1
|
Xia W, Jin C, Wang S, Zhang Y, Li K, Huang X, Zheng C, Chen W. Developmental proteome dynamics in granulosa and thecal layers from growing follicles to pre-ovulatory duck follicles†. Biol Reprod 2025; 112:675-691. [PMID: 39905481 DOI: 10.1093/biolre/ioaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025] Open
Abstract
Granulosa and thecal layer cells play important roles in the post-hatching follicular growth in laying birds. To examine the biochemical processes of granulosa and thecal layers associated with follicular growth, the technique of data independent acquisition was used in this study to explore protein profiling in granulosa and thecal layers from growing follicles in laying ducks. We identified and quantitatively analyzed 8032 proteins in granulosa cells and 9552 proteins in thecal layer cells. Hierarchical clustering of the resulting profiles revealed differential changes of expression of proteins linked to cell metabolism, signaling, cell junction, especially in steroid synthesis, peroxisome proliferator-activated receptor, and gap junction signaling pathway at different stages of follicles. The highest expression of proteins related to gap junction and peroxisome proliferator-activated receptor signaling pathway occurred in granulosa cells of 3-6 mm or 6-8 mm follicles. In granulosa cells, decreases in the enzymes that catalyze the transformation of estrone into estradiol and proteins related to calcium transport and apoptosis occurred during follicular growth. As follicles grew, proteins related to androgens biosynthesis and involved in gap junction and peroxisome proliferator-activated receptor signaling pathway decreased in the thecal layer cells. Three main group functional clusters extracted from the protein-protein interaction network, were mainly responsible for apoptosis, steroid hormone biosynthesis, and the peroxisome proliferator-activated receptor signaling pathway. These proteomic data provide a holistic framework for understanding how diverse biochemical processes in granulosa cells and thecal layer cells are coordinated at the cellular level during follicular growth in laying birds.
Collapse
Affiliation(s)
- Weiguang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chenglong Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yanan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaichao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuebing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Ardenkjær-Skinnerup J, Saar D, Petersen PSS, Pedersen M, Svingen T, Kragelund BB, Hadrup N, Ravn-Haren G, Emanuelli B, Brown KA, Vogel U. PPARγ antagonists induce aromatase transcription in adipose tissue cultures. Biochem Pharmacol 2024; 222:116095. [PMID: 38423186 DOI: 10.1016/j.bcp.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.
Collapse
Affiliation(s)
- Jacob Ardenkjær-Skinnerup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Daniel Saar
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Patricia S S Petersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Mikael Pedersen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Terje Svingen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Hadrup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Brice Emanuelli
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Ulla Vogel
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Gao M, Shen H, Li Q, Gu X, Jia T, Wang Y. Perfluorooctane sulfonate (PFOS) induces apoptosis and autophagy by inhibition of PI3K/AKT/mTOR pathway in human granulosa cell line KGN. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123333. [PMID: 38211877 DOI: 10.1016/j.envpol.2024.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is recognized as an environmental endocrine disruptor with widespread use in industrial manufacturing and daily life, contributing to various public health concerns. However, the precise impacts of PFOS on the ovary and its regulatory mechanisms remain unclear. This study aims to delineate the ovarian toxicity of PFOS and scrutinize its effects on apoptosis and autophagy through modulation of the PI3K/AKT/mTOR pathway in the human granulosa cell line (KGN). Cell viability, assessed via the Cell Counting Kit-8 (CCK8), revealed a dose-dependent reduction in cell viability upon PFOS exposure. Flow cytometry analysis demonstrated an elevated proportion of apoptotic cells following PFOS treatment. Western blot analyses unveiled increased expression of Bax, Cyt c, cleaved caspase-9, and LC3-II/I, coupled with decreased expression of Bcl-2 and p62. Transmission electron microscopy (TEM) observations illustrated a heightened number of autophagosomes induced by PFOS. Molecular docking investigations, in conjunction with Western blot experiments, substantiated PFOS's significant inhibition of the PI3K/AKT/mTOR signaling pathway. These findings collectively underscore that PFOS induces apoptosis and autophagy in KGN cells through modulation of the PI3K/AKT/mTOR pathway, providing experimental evidence for PFOS-induced ovarian toxicity and elucidating the underlying regulatory mechanisms in KGN cells.
Collapse
Affiliation(s)
- Min Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiuyuan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuzhao Gu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianyu Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First School of Clinical Medicine & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Key Laboratory for Reproductive Medicine and Embryo of Gansu Province & Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, China.
| |
Collapse
|
4
|
Ju S, He J, Wang H, Yang L, Guo A, Guo Y, Qi M, Wang H, Ai L. Potential therapeutic drug targets and pathways prediction for premature ovarian insufficiency -Based on network pharmacologic method. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116054. [PMID: 36526095 DOI: 10.1016/j.jep.2022.116054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of premature ovarian insufficiency (POI) is gradually increasing, the proportion is rising especially in female infertility patients. The risk of death of POI patients with cardiovascular disease also increases significantly. The cause of POI is complex and unclear, and clinical treatment is still in the exploratory stage, are two major constraints of treating POI. Traditional Chinese medicine (TCM) is widely used in the treatment of POI, and it is a good way to combine the development of modern new drugs with the help of TCM to predict the therapeutic targets. AIM OF THE STUDY In this study, four herbs commonly used in clinical treatment of POI, namely Radix Paeoniae, Polygonatum sibiricum, Rehmannia glutinosa and Eucommia ulmoides were selected to predict their mechanism in the treatment of POI, using network pharmacology methods. Then verify the predicted targets by animal test. Aim to find more effective POI potential core treatment targets and main pathways. MATERIALS AND METHODS We screened the active ingredients of drugs from the TCM System Pharmacology Analysis Platform (TCMSP), Performed target prediction of active ingredients from databases such as SwissTargetPrediction and compare and analyze the POI-related targets retrieved from them to obtain potential targets for drug treatment of POI. Used STRING database to construct a protein interaction network, Cytoscape 3.7.2 software to construct an active ingredient-target-pathway network, and DAVID database to conduct the Kyoto Encyclopedia of Genes and Genomes (KEGG) on the intersection targets and gene ontology (GO) enrichment analysis. RESULTS The result is: there were 25 key targets for the treatment of POI with Radix Paeoniae Alba, 31 for the treatment of POI by Eucommia ulmoides, 28 for the treatment of POI by Polygonatum sibiricum, and 8 key targets for the treatment of Rehmannia glutinosa. The intersection targets of four herbs were defined as the core targets, which are CYP19A1, EGF, ESR1, ESR2, MDM2, AR, PCYP17A1, PPARG. Four Chinese herbs treat POI mainly through HIF-1 signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Estrogen signaling pathway etc. A mouse model of POI was constructed based on the results of network pharmacology to verify the predicted targets. The results showed that the protein expression of the core target changed, and the estrogen level was increased by reducing the expression of peroxisome proliferator-activated receptor gamma (PPARG). CONCLUSIONS This study predicts the mechanism of multiple herbs in the treatment of POI, screens out more potential therapeutic drug targets and main pathways of POI treatment and provides new ideas for the subsequent development of POI therapeutic drugs.
Collapse
Affiliation(s)
- Shan Ju
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jialin He
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Hanbi Wang
- Department of Gynecological Endocrinology & Reproductive Medicine, Peking Union Medical College Hospital, Peking Medical College /Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Liya Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - AiXin Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Yiming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Mingkang Qi
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Huiping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China.
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
5
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
6
|
Liu T, Huang Y, Lin H. Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 2021; 47:73. [PMID: 33693952 PMCID: PMC7952251 DOI: 10.3892/ijmm.2021.4906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen-dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen-dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle-stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK). In addition, endocrine-disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Suriyakalaa U, Ramachandran R, Doulathunnisa JA, Aseervatham SB, Sankarganesh D, Kamalakkannan S, Kadalmani B, Angayarkanni J, Akbarsha MA, Achiraman S. Upregulation of Cyp19a1 and PPAR-γ in ovarian steroidogenic pathway by Ficus religiosa: A potential cure for polycystic ovary syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113540. [PMID: 33152430 DOI: 10.1016/j.jep.2020.113540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quite a few plants are in use to treat female infertility and associated problems. Availing the cues from traditional knowledge, phytochemical studies and ethnopharmacological evidences, the aphrodisiac plant Ficus religiosa (F. religiosa) is widely in use to cure infertility in women. For instance, the juice of leaf and aerial root of F. religiosa is reported to normalize the dysregulated menstrual cycle in women. Besides, it is believed that regular circumambulation of F. religiosa during the early hours of the morning helps women in alleviating infertility which could be attributed to the potential phytovolatiles released from F. religiosa. However, the evidences for therapeutic potential of F. religiosa in treating female infertility are arbitrary and mostly anecdotal. AIM OF THE STUDY The present study was aimed at examining if extracts of fresh and/or dry leaf of F. religiosa would cure polycystic ovary syndrome (PCOS) in the rat model. METHODS Rats were divided into seven groups; control (Group I), PCOS-induced (P.O, Letrozole -1 mg/kg BW for 21 days) and untreated (Group II), PCOS-induced and treated with the leaf extracts of F. religiosa (Groups III-VI), and, PCOS-induced and treated with pioglitazone (Group VII). The estrous intervals, body and organ weights (ovary and uterus), and serum hormones (testosterone, luteinizing hormone [LH], estrogen, and progesterone) were measured, and the expression of Cyp19a1 (aromatase), and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) were assessed in the experimental rats. The levels of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and antioxidants (MDA, GSH, GPx, SOD, and CAT) were also quantified. Besides, the putative volatile compounds in the esterified leaf extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS Letrozole treatment induced irregular estrous and altered weight of organs and hormonal milieu, which were reverted to normal in leaf extracts-treated PCOS-induced rats. Remarkably, fresh leaf treatment up-regulated Cyp19a1and PPAR-γ and increased the levels of 3β-HSD and 17β-HSD. We found 3-acetoxy-3-hydroxy-propionic acid in fresh and dry leaf extracts, which we attribute to efficacy of the extracts in alleviating PCOS. CONCLUSION Put together, our findings suggest the leaves of F. religiosa as potential in alleviating PCOS, mainly due to the presence of putative volatile molecules. Further screening of the leaves of F. religiosa is recommended to identify other key molecules and to develop a systematic therapeutic intervention for PCOS.
Collapse
Affiliation(s)
- Udhayaraj Suriyakalaa
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India; Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India; PG and Research Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamilnadu, India
| | - Rajamanickam Ramachandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India; Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Jaffar Ali Doulathunnisa
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Smilin Bell Aseervatham
- PG and Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, 620002, Tamilnadu, India
| | - Devaraj Sankarganesh
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India; Department of Biotechnology, School of Bio- and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | | | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | | | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
8
|
Zerani M, Polisca A, Boiti C, Maranesi M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals (Basel) 2021; 11:ani11020296. [PMID: 33503812 PMCID: PMC7911389 DOI: 10.3390/ani11020296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Corpora lutea (CL) are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. A variety of regulatory factors come into play in modulating the functional lifespan of CL, with luteotropic and luteolytic effects. Many aspects of luteal phase physiology have been clarified, yet many others have not yet been determined, including the molecular and/or cellular mechanisms that maintain the CL from the beginning of luteolysis during early CL development. This paper summarizes our current knowledge of the endocrine and cellular mechanisms involved in multifactorial CL lifespan regulation, using the pseudopregnant rabbit model. Abstract Our research group studied the biological regulatory mechanisms of the corpora lutea (CL), paying particular attention to the pseudopregnant rabbit model, which has the advantage that the relative luteal age following ovulation is induced by the gonadotrophin-releasing hormone (GnRH). CL are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. It is now clear that, besides the classical regulatory mechanism exerted by prostaglandin E2 (luteotropic) and prostaglandin F2α (luteolytic), a considerable number of other effectors assist in the regulation of CL. The aim of this paper is to summarize our current knowledge of the multifactorial mechanisms regulating CL lifespan in rabbits. Given the essential role of CL in reproductive success, a deeper understanding of the regulatory mechanisms will provide us with valuable insights on various reproductive issues that hinder fertility in this and other mammalian species, allowing to overcome the challenges for new and more efficient breeding strategies.
Collapse
|
9
|
Ievleva KD, Danusevich IN, Suturina LV. [Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis]. ACTA ACUST UNITED AC 2020; 66:74-80. [PMID: 33481370 DOI: 10.14341/probl12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female endocrine infertility. Insulin resistanсе is supposed to be one of the essential factors of this disease pathways. At the same time, the mechanisms of PCOS development in insulin-resistant patients have not been completely established. Leptin and Peroxisome Proliferator-Activated Receptor γ(PPARγ) are involved in carbohydrate metabolism and reproduction function regulation. It indicates that leptin and PPARγ possibly play a role in the pathways of PCOS. This article is a review of publications on this issue. The purpose of this review was to systematize the available information on the molecular mechanisms that determine the role of leptin and PPARγ in the development of PCOS. The literature search was carried out from 04/05/2020 to 05/17/2020 using the scientific literature databases: NCBI PubMed (foreign sources) and Cyberleninka (domestic sources). We analyzed publications for the period 1990-2020.The review presents the current understanding of the possible role of leptin and PPARγ in the regulation of endocrine, immune systems, and reproductive function, as well as in the development of PCOS. Currently, no studies cover the mechanisms of interaction between leptin and PPARγ in the pathways of this syndrome. The available studies indicating the individual contribution and association of leptin and PPARγ with PCOS are conflicting and have many limitations. Therefore, more studies of direct and indirect interaction of leptin and PPARγ, as well as their role in PCOS pathways, are needed.
Collapse
Affiliation(s)
- K D Ievleva
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - I N Danusevich
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - L V Suturina
- Scientific Сentre for Family Health and Human Reproduction Problems
| |
Collapse
|
10
|
Ferst JG, Rovani MT, Dau AM, Gasperin BG, Antoniazzi AQ, Bordignon V, Oliveira DE, Gonçalves PB, Ferreira R. Activation of PPARG inhibits dominant follicle development in cattle. Theriogenology 2020; 142:276-283. [DOI: 10.1016/j.theriogenology.2019.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
|
11
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
12
|
Liu S, Sun Q. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes. J Diabetes 2018; 10:428-441. [PMID: 27990781 DOI: 10.1111/1753-0407.12517] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
In assessing clinical and pathophysiological development of type 2 diabetes (T2D), the critical role of the sex steroids axis is underappreciated, particularly concerning the sex-specific relationships with many relevant cardiometabolic outcomes. In this issue of the Journal of Diabetes, we provide a comprehensive overview of these significant associations of germline variants in the genes governing the sex steroid pathways, plasma levels of steroid hormones, and sex hormone-binding globulin (SHBG) with T2D risk that have been observed in many clinical and high-quality large prospective cohorts of men and women across ethnic populations. Together, this body of evidence indicates that sex steroids and SHBG should be routinely incorporated into clinical characterization of T2D patients, particularly in screening prediabetic patients, such as those with metabolic syndrome, using plasma levels of SHBG. Given that several germline mutations in the SHBG gene have also been directly related to both plasma concentrations of SHBG and clinical manifestation of T2D, targeting signals in the sex steroid axis, particularly SHBG, may have significant utility in the prediction and treatment of T2D. Further, many of the environmental endocrine disrupting chemicals may exert their potential adverse effects on cardiometabolic outcomes via either estrogenic or androgenic signaling pathways, highlighting the importance of using the sex steroids and SHBG as important biochemical markers in both clinical and population studies in studying sex-specific mechanisms in the pathogenesis of T2D and its complications, as well as the need to equitably allocate resources in studying both men and women.
Collapse
Affiliation(s)
- Simin Liu
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- Departments of Epidemiology, Brown University, Providence, Rhode Island, USA
- Departments of Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, Rhode Island, USA
- Departments of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qi Sun
- Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Chaparro-Ortega A, Betancourt M, Rosas P, Vázquez-Cuevas FG, Chavira R, Bonilla E, Casas E, Ducolomb Y. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis. Toxicol In Vitro 2018; 46:86-93. [DOI: 10.1016/j.tiv.2017.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
|
14
|
Nepelska M, Odum J, Munn S. Adverse Outcome Pathway: Peroxisome Proliferator-Activated Receptor α Activation and Reproductive Toxicity—Development and Application in Assessment of Endocrine Disruptors/Reproductive Toxicants. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Małgorzata Nepelska
- European Commission, Joint Research Centre (JRC), Directorate F–Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods, Ispra, Italy
| | - Jenny Odum
- Regulatory Science Associates, Kip Marina, Inverkip, Renfrewshire, England
| | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Directorate F–Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods, Ispra, Italy
| |
Collapse
|
15
|
Mitwally MFM, Witchel SF, Casper RF. Troglitazone: A Possible Modulator of Ovarian Steroidogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Selma F. Witchel
- Reproductive Sciences Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada: Department of Gynecology and Obstetrics, State University of New York (SUNY) at Buffalo, Buffalo, New York; Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert F. Casper
- Reproductive Sciences Division, Department of Obstetrics & Gynecology, University of Toronto, Room 876, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
16
|
Sacchi S, Marinaro F, Tondelli D, Lui J, Xella S, Marsella T, Tagliasacchi D, Argento C, Tirelli A, Giulini S, La Marca A. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod Biol Endocrinol 2016; 14:52. [PMID: 27582109 PMCID: PMC5006365 DOI: 10.1186/s12958-016-0189-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). METHODS The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. RESULTS DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. CONCLUSIONS Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.
Collapse
Affiliation(s)
- Sandro Sacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Federica Marinaro
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Debora Tondelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Jessica Lui
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Susanna Xella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Tiziana Marsella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Cindy Argento
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Alessandra Tirelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Simone Giulini
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Antonio La Marca
- University of Modena and Reggio Emilia and Clinica Eugin Modena, Modena, Italy
| |
Collapse
|
17
|
Lauretta R, Lanzolla G, Vici P, Mariani L, Moretti C, Appetecchia M. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk. Int J Endocrinol 2016; 2016:8671762. [PMID: 27725832 PMCID: PMC5048026 DOI: 10.1155/2016/8671762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis.
Collapse
Affiliation(s)
- Rosa Lauretta
- Unit of Endocrinology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Lanzolla
- Unit of Endocrinology, Department of Systems' Medicine, University of Rome Tor Vergata, Section of Reproductive Endocrinology, Fatebenefratelli Hospital “San Giovanni Calibita” Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology B, Regina Elena National Cancer Institute, Rome, Italy
| | - Luciano Mariani
- Department of Gynaecologic Oncology, HPV-Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Costanzo Moretti
- Unit of Endocrinology, Department of Systems' Medicine, University of Rome Tor Vergata, Section of Reproductive Endocrinology, Fatebenefratelli Hospital “San Giovanni Calibita” Rome, Italy
| | - Marialuisa Appetecchia
- Unit of Endocrinology, Regina Elena National Cancer Institute, Rome, Italy
- *Marialuisa Appetecchia:
| |
Collapse
|
18
|
Mahalingaiah S, Diamanti-Kandarakis E. Targets to treat metabolic syndrome in polycystic ovary syndrome. Expert Opin Ther Targets 2015; 19:1561-74. [PMID: 26488852 DOI: 10.1517/14728222.2015.1101067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Metabolic syndrome is comprised of a combination of the following states: increased insulin resistance, dyslipidemia, cardiovascular disease, and increased abdominal obesity. Women with polycystic ovary syndrome (PCOS) have an increased risk of developing metabolic syndrome over the course of their lives. Metabolic syndrome increases risk of major cardiovascular events, morbidity, quality of life, and overall health care costs. Though metabolic syndrome in women with PCOS is an area of great concern, there is no effective individual medical therapeutic to adequately treat this issue. AREAS COVERED This article will review key aspects of metabolic syndrome in PCOS. We will discuss classic and novel therapeutics to address metabolic syndrome in women with PCOS. We will conclude with the importance of developing strategic interventions to increase the compliance to lifestyle and dietary modification, in addition to appreciation of the emerging pharmaceutical therapeutics available. EXPERT OPINION Innovation in lifestyle modification, including diet, exercise, with and without dedicated stress reduction techniques is the future in treatment of metabolic syndrome in PCOS. Application of novel interventions, such as group medical care, may improve future adherence to lifestyle modification recommendations, in addition to or in combination with pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Shruthi Mahalingaiah
- a Department of Obstetrics and Gynecology , Boston University School of Medicine , Boston , MA 02118 , USA
| | - Evanthia Diamanti-Kandarakis
- b Department of Endocrinology, Diabetes & Metabolism , University of Athens Medical School , Athens 11521 , Greece
| |
Collapse
|
19
|
Meta-Analysis of Microarray Data of Rainbow Trout Fry Gonad Differentiation Modulated by Ethynylestradiol. PLoS One 2015; 10:e0135799. [PMID: 26379055 PMCID: PMC4574709 DOI: 10.1371/journal.pone.0135799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/27/2015] [Indexed: 01/25/2023] Open
Abstract
Sex differentiation in fish is a highly labile process easily reversed by the use of exogenous hormonal treatment and has led to environmental concerns since low doses of estrogenic molecules can adversely impact fish reproduction. The goal of this study was to identify pathways altered by treatment with ethynylestradiol (EE2) in developing fish and to find new target genes to be tested further for their possible role in male-to-female sex transdifferentiation. To this end, we have successfully adapted a previously developed bioinformatics workflow to a meta-analysis of two datasets studying sex reversal following exposure to EE2 in juvenile rainbow trout. The meta-analysis consisted of retrieving the intersection of the top gene lists generated for both datasets, performed at different levels of stringency. The intersecting gene lists, enriched in true positive differentially expressed genes (DEGs), were subjected to over-representation analysis (ORA) which allowed identifying several statistically significant enriched pathways altered by EE2 treatment and several new candidate pathways, such as progesterone-mediated oocyte maturation and PPAR signalling. Moreover, several relevant key genes potentially implicated in the early transdifferentiation process were selected. Altogether, the results show that EE2 has a great effect on gene expression in juvenile rainbow trout. The feminization process seems to result from the altered transcription of genes implicated in normal female gonad differentiation, resulting in expression similar to that observed in normal females (i.e. the repression of key testicular markers cyp17a1, cyp11b, tbx1), as well as from other genes (including transcription factors) that respond specifically to the EE2 treatment. The results also showed that the bioinformatics workflow can be applied to different types of microarray platforms and could be generalized to (eco)toxicogenomics studies for environmental risk assessment purposes.
Collapse
|
20
|
The influence of ovariectomy on anti-convulsant effect of pioglitazone in mice. PATHOPHYSIOLOGY 2015; 22:159-63. [DOI: 10.1016/j.pathophys.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
|
21
|
Zaree M, Shahnazi V, Fayezi S, Darabi M, Mehrzad-Sadaghiani M, Darabi M, Khani S, Nouri M. Expression Levels of PPARγ and CYP-19 in Polycystic Ovarian Syndrome Primary Granulosa Cells: Influence of ω-3 Fatty Acid. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 9:197-204. [PMID: 26246878 PMCID: PMC4518488 DOI: 10.22074/ijfs.2015.4240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 06/18/2014] [Indexed: 11/04/2022]
Abstract
BACKGROUND The omega-3 fatty acid (ω-3 fatty acid) such as eicosapentaenoic acid (EPA) is currently used in the clinic as a nutritional supplement in the treatment of poly- cystic ovarian syndrome (PCOS). The present study was designed to investigate the ef- fect of EPA on the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and cytochrome P450 aromatase (encoded by the CYP-19) in primary cultured granulosa cells (GC) from patients undergoing in vitro fertilization (IVF), and also to compare these effects with those in GC of PCOS patients. MATERIALS AND METHODS In this experimental study, human GC were isolated, pri- mary cultured in vitro, exposed to a range of concentrations of the EPA and in- vestigated with respect to gene expression levels of PPARγ and CYP-19 using real time-polymerase chain reaction (PCR). The participants (n=30) were the patients admitted to the IVF Center in February-March 2013 at Alzahra Hospital, Tabriz, Iran, who were divided into two groups as PCOS (n=15) and non-PCOS (n=15) women (controls). RESULTS All doses of the EPA significantly induced PPARγ mRNA gene expression level as compared to the control recombinant follicle stimulating hormone (rFSH) alone condi- tion. High doses of EPA in the presence of rFSH produced a stimulatory effect on expres- sion level of PPARγ (2.15-fold, P=0.001) and a suppressive effect (0.56-fold, P=0.01) on the expression level of CYP-19, only in the PCOS GC. CONCLUSION EPA and FSH signaling pathway affect differentially on the gene ex- pression levels of PPARγ and CYP-19 in PCOS GC. Altered FSH-induced PPARγ activity in PCOS GC may modulate the CYP-19 gene expression in response to EPA, and possibly modulates the subsequent steroidogenesis of these cells.
Collapse
Affiliation(s)
- Mina Zaree
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Shahnazi
- Women's Reproductive Health Research Center, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Students Research Committee, Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Darabi
- Women's Reproductive Health Research Center, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahzad Mehrzad-Sadaghiani
- Women's Reproductive Health Research Center, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Khani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Women's Reproductive Health Research Center, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Bertuloso BD, Podratz PL, Merlo E, de Araújo JFP, Lima LCF, de Miguel EC, de Souza LN, Gava AL, de Oliveira M, Miranda-Alves L, Carneiro MTWD, Nogueira CR, Graceli JB. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol Lett 2015; 235:45-59. [PMID: 25819109 DOI: 10.1016/j.toxlet.2015.03.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/23/2015] [Accepted: 03/21/2015] [Indexed: 12/13/2022]
Abstract
Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas.
Collapse
Affiliation(s)
- Bruno D Bertuloso
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | - Leandro C F Lima
- Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Emilio C de Miguel
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | | | - Agata L Gava
- Department of Physiology, Federal University of Espírito Santo, Brazil
| | - Miriane de Oliveira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, RJ, Brazil
| | | | - Celia R Nogueira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
23
|
Ernst J, Jann JC, Biemann R, Koch HM, Fischer B. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Mol Hum Reprod 2014; 20:919-28. [PMID: 24950685 DOI: 10.1093/molehr/gau045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad range of effects on granulosa cell function.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| | - Johann-Christoph Jann
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| | - Ronald Biemann
- Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum D-44789, Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| |
Collapse
|
24
|
Parillo F, Maranesi M, Brecchia G, Gobbetti A, Boiti C, Zerani M. In vivo chronic and in vitro acute effects of di(2-ethylhexyl) phthalate on pseudopregnant rabbit corpora lutea: possible involvement of peroxisome proliferator-activated receptor gamma. Biol Reprod 2014; 90:41. [PMID: 24403546 DOI: 10.1095/biolreprod.113.109223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The in vivo chronic and in vitro acute effects of di(2-ethylhexyl) phthalate (DEHP) on the reproductive function of peroxisome proliferator-activated receptor gamma (PPARG) were studied in rabbit corpora lutea (CL) at early stage (Day 4), midstage (Day 9), and late stage (Day 13) of pseudopregnancy. The rabbits were in vivo treated with DEHP for 15 days before induction of pseudopregnancy. Immunohistochemistry provided evidence for the presence of PPARG, prostaglandin endoperoxide synthase 1 (PTGS1), PTGS2, prostaglandin E2-9-ketoreductase (PGE2-9-K), and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in all the luteal cells during pseudopregnancy. DEHP decreased progesterone plasma levels and CL production in all the luteal stages and PPARG protein and gene expressions in early and mid-CL. DEHP in vivo treatment reduced PTGS2 protein expression at the late stage and that of PGE2-9-K at all the stages, whereas PTGS1 and 3beta-HSD were not affected. In in vitro cultured CL, DEHP alone, the PPARG antagonist T0070907 alone, or DEHP plus T0070907 diminished progesterone production and 3beta-HSD activity and increased PGF2alpha and PTGS2 in early and mid-CL, whereas DEHP plus the PPARG agonist 15d-PGJ2 did not affect these hormones and enzymes. All the in vitro treatments did not affect PGE2 secretion as well as PTGS1 and PGE2-9-K enzymatic activities in all the luteal stages. These results provided evidence that DEHP favors functional luteolysis of pseudopregnant rabbit CL, with a mechanism that seems to involve PPARG expression down-regulation, an increase of PTGS2 activity and prostaglandin F2alpha secretion, 3beta-HSD down-regulation, and decrease in progesterone.
Collapse
Affiliation(s)
- Francesco Parillo
- Scuola di Scienze mediche veterinarie, Università di Camerino, Matelica, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Lebovic DI, Kavoussi SK, Lee J, Banu SK, Arosh JA. PPARγ activation inhibits growth and survival of human endometriotic cells by suppressing estrogen biosynthesis and PGE2 signaling. Endocrinology 2013; 154:4803-13. [PMID: 24064359 PMCID: PMC5398600 DOI: 10.1210/en.2013-1168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/13/2013] [Indexed: 02/08/2023]
Abstract
Endometriosis is a chronic inflammatory disease of reproductive age women leading to chronic pelvic pain and infertility. Current antiestrogen therapies are temporizing measures, and endometriosis often recurs. Potential nonestrogenic or nonsteroidal targets are needed for treating endometriosis. Peroxisome proliferator-activated receptor (PPAR)γ, a nuclear receptor, is activated by thiazolidinediones (TZDs). In experimental endometriosis, TZDs inhibit growth of endometriosis. Clinical data suggest potential use of TZDs for treating pain and fertility concurrently in endometriosis patients. Study objectives were to 1) determine the effects of PPARγ action on growth and survival of human endometriotic epithelial and stromal cells and 2) identify the underlying molecular links between PPARγ activation and cell cycle regulation, apoptosis, estrogen biosynthesis, and prostaglandin E2 biosynthesis and signaling in human endometriotic epithelial and stromal cells. Results indicate that activation of PPARγ by TZD ciglitazone 1) inhibits growth of endometriotic epithelial cells 12Z up to 35% and growth of endometriotic stromal cells 22B up to 70% through altered cell cycle regulation and intrinsic apoptosis, 2) decreases expression of PGE2 receptors (EP)2 and EP4 mRNAs in 12Z and 22B cells, and 3) inhibits expression and function of P450 aromatase mRNA and protein and estrone production in 12Z and 22B cells through EP2 and EP4 in a stromal-epithelial cell-specific manner. Collectively, these results indicate that PGE2 receptors EP2 and EP4 mediate actions of PPARγ by incorporating multiple cell signaling pathways. Activation of PPARγ combined with inhibition of EP2 and EP4 may emerge as novel nonsteroidal therapeutic targets for endometriosis-associated pain and infertility, if clinically proven safe and efficacious.
Collapse
Affiliation(s)
- Dan I Lebovic
- PhD, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Mail Stop TAMU 4458, Texas A&M University, College Station, Texas 77843.
| | | | | | | | | |
Collapse
|
26
|
Ventrice P, Ventrice D, Russo E, De Sarro G. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:88-96. [PMID: 23603460 DOI: 10.1016/j.etap.2013.03.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 05/27/2023]
Abstract
Phthalates are chemicals widely used in industry and the consequences for human health caused by exposure to these agents are of significant current interest. Phthalate toxicity targets the reproductive and respiratory systems primarily, but they also may be involved in the processes of carcinogenesis and even in autism spectrum disorders. This article discusses the molecular and cellular mechanisms involved in organ toxicity of phthalates; furthermore, pharmacokinetic, chemistry and the European regulation are summarized.
Collapse
Affiliation(s)
- Pasquale Ventrice
- Chair of Pharmacology, Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | | | | | | |
Collapse
|
27
|
Zerani M, Maranesi M, Brecchia G, Gobbetti A, Boiti C, Parillo F. Evidence for a luteotropic role of peroxisome proliferator-activated receptor gamma: expression and in vitro effects on enzymatic and hormonal activities in corpora lutea of pseudopregnant rabbits. Biol Reprod 2013; 88:62. [PMID: 23365414 DOI: 10.1095/biolreprod.112.107383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and its role in corpora lutea (CL) function were studied in pseudopregnant rabbits. Corpora lutea were collected at an early stage (Day 4), midstage (Day 9), and late stage (Day 13) of pseudopregnancy. Immunohistochemistry found evidence for the presence of PPARgamma in the perinuclear cytoplasm and nucleus of all the luteal cells; immunoreactivity decreased from the early to the late stage, with immunonegativity of the nuclei of late stage CL. PPARgamma mRNA transcript was expressed in all the luteal stages with the lowest level in the late stage. In CL cultured in vitro, the PPARgamma agonist (15-deoxy delta12,14 prostaglandin J2 [15d-PGJ2], 200 nM) increased and the antagonist (T0070907, 50 nM) decreased progesterone secretion at early and midluteal stages, whereas 15d-PGJ2 reduced and T0070907 increased PGF2alpha at the same stages. Prostaglandin-endoperoxide synthase 2 (PTGS2) activity was reduced by 15d-PGJ2 and increased by T0070907 in CL of early and midluteal stages. Conversely, 15d-PGJ2 increased and T0070907 reduced 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity in early and midluteal stage CL. PGE2 in vitro secretion as well as PTGS1 and 20alpha-HSD enzymatic activities were not affected by 15d-PGJ2 and T0070907 in any CL types. These results indicate that PPARgamma plays a luteotropic role in pseudopregnant rabbits, through PTGS2 down-regulation and 3beta-HSD up-regulation, with a consequent PGF2alpha decrease and progesterone increase.
Collapse
Affiliation(s)
- Massimo Zerani
- Scuola di Scienze mediche veterinarie, Università di Camerino, Matelica, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Rosiglitazone and pioglitazone alter aromatase kinetic properties in human granulosa cells. PPAR Res 2011; 2011:926438. [PMID: 22220166 PMCID: PMC3246782 DOI: 10.1155/2011/926438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/15/2011] [Indexed: 12/03/2022] Open
Abstract
We have previously reported that, in human granulosa cells, thiazolidinediones rosiglitazone and pioglitazone inhibit estrogen synthesis by interfering with androgen binding to aromatase, without an effect on aromatase mRNA or protein expression. In the current paper, we explore the effects of rosiglitazone and pioglitazone on the aromatase enzyme kinetic properties in human granulosa cells. The cells were incubated with various concentrations of testosterone or androstenedione, with or without rosiglitazone or pioglitazone. Estradiol and estrone concentrations in the conditioned tissue culture medium were measured by radioimmunoassay or immunosorbent assay. When testosterone was used as substrate, rosiglitazone or pioglitazone inhibited the Vmax by 35% (P < 0.001) and 24% (P < 0.001), respectively. When androstenedione was used as substrate, both rosiglitazone or pioglitazone inhibited Vmax by 13% (P < 0.007). We conclude that rosiglitazone or pioglitazone has no effect on Km but inhibits Vmax of aromatase in human granulosa cells, therefore, acting as noncompetitive inhibitors.
Collapse
|
29
|
Araki T, Elias R, Rosenwaks Z, Poretsky L. Achieving a successful pregnancy in women with polycystic ovary syndrome. Endocrinol Metab Clin North Am 2011; 40:865-94. [PMID: 22108285 DOI: 10.1016/j.ecl.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease of complex and still poorly understood cause and of variable phenotypes. It is characterized by anovulation, hyperandrogenism, and polycystic ovaries. Infertility is commonly present. A variety of methods has been used successfully to achieve pregnancy in women with PCOS. Maintenance of pregnancy is complicated by a higher rate of premature spontaneous abortions and high risk of gestational diabetes, hypertension, and preeclampsia. However, with careful monitoring and treatment, the outcome of pregnancy in most women with PCOS is excellent.
Collapse
Affiliation(s)
- Takako Araki
- Division of Endocrinology and Metabolism, Beth Israel Medical Center and Albert Einstein College of Medicine, NY 10003, USA
| | | | | | | |
Collapse
|
30
|
Role of the peroxisome proliferator-activated receptors, adenosine monophosphate-activated kinase, and adiponectin in the ovary. PPAR Res 2011; 2008:176275. [PMID: 18288279 PMCID: PMC2225459 DOI: 10.1155/2008/176275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/19/2007] [Indexed: 12/25/2022] Open
Abstract
The mechanisms controlling the interaction between energy balance and reproduction are the subject of intensive investigations. The integrated control of these systems is probably a multifaceted phenomenon involving an array of signals governing energy homeostasis, metabolism, and fertility. Two fuel sensors, PPARs, a superfamily of nuclear receptors and the kinase AMPK, integrate energy control and lipid and glucose homeostasis. Adiponectin, one of the adipocyte-derived factors mediate its actions through the AMPK or PPARs pathway. These three molecules are expressed in the ovary, raising questions about the biological actions of fuel sensors in fertility and the use of these molecules to treat fertility problems. This review will highlight the expression and putative role of PPARs, AMPK, and adiponectin in the ovary, particularly during folliculogenesis, steroidogenesis, and oocyte maturation.
Collapse
|
31
|
PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Res 2011; 2008:243791. [PMID: 18309368 PMCID: PMC2246065 DOI: 10.1155/2008/243791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship.
Collapse
|
32
|
Froment P, Touraine P. Thiazolidinediones and Fertility in Polycystic Ovary Syndrome (PCOS). PPAR Res 2011; 2006:73986. [PMID: 17347533 PMCID: PMC1779579 DOI: 10.1155/ppar/2006/73986] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 12/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent cause of female infertility. The treatment of PCOS patients with insulin sensitizers, such as metformin or thiazolidinediones, increases the ovulation rate and the number of successful pregnancies. The positive action of the insulin-sensitizing treatments could be explained by a decrease in the peripheral insulin resistance but also by a direct action at the ovarian level. We report in this review different hypotheses of thiazolidinediones actions to improve PCOS (steroid secretion by ovarian cells ; insulin sensitivity in muscle and adipocyte and fat redistribution).
Collapse
Affiliation(s)
- Pascal Froment
- INSERM Unité 418, UMR Communications Cellulaire et Différenciation, Hôpital Debrousse, 29 Rue Soeur Bouvier, 69322 Lyon, France
- *Pascal Froment:
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, GH Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital,
75651 Paris Cedex 13, France
| |
Collapse
|
33
|
Merlotti D, Gennari L, Stolakis K, Nuti R. Aromatase activity and bone loss in men. J Osteoporos 2011; 2011:230671. [PMID: 21772971 PMCID: PMC3135090 DOI: 10.4061/2011/230671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/20/2011] [Indexed: 11/20/2022] Open
Abstract
Aromatase is a specific component of the cytochrome P450 enzyme system responsible for the transformation of androgen precursors into estrogens. This enzyme is encoded by the CYP19A1 gene located at chromosome 15q21.2, that is, expressed in ovary and testis, but also in many extraglandular sites such as the placenta, brain, adipose tissue, and bone. The activity of aromatase regulates the concentrations of estrogens with endocrine, paracrine, and autocrine effects on target issues including bone. Importantly, extraglandular aromatization of circulating androgen precursors is the major source of estrogen in men. Clinical and experimental evidences clearly indicate that aromatase activity and estrogen production are necessary for longitudinal bone growth, the attainment of peak bone mass, pubertal growth spurt, epiphyseal closure, and normal bone remodeling in young individuals. Moreover, with aging, individual differences in aromatase activity may significantly affect bone loss and fracture risk in men.
Collapse
|
34
|
Wang YH, Kwon G, Li H, LeBlanc GA. Tributyltin Synergizes with 20-Hydroxyecdysone to Produce Endocrine Toxicity. Toxicol Sci 2011; 123:71-9. [DOI: 10.1093/toxsci/kfr154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
35
|
Abstract
Aromatase is a specific component of the cytochrome P450 enzyme system that is responsible for the transformation of C19 androgen precursors into C18 estrogenic compounds. This enzyme is encoded by the CYP19A1 gene located at chromosome 15q21.2, that is expressed in ovary and testis not only but also in many extraglandular sites such as the placenta, brain, adipose tissue, and bone. The regulation of the level and activity of aromatase determines the levels of estrogens that have endocrine, paracrine, and autocrine effects on target issues including bone. Importantly, extraglandular aromatization of circulating androgen precursors is the major source of estrogen not only in men (since only 15% of circulating estradiol is released directly by the testis) but also in women after the menopause. Several lines of clinical and experimental evidence now clearly indicate that aromatase activity and estrogen production are necessary for longitudinal bone growth, attainment of peak bone mass, the pubertal growth spurt, epiphyseal closure, and normal bone remodeling in young individuals. Moreover, with aging, individual differences in aromatase activity and thus in estrogen levels may significantly affect bone loss and fracture risk in both genders.
Collapse
|
36
|
Scaramuzzi RJ, Brown HM, Dupont J. Nutritional and Metabolic Mechanisms in the Ovary and Their Role in Mediating the Effects of Diet on Folliculogenesis: A Perspective. Reprod Domest Anim 2010; 45 Suppl 3:32-41. [DOI: 10.1111/j.1439-0531.2010.01662.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Couto JA, Saraiva KLA, Barros CD, Udrisar DP, Peixoto CA, Vieira JSBC, Lima MC, Galdino SL, Pitta IR, Wanderley MI. Effect of chronic treatment with Rosiglitazone on Leydig cell steroidogenesis in rats: in vivo and ex vivo studies. Reprod Biol Endocrinol 2010; 8:13. [PMID: 20144211 PMCID: PMC2829566 DOI: 10.1186/1477-7827-8-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/09/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study was designed to examine the effect of chronic treatment with rosiglitazone - thiazolidinedione used in the treatment of type 2 diabetes mellitus for its insulin sensitizing effects - on the Leydig cell steroidogenic capacity and expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc) in normal adult rats. METHODS Twelve adult male Wistar rats were treated with rosiglitazone (5 mg/kg) administered by gavage for 15 days. Twelve control animals were treated with the vehicle. The ability of rosiglitazone to directly affect the production of testosterone by Leydig cells ex vivo was evaluated using isolated Leydig cells from rosiglitazone-treated rats. Testosterone production was induced either by activators of the cAMP/PKA pathway (hCG and dbcAMP) or substrates of steroidogenesis [22(R)-hydroxy-cholesterol (22(R)-OH-C), which is a substrate for the P450scc enzyme, and pregnenolone, which is the product of the P450scc-catalyzed step]. Testosterone in plasma and in incubation medium was measured by radioimmunoassay. The StAR and P450scc expression was detected by immunocytochemistry. RESULTS The levels of total circulating testosterone were not altered by rosiglitazone treatment. A decrease in basal or induced testosterone production occurred in the Leydig cells of rosiglitazone-treated rats. The ultrastructural and immunocytochemical analysis of Leydig cells from rosiglitazone-treated rats revealed cells with characteristics of increased activity as well as increased StAR and P450scc expression, which are key proteins in androgen biosynthesis. However, a number of rosiglitazone-treated cells exhibited significant mitochondrial damage. CONCLUSION The results revealed that the Leydig cells from rosiglitazone-treated rats showed significant reduction in testosterone production under basal, hCG/dbcAMP- or 22 (R)-OH-C/pregnenolone-induced conditions, although increased labeling of StAR and P450scc was detected in these cells by immunocytochemistry. The ultrastructural study suggested that the lower levels of testosterone produced by these cells could be due to mitochondrial damage induced by rosiglitazone.
Collapse
Affiliation(s)
- Janaína A Couto
- Department of Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife, 52.171-900, Brazil
| | - Karina LA Saraiva
- Ultrastructure Laboratory, Aggeu Magalhães Research Center (FIOCRUZ) and Center for Strategic Technologies of the Northeast (CETENE), Recife, 50.670-901, Brazil
| | - Cleiton D Barros
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Daniel P Udrisar
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Christina A Peixoto
- Ultrastructure Laboratory, Aggeu Magalhães Research Center (FIOCRUZ) and Center for Strategic Technologies of the Northeast (CETENE), Recife, 50.670-901, Brazil
| | - Juliany SB César Vieira
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Maria C Lima
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Suely L Galdino
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Ivan R Pitta
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Maria I Wanderley
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| |
Collapse
|
38
|
Chen Q, Sun X, Chen J, Cheng L, Wang J, Wang Y, Sun Z. Direct rosiglitazone action on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells. Reprod Biol Endocrinol 2009; 7:147. [PMID: 20003221 PMCID: PMC2797791 DOI: 10.1186/1477-7827-7-147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/09/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells are the predominant source of estradiol and progesterone biosynthesis in vivo. Rosiglitazone, a synthetic agonist of the peroxisome proliferator-activated receptor gamma (PPAR gamma), is applied as the treatment of insulin resistance including women with PCOS. The aim of the study was to investigate the direct effects of rosiglitazone on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells (GLCs). METHODS Primary human GLCs were separated during in vitro fertilization and cultured in the presence of rosiglitazone, GW9662 (an antagonist of PPAR gamma) and hCG. The mRNA expression of key steroidogenic factors including 3beta- hydroxysteriod dehydrogenase (3beta-HSD), cytochrome P-450 scc (CYP11A1), cytochrome P-450 aromatase (CYP19A1), and steroidogenic acute regulatory protein (StAR) were detected by quantitative real-time PCR. Estradiol and progesterone levels in GLCs cultures were measured by chemiluminescence immunoassay, and the proinflammtory factors (TNFalpha and IL-6) in conditioned culture media were measured by ELISA. RESULTS PPAR gamma mRNA levels increased up to 3.24 fold by rosiglitazone at the concentration of 30 microM compared to control (P<0.05). hCG alone or hCG with rosiglitazone had no significant effects on PPAR gamma mRNA levels. The CYP19A1 mRNA level at exposure to rosiglitazone alone showed a drop, but was not significantly reduced comparing to control. The expression levels of enzymes 3beta-HSD and CYP11A1 in all treatments did not alter significantly. The StAR mRNA expression at exposure to rosiglitazone was significantly increased comparing to control (P<0.05). The media concentrations of E2 and progesterone by rosiglitazone treatment showed a declining trend comparing to control or cotreatment with hCG, which did not reach significance. Most importantly, treatment with rosiglitazone decreased TNFalpha secretion in a statistically significant manner compared with control (P<0.05). The concentration of IL-6 following rosiglitazone exposure did not significantly decrease comparing to control. CONCLUSION In cultured GLCs, rosiglitazone stimulated StAR expression, but did not significantly affect steroidogenic enzymes, as well as E2 and progesterone production. Moreover, rosiglitazone significantly decreased the production of TNFalpha in human GLCs, suggesting that PPAR gamma may play a role in the regulation of GLCs functions through inhibiting proinflammatory factors.
Collapse
Affiliation(s)
- Qiuju Chen
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Xita N, Lazaros L, Georgiou I, Tsatsoulis A. The Pro12Ala polymorphism of the PPAR-gamma gene is not associated with the polycystic ovary syndrome. Hormones (Athens) 2009; 8:267-72. [PMID: 20045799 DOI: 10.1007/bf03401274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Insulin resistance is a key factor in the pathogenesis of polycystic ovary syndrome (PCOS). Peroxisome proliferator-activated- receptor-gamma (PPAR-gamma) has been implicated in insulin resistance and adiposity. The aim of the study was to investigate the possible involvement of the Pro12Ala polymorphism of the PPAR-gamma gene in the pathogenesis of PCOS. DESIGN We studied 180 women with PCOS and 140 healthy controls. Body mass index (BMI) was recorded. Blood samples were drawn after overnight fasting and serum glucose, insulin, lipid and hormonal profiles were determined. The fasting glucose/insulin ratio and HOMA index were calculated. Moreover, 100 women with PCOS underwent a 75g oral glucose tolerance test and the area under the curve for insulin and glucose was estimated. DNA was extracted from peripheral blood leucocytes and the Pro12Ala polymorphism was genotyped. RESULTS The PPAR-gamma genotypes were found to be in the Hardy-Weinberg equilibrium in both study groups. No difference was found in the distribution of the Pro12Ala polymorphism between PCOS and controls. Insulin resistance indices and lipid and hormonal profile were not different among the various genotypes of the Pro12Ala polymorphism. CONCLUSIONS The Pro12Ala polymorphism of the PPAR-gamma gene is not involved in the pathogenesis or the phenotypic expression of PCOS.
Collapse
Affiliation(s)
- Nectaria Xita
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
40
|
He J, Cheng Q, Xie W. Minireview: Nuclear receptor-controlled steroid hormone synthesis and metabolism. Mol Endocrinol 2009; 24:11-21. [PMID: 19762543 DOI: 10.1210/me.2009-0212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Steroid hormones are essential in normal physiology whereas disruptions in hormonal homeostasis represent an important etiological factor for many human diseases. Steroid hormones exert most of their functions through the binding and activation of nuclear hormone receptors (NRs or NHRs), a superfamily of DNA-binding and often ligand-dependent transcription factors. In recent years, accumulating evidence has suggested that NRs can also regulate the biosynthesis and metabolism of steroid hormones. This review will focus on the recent progress in our understanding of the regulatory role of NRs in hormonal homeostasis and the implications of this regulation in physiology and diseases.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
41
|
Effect of mono-(2-ethylhexyl) phthalate on steroid production of human granulosa cells. Toxicol Appl Pharmacol 2009; 239:116-23. [DOI: 10.1016/j.taap.2009.05.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/15/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
|
42
|
Activation of PPARγ by Rosiglitazone does not negatively impact male sex steroid hormones in diabetic rats. PPAR Res 2009; 2009:101857. [PMID: 19536350 PMCID: PMC2696180 DOI: 10.1155/2009/101857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/17/2009] [Accepted: 04/29/2009] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) activation decreased serum testosterone (T) in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2) in female rats. This implies modulation of female sex steroid hormones by PPARγ. It is not clear if PPARγ modulates sex steroid hormones in diabetic males. Because PPARγ activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPARγ activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPARγ activation on serum and intratesticular T, luteinizing hormone (LH), follicle stimulating hormone (FSH) and E2 concentrations in male Zucker diabetic fatty (ZDF) rats treated with the PPARγ agonist rosiglitazone (a thiazolidinedione). Treatment for eight weeks increased PPARγ mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPARγ activation. PPARγ activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPARγ activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPARγ by rosiglitazone has no negative impact on sex hormones in male ZDF rats.
Collapse
|
43
|
Abstract
The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental & Cell Biology, University of California Irvine, 92697-2300, USA
| | | |
Collapse
|
44
|
Lyssimachou A, Navarro JC, Bachmann J, Porte C. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1714-1720. [PMID: 19162385 DOI: 10.1016/j.envpol.2008.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/21/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Lenie S, Smitz J. Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles. Toxicol Lett 2009; 185:143-52. [DOI: 10.1016/j.toxlet.2008.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/24/2022]
|
46
|
[Role of the fatty acids in ovarian functions: involvement of peroxisome proliferator-activated receptors (PPAR) and adipokines]. ACTA ACUST UNITED AC 2008; 36:1230-8. [PMID: 19013096 DOI: 10.1016/j.gyobfe.2008.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 09/23/2008] [Indexed: 01/05/2023]
Abstract
The impact of nutrition and energy reserves on the reproductive functions is known for a very long time. However, the metabolic factors involved in the interactions between nutrition and reproduction are still poorly understood. These factors may be hormones or nutrients (glucose, protein and fatty acids). However, it remains to determine whether these factors act directly or indirectly on the reproductive tissues. In this issue, we briefly summarize the impact of fatty acids on the development of ovarian follicles, oocyte and embryo. We then discuss the current hypotheses about the mechanisms of action of these fatty acids on the ovarian functions. We describe more particularly the role of some receptors of fatty acids, Peroxisome Proliferator-Activated Receptors (PPAR) and Liver X Receptors (LXR) and two adipokines, leptin and adiponectin on ovarian cells.
Collapse
|
47
|
Jensterle M, Janez A, Mlinar B, Marc J, Prezelj J, Pfeifer M. Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol 2008; 158:793-801. [PMID: 18322300 DOI: 10.1530/eje-07-0857] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The insulin-resistant state of the polycystic ovary syndrome (PCOS) was found to be associated with a decreased glucose transporter GLUT4 expression in the insulin target tissues. This study was performed to explore whether the well-known clinical, hormonal and metabolic efficacy of metformin or rosiglitazone treatment is reflected in the modulation of adipocyte GLUT4 mRNA expression in patients with PCOS. METHODS We enrolled 35 women with PCOS. They received either metformin or rosiglitazone for 6 months. A history, blood samples for the measurement of androgens and s.c. adipose tissue samples were taken at baseline and end point. Quantification of GLUT4 mRNA expression in adipose tissue was performed using real-time quantitative PCR. Homeostasis model assessment (HOMA(IR)) score calculation was applied as a measure for insulin resistance (IR). RESULTS GLUT4 mRNA expression in adipose tissue increased significantly in both groups (P<0.001). The increase was more pronounced in the rosiglitazone group (P=0.040). There was a statistically significant improvement of HOMA(IR) in both groups (P=0.008). After treatment, frequencies of menstrual bleeding were significantly higher (P<0.001) and serum total testosterone levels significantly lower in both groups (P=0.001). CONCLUSIONS A 6-month therapy with insulin sensitizers resulted in marked improvement in adipose tissue GLUT4 mRNA expression in PCOS patients, rosiglitazone being more effective when compared with metformin. The augmentation of the insulin signal transduction was accompanied by a significant improvement of HOMA(IR), menstrual pattern and androgen profile.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
48
|
Phillips KP, Foster WG. Key developments in endocrine disrupter research and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:322-344. [PMID: 18368559 DOI: 10.1080/10937400701876194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Environmental etiologies involving exposures to chemicals that mimic endogenous hormones are proposed for a number of adverse human health effects, including infertility, abnormal prenatal and childhood development, and reproductive cancers (National Research Council, 1999; World Health Organization, 2002). Endocrine disrupters represent a significant area of environmental research with important implications for human health. This article provides an overview of some of the key developments in this field that may enhance our ability to assess the human health risks posed by exposure to endocrine disrupters. Advances in methodologies of hazard identification (toxicogenomics, transcriptomics, proteomics, metabolomics, bioinformatics) are discussed, as well as epigenetics and emerging biological endpoints.
Collapse
Affiliation(s)
- Karen P Phillips
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
49
|
Jensterle M, Janez A, Vrtovec B, Meden-Vrtovec H, Pfeifer M, Prezelj J, Kocjan T. Decreased androgen levels and improved menstrual pattern after angiotensin II receptor antagonist telmisartan treatment in four hypertensive patients with polycystic ovary syndrome: case series. Croat Med J 2008; 48:864-70. [PMID: 18074422 DOI: 10.3325/cmj.2007.6.864] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe 4 consecutive hypertensive women with polycystic ovary syndrome, classified according to the National Institute of Child Health and Human Development (NICHD) criteria, treated with telmisartan 40 mg/d for six months. Blood pressure, menstrual pattern, body mass index (BMI), homeostasis model assessment of insulin resistance, testosterone, dehydroepiandrosterone sulfate (DHEAS), and androstenedione were recorded and measured before and after telmisartan treatment. Obese hypertensive polycystic ovary syndrome patients had a decrease in systolic blood pressure. Marked drop-off in serum androgen concentrations was observed in all four patients. Three patients improved their menstrual cyclicity. The improvements were independent of changes in weight. The reduction of androgen concentrations and improvement in menstrual pattern was achieved despite a non-significant change of fasting insulin levels in patients, who were not considered severely insulin resistant at baseline. These findings may provide a new basis for a proper choice of the antihypertensive drug in hypertensive women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Centre Ljubljana, Zaloska 7, 1525 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Schwartz AV, Sellmeyer DE. Effect of thiazolidinediones on skeletal health in women with Type 2 diabetes. Expert Opin Drug Saf 2008; 7:69-78. [DOI: 10.1517/14740338.7.1.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ann V Schwartz
- University of California San Francisco, Department of Epidemiology and Biostatistics, 185 Berry Street, Suite 5700, San Francisco, CA 94107, USA ;
| | - Deborah E Sellmeyer
- University of California San Francisco, Division of Endocrinology and Metabolism, Department of Medicine, 185 Berry Street, Suite 5700, San Francisco, CA 94107, USA
| |
Collapse
|