets.2015.00028] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023] Open
Abstract
The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. Roto
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Peter M. Rubinelli
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
41
|
Raghuvanshi S, Reed V, Blaner WS, Harrison EH. Cellular localization of β-carotene 15,15' oxygenase-1 (BCO1) and β-carotene 9',10' oxygenase-2 (BCO2) in rat liver and intestine. Arch Biochem Biophys 2015; 572:19-27. [PMID: 25575786 PMCID: PMC4685714 DOI: 10.1016/j.abb.2014.12.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/31/2022]
Abstract
The intestine and liver are crucial organs for vitamin A uptake and storage. Liver accounts for 70% of total body retinoid stores. Vitamin A deficiency (VAD) is a major micronutrient deficiency around the world. The provitamin A carotenoid, β-carotene, is a significant source of vitamin A in the diet. β-Carotene 15,15' oxygenase-1 (BCO1) and β-carotene 9',10' oxygenase-2 (BCO2) are the two known carotenoid cleavage enzymes in humans. BCO1 and BCO2 are highly expressed in liver and intestine. Hepatocytes and hepatic stellate cells are two main cell types involved in the hepatic metabolism of retinoids. Stellate-like cells in the intestine also show ability to store vitamin A. Liver is also known to accumulate carotenoids, however, their uptake, retention and metabolism in specific liver and intestinal cell types is still unknown. Hence, we studied the cellular and subcellular expression and localization of BCO1 and BCO2 proteins in rat liver and intestine. We demonstrate that both BCO1 and BCO2 proteins are localized in hepatocytes and mucosal epithelium. We also show that BCO1 is also highly expressed in hepatic stellate cells (HSC) and portal endothelial cells in liver. At the subcellular level in liver, BCO1 is found in cytosol, while BCO2 is found in mitochondria. In intestine, immunohistochemistry showed strong BCO1 immunoreactivity in the duodenum, particularly in Brunner's glands. Both BCO1 and BCO2 showed diffuse presence along epithelia with strong immunoreactivity in endothelial cells and in certain epithelial cells which warrant further investigation as possible intestinal retinoid storage cells.
Collapse
Affiliation(s)
- Shiva Raghuvanshi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - Vanessa Reed
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
42
|
Gong X, Rubin LP. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch Biochem Biophys 2015; 572:40-48. [PMID: 25701588 DOI: 10.1016/j.abb.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/03/2015] [Accepted: 02/08/2015] [Indexed: 12/20/2022]
Abstract
Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are important causes of blindness among children and working-age adults, respectively. The development of both diseases involves retinal microvascular degeneration, vessel loss and consequent hypoxic and inflammatory pathologic retinal neovascularization. Mechanistic studies have shown that oxidative stress and subsequent derangement of cell signaling are important factors in disease progression. In eye and vision research, role of the dietary xanthophyll carotenoids, lutein and zeaxanthin, has been more extensively studied in adult onset macular degeneration than these other retinopathies. These carotenoids also may decrease severity of ROP in preterm infants and of DR in working-age adults. A randomized controlled clinical trial of carotenoid supplementation in preterm infants indicated that lutein has functional effects in the neonatal eye and is anti-inflammatory. Three multicenter clinical trials all showed a trend of decreased ROP severity in the lutein supplemented group. Prospective studies on patients with non-proliferative DR indicate serum levels of lutein and zeaxanthin are significantly lower in these patients compared to normal subjects. The present review describes recent advances in lutein and zeaxanthin modulation of oxidative stress and inflammation related to ROP and DR and discusses potential roles of lutein/zeaxanthin in preventing or lessening the risks of disease initiation or progression.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Texas Tech University Health Science Center, Paul L. Foster School of Medicine, El Paso, TX 79905, USA
| | - Lewis P Rubin
- Department of Pediatrics, Texas Tech University Health Science Center, Paul L. Foster School of Medicine, El Paso, TX 79905, USA.
| |
Collapse
|
43
|
Ip BC, Liu C, Ausman LM, von Lintig J, Wang XD. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice. Cancer Prev Res (Phila) 2014; 7:1219-27. [PMID: 25293877 DOI: 10.1158/1940-6207.capr-14-0154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10'-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9',10'-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation, and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 expression is important using BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs. 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs. 20%) and multiplicity (58% vs. 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic proinflammatory signaling (phosphorylation of NK-κB p65 and STAT3; IL6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ER(UPR)), through decreasing ER(UPR)-mediated protein kinase RNA-activated like kinase-eukaryotic initiation factor 2α activation, and inositol requiring 1α-X-box-binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals, including Met mRNA, β-catenin protein, and mTOR complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression.
Collapse
Affiliation(s)
- Blanche C Ip
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts. Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts.
| |
Collapse
|
44
|
Sui X, Kiser PD, Che T, Carey PR, Golczak M, Shi W, von Lintig J, Palczewski K. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO). J Biol Chem 2014; 289:12286-99. [PMID: 24648526 PMCID: PMC4007427 DOI: 10.1074/jbc.m114.552836] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage enzymes (CCEs) constitute a group of evolutionarily related proteins that metabolize a variety of carotenoid and non-carotenoid substrates. Typically, these enzymes utilize a non-heme iron center to oxidatively cleave a carbon-carbon double bond of a carotenoid substrate. Some members also isomerize specific double bonds in their substrates to yield cis-apocarotenoid products. The apocarotenoid oxygenase from Synechocystis has been hypothesized to represent one such member of this latter category of CCEs. Here, we developed a novel expression and purification protocol that enabled production of soluble, native ACO in quantities sufficient for high resolution structural and spectroscopic investigation of its catalytic mechanism. High performance liquid chromatography and Raman spectroscopy revealed that ACO exclusively formed all-trans products. We also found that linear polyoxyethylene detergents previously used for ACO crystallization strongly inhibited the apocarotenoid oxygenase activity of the enzyme. We crystallized the native enzyme in the absence of apocarotenoid substrate and found electron density in the active site that was similar in appearance to the density previously attributed to a di-cis-apocarotenoid intermediate. Our results clearly demonstrated that ACO is in fact a non-isomerizing member of the CCE family. These results indicate that careful selection of detergent is critical for the success of structural studies aimed at elucidating structures of CCE-carotenoid/retinoid complexes.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Departments of Pharmacology and
| | | | - Tao Che
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Paul R. Carey
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | | | - Wuxian Shi
- the Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988
| | | | | |
Collapse
|
45
|
The evolution and functional divergence of the beta-carotene oxygenase gene family in teleost fish--exemplified by Atlantic salmon. Gene 2014; 543:268-74. [PMID: 24583166 DOI: 10.1016/j.gene.2014.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
In mammals, two carotenoid cleaving oxygenases are known; beta-carotene 15,15'-monooxygenase (BCMO1) and beta-carotene 9',10'-oxygenase (BCO2). BCMO1 is a key enzyme in vitamin A synthesis by symmetrically cleaving beta-carotene into 2 molecules of all-trans-retinal, while BCO2 is responsible for asymmetric cleavage of a broader range of carotenoids. Here, we show that the Atlantic salmon beta-carotene oxygenase (bco) gene family contains 5 members, three bco2 and two bcmo1 paralogs. Using public sequence databases, multiple bco genes were also found in several additional teleost species. Phylogenetic analysis indicates that bco2a and bco2b originate from the teleost fish specific genome duplication (FSGD or 3R), while the third and more distant paralog, bco2 like, might stem from a prior duplication event in the teleost lineage. The two bcmo1 paralogs (bcmo1 and bcmo1 like) appear to be the result of an ancient duplication event that took place before the divergence of ray-finned (Actinopterygii) and lobe-finned fish (Sarcopterygii), with subsequent nonfunctionalization and loss of one Sarcopterygii paralog. Gene expression analysis of the bcmo1 and bco2 paralogs in Atlantic salmon reveals regulatory divergence with tissue specific expression profiles, suggesting that the beta-carotene oxygenase subtypes have evolved functional divergences. We suggest that teleost fish have evolved and maintained an extended repertoire of beta-carotene oxygenases compared to the investigated Sarcopterygii species, and hypothesize that the main driver behind this functional divergence is the exposure to a diverse set of carotenoids in the aquatic environment.
Collapse
|
46
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
47
|
Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients 2013; 6:124-62. [PMID: 24379011 PMCID: PMC3916853 DOI: 10.3390/nu6010124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Increased prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the consequences of the current obesity epidemic. NAFLD is a major form of chronic liver disease that is highly prevalent in obese and overweight adults and children. Nonalcoholic steatohepatitis (NASH) is the severe form of NAFLD, and uncontrolled inflammation as displayed in NASH has been identified as one of the key events in enhancing hepatic carcinogenesis. Lycopene is a non-provitamin A carotenoid and the pigment principally responsible for the characteristic deep-red color of ripe tomato and tomato products, as well as some fruits and vegetables. Lycopene's innate antioxidant and anti-inflammatory properties have generated research interests on its capacity to protect against human diseases that are associated with oxidative stress and inflammation. In addition, differential mechanisms of lycopene metabolism including endogenous cleavage by carotenoid cleavage oxygenases (BCOs), generate lycopene metabolites that may also have significant impact on human disease development. However, it remains to be elucidated as to whether lycopene or its metabolites apolycopenoids have protective effects against obesity-related complications including inflammation and tumorigenesis. This article summarizes the in vivo experiments that elucidated molecular mechanisms associated with obesity-related hepatic inflammation and carcinogenesis. This review also provides an overview of lycopene metabolism, and the molecular pathways involved in the potential beneficial properties of lycopene and apolycopenoids. More research is clearly needed to fully unravel the importance of BCOs in tomato carotenoid metabolism and the consequence on human health and diseases.
Collapse
|
48
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
49
|
Sui X, Kiser PD, von Lintig J, Palczewski K. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 2013; 539:203-13. [PMID: 23827316 PMCID: PMC3818509 DOI: 10.1016/j.abb.2013.06.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Carotenoids and their metabolic derivatives serve critical functions in both prokaryotic and eukaryotic cells, including pigmentation, photoprotection and photosynthesis as well as cell signaling. These organic compounds are also important for visual function in vertebrate and non-vertebrate organisms. Enzymatic transformations of carotenoids to various apocarotenoid products are catalyzed by a family of evolutionarily conserved, non-heme iron-containing enzymes named carotenoid cleavage oxygenases (CCOs). Studies have revealed that CCOs are critically involved in carotenoid homeostasis and essential for the health of organisms including humans. These enzymes typically display a high degree of regio- and stereo-selectivity, acting on specific positions of the polyene backbone located in their substrates. By oxidatively cleaving and/or isomerizing specific double bonds, CCOs generate a variety of apocarotenoid isomer products. Recent structural studies have helped illuminate the mechanisms by which CCOs mobilize their lipophilic substrates from biological membranes to perform their characteristic double bond cleavage and/or isomerization reactions. In this review, we aim to integrate structural and biochemical information about CCOs to provide insights into their catalytic mechanisms.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Philip D. Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| |
Collapse
|
50
|
Kowatz T, Babino D, Kiser P, Palczewski K, von Lintig J. Characterization of human β,β-carotene-15,15'-monooxygenase (BCMO1) as a soluble monomeric enzyme. Arch Biochem Biophys 2013; 539:214-22. [PMID: 23727499 PMCID: PMC3795993 DOI: 10.1016/j.abb.2013.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022]
Abstract
The formal first step in in vitamin A metabolism is the conversion of its natural precursor β,β-carotene (C40) to retinaldehyde (C20). This reaction is catalyzed by the enzyme β,β-carotene-15,15'-monooxygenase (BCMO1). BCMO1 has been cloned from several vertebrate species, including humans. However, knowledge about this protein's enzymatic and structural properties is scant. Here we expressed human BCMO1 in Spodoptera frugiperda 9 insect cells. Recombinant BCMO1 is a soluble protein that displayed Michaelis-Menten kinetics with a KM of 14 μM for β,β-carotene. Though addition of detergents failed to increase BCMO1 enzymatic activity, short chain aliphatic detergents such as C8E4 and C8E6 decreased enzymatic activity probably by interacting with the substrate binding site. Thus we purified BCMO1 in the absence of detergent. Purified BCMO1 was a monomeric enzymatically active soluble protein that did not require cofactors and displayed a turnover rate of about 8 molecules of β,β-carotene per second. The aqueous solubility of BCMO1 was confirmed in mouse liver and mammalian cells. Establishment of a protocol that yields highly active homogenous BCMO1 is an important step towards clarifying the lipophilic substrate interaction, reaction mechanism and structure of this vitamin A forming enzyme.
Collapse
Affiliation(s)
- Thomas Kowatz
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Darwin Babino
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Philip Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|