1
|
Chen K, Gong W, Huang J, Yoshimura T, Ming Wang J. Developmental and homeostatic signaling transmitted by the G-protein coupled receptor FPR2. Int Immunopharmacol 2023; 118:110052. [PMID: 37003185 PMCID: PMC10149111 DOI: 10.1016/j.intimp.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA; College of Life Sciences, Beijing Jiaotong University, Beijing, PR China
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
2
|
Riviere-Cazaux C, Cornell J, Shen Y, Zhou M. The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon 2022; 8:e09950. [PMID: 35865985 PMCID: PMC9294194 DOI: 10.1016/j.heliyon.2022.e09950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
While combination antiretroviral therapy (cART) has successfully increased the lifespan of individuals infected with HIV, a significant portion of this population remains affected by HIV-associated neurocognitive disorder (HAND). C-C chemokine receptor 5 (CCR5) has been well studied in immune response and as a co-receptor for HIV infection. HIV-infected (HIV+) patients experienced mild to significant amelioration of cognitive function when treated with different CCR5 antagonists, including maraviroc and cenicriviroc. Consistent with clinical results, Ccr5 knockout or knockdown rescued cognitive deficits in HIV animal models, with mechanisms of reduced microgliosis and neuroinflammation. Pharmacologic inhibition of CCR5 directly improved cerebral and hippocampal neuronal plasticity and cognitive function. By summarizing the animal and human studies of CCR5 in HIV-associated cognitive deficits, this review aims to provide an overview of the mechanistic role of CCR5 in HAND pathophysiology. This review also discusses the addition of CCR5 antagonists, such as maraviroc, to cART for targeted prevention and treatment of cognitive impairments in patients infected with HIV.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Corresponding author.
| |
Collapse
|
3
|
Shen Y, Zhou M, Cai D, Filho DA, Fernandes G, Cai Y, de Sousa AF, Tian M, Kim N, Lee J, Necula D, Zhou C, Li S, Salinas S, Liu A, Kang X, Kamata M, Lavi A, Huang S, Silva T, Heo WD, Silva AJ. CCR5 closes the temporal window for memory linking. Nature 2022; 606:146-152. [PMID: 35614219 PMCID: PMC9197199 DOI: 10.1038/s41586-022-04783-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Real-world memories are formed in a particular context and are often not acquired or recalled in isolation1-5. Time is a key variable in the organization of memories, as events that are experienced close in time are more likely to be meaningfully associated, whereas those that are experienced with a longer interval are not1-4. How the brain segregates events that are temporally distinct is unclear. Here we show that a delayed (12-24 h) increase in the expression of C-C chemokine receptor type 5 (CCR5)-an immune receptor that is well known as a co-receptor for HIV infection6,7-after the formation of a contextual memory determines the duration of the temporal window for associating or linking that memory with subsequent memories. This delayed expression of CCR5 in mouse dorsal CA1 neurons results in a decrease in neuronal excitability, which in turn negatively regulates neuronal memory allocation, thus reducing the overlap between dorsal CA1 memory ensembles. Lowering this overlap affects the ability of one memory to trigger the recall of the other, and therefore closes the temporal window for memory linking. Our findings also show that an age-related increase in the neuronal expression of CCR5 and its ligand CCL5 leads to impairments in memory linking in aged mice, which could be reversed with a Ccr5 knockout and a drug approved by the US Food and Drug Administration (FDA) that inhibits this receptor, a result with clinical implications. Altogether, the findings reported here provide insights into the molecular and cellular mechanisms that shape the temporal window for memory linking.
Collapse
Affiliation(s)
- Yang Shen
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Miou Zhou
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| | - Denise Cai
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Department, Icahn School of Medicine, New York, NY, USA
| | - Daniel Almeida Filho
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Giselle Fernandes
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Ying Cai
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - André F de Sousa
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Min Tian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Deanna Necula
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Chengbin Zhou
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shuoyi Li
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shelbi Salinas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Andy Liu
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiaoman Kang
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Masakazu Kamata
- Department of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ayal Lavi
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Huang
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Tawnie Silva
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Alcino J Silva
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int J Mol Sci 2021; 22:ijms22073706. [PMID: 33918194 PMCID: PMC8038163 DOI: 10.3390/ijms22073706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Formyl peptide receptors (FPRs) are cell surface pattern recognition receptors (PRRs), belonging to the chemoattractant G protein-coupled receptors (GPCRs) family. They play a key role in the innate immune system, regulating both the initiation and the resolution of the inflammatory response. FPRs were originally identified as receptors with high binding affinity for bacteria or mitochondria N-formylated peptides. However, they can also bind a variety of structurally different ligands. Among FPRs, formyl peptide receptor-like 1 (FPRL1) is the most versatile, recognizing N-formyl peptides, non-formylated peptides, and synthetic molecules. In addition, according to the ligand nature, FPRL1 can mediate either pro- or anti-inflammatory responses. Hp(2-20), a Helicobacter pylori-derived, non-formylated peptide, is a potent FPRL1 agonist, participating in Helicobacter pylori-induced gastric inflammation, thus contributing to the related site or not-site specific diseases. The aim of this review is to provide insights into the role of FPRs in H. pylori-associated chronic inflammation, which suggests this receptor as potential target to mitigate both microbial and sterile inflammatory diseases.
Collapse
|
5
|
Necula D, Riviere-Cazaux C, Shen Y, Zhou M. Insight into the roles of CCR5 in learning and memory in normal and disordered states. Brain Behav Immun 2021; 92:1-9. [PMID: 33276089 DOI: 10.1016/j.bbi.2020.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
As cognitive impairments continue to rise in prevalence, there is an urgent need to understand the mechanisms of learning and memory in normal and disordered states. C-C chemokine receptor 5 (CCR5) has been implicated in the regulation of multiple forms of learning and memory via its regulation on learning-related cell signaling and neuronal plasticity. As a chemokine receptor and a co-receptor for HIV, CCR5's role in immune response and HIV-associated neurocognitive disorder (HAND) has been widely studied. In contrast, CCR5 is less understood in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), stroke and certain psychiatric disorders. A broad overview of the present literature shows that CCR5 acts as a potent suppressor of synaptic plasticity and learning and memory, although a few studies have reported the opposite effect of CCR5 in stroke or AD animal models. By summarizing the current literature of CCR5 in animal and human studies of cognition, this review aims to provide a comprehensive overview of the role of CCR5 in learning and memory in both normal and disordered states and to discuss the possibility of CCR5 suppression as an effective therapeutic to alleviate cognitive deficits in HAND, AD, and stroke.
Collapse
Affiliation(s)
- Deanna Necula
- Department of Neuroscience, UCSF, San Francisco, CA, USA
| | - Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
6
|
Angelopoulou E, Piperi C. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential. Neuromolecular Med 2019; 21:227-238. [PMID: 31313064 DOI: 10.1007/s12017-019-08558-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia remains of unclear etiology with current pharmacological therapies failing to halt disease progression. Several pathophysiological mechanisms have been implicated in AD pathogenesis including amyloid-β protein (Aβ) accumulation, tau hyperphosphorylation, neuroinflammation and alterations in bioactive lipid metabolism. Sphingolipids, such as sphingosine-1-phosphate (S1P) and intracellular ceramide/S1P balance are highly implicated in central nervous system physiology as well as in AD pathogenesis. FTY720/Fingolimod, a structural sphingosine analog and S1P receptor (S1PR) modulator that is currently used in the treatment of relapsing-remitting multiple sclerosis (RRMS) has been shown to exert beneficial effects on AD progression. Recent in vitro and in vivo evidence indicate that fingolimod may suppress Aβ secretion and deposition, inhibit apoptosis and enhance brain-derived neurotrophic factor (BDNF) production. Furthermore, it regulates neuroinflammation, protects against N-methyl-D-aspartate (NMDA)-excitotoxicity and modulates receptor for advanced glycation end products signaling axis that is highly implicated in AD pathogenesis. This review discusses the underlying molecular mechanisms of the emerging neuroprotective role of fingolimod in AD and its therapeutic potential, aiming to shed more light on AD pathogenesis as well as direct future treatment strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
7
|
Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors. Int J Mol Sci 2019; 20:ijms20143426. [PMID: 31336833 PMCID: PMC6678346 DOI: 10.3390/ijms20143426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Leukocyte infiltration is a hallmark of inflammatory responses. This process depends on the bacterial and host tissue-derived chemotactic factors interacting with G-protein-coupled seven-transmembrane receptors (GPCRs) expressed on the cell surface. Formylpeptide receptors (FPRs in human and Fprs in mice) belong to the family of chemoattractant GPCRs that are critical mediators of myeloid cell trafficking in microbial infection, inflammation, immune responses and cancer progression. Both murine Fprs and human FPRs participate in many patho-physiological processes due to their expression on a variety of cell types in addition to myeloid cells. FPR contribution to numerous pathologies is in part due to its capacity to interact with a plethora of structurally diverse chemotactic ligands. One of the murine Fpr members, Fpr2, and its endogenous agonist peptide, Cathelicidin-related antimicrobial peptide (CRAMP), control normal mouse colon epithelial growth, repair and protection against inflammation-associated tumorigenesis. Recent developments in FPR (Fpr) and ligand studies have greatly expanded the scope of these receptors and ligands in host homeostasis and disease conditions, therefore helping to establish these molecules as potential targets for therapeutic intervention.
Collapse
|
8
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
9
|
Weiß E, Kretschmer D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol 2018; 39:815-829. [PMID: 30195466 DOI: 10.1016/j.it.2018.08.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Formyl-peptide receptors (FPRs) recognize bacterial and mitochondrial formylated peptides as well as endogenous non-formylated peptides and even lipids. FPRs are expressed on various host cell types but most strongly on neutrophils and macrophages. After the discovery of FPRs on leukocytes, it was assumed that these receptors predominantly govern a proinflammatory response resulting in chemotaxis, degranulation, and oxidative burst during infection. However, it is clear that the activation of FPRs has more complex consequences and can also promote the resolution of inflammation. Recent studies have highlighted associations between FPR function and inflammatory conditions, including inflammatory disorders, cancer, and infection. In this review we discuss these recent findings.
Collapse
Affiliation(s)
- Elisabeth Weiß
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho A pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res 2018; 67:711-722. [PMID: 29922854 DOI: 10.1007/s00011-018-1163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study is to uncover the signal transduction pathways of N-formyl methionyl-leucyl-phenylalanine (fMLP) in monocyte. MATERIALS OR SUBJECTS Freshly isolated human peripheral blood monocytes (PBMC) were used for in vitro assessment of signal transduction pathways activated by fMLP. TREATMENT Time-course and dose-response experiments were used to evaluate the effect of fMLP along with the specific inhibitors/stimulators on the activation of downstream signaling kinases. METHODS Freshly isolated human PBMC were stimulated with fMLP for the desired time. Western blot and siRNA analysis were used to evaluate the activated intracellular signaling kinases, and flow analysis was performed to assess the levels of CD11b. Furthermore, luminescence spectrometry was performed to measure the levels of released hydrogen peroxide in the media. RESULTS fMLP strongly stimulated the activation of AKT and ERK1/2 through a RhoA-GTPase-dependent manner and also induced H2O2 release by monocytes. Furthermore, fMLP mediated its effects through restricted activation of formylpeptide receptor-like 1 (FPRL1/FPR2), but independently of either EGFR transactivation or intracellular calcium release. In addition, NAC reversed fMLP- and H2O2-induced activation of Akt and RhoA-GTPase. CONCLUSION Collectively, these data suggested that fMLP-activated ERK1/2 and Akt pathways through specific activation of the FPRL1/ROS/RoA-GTPase pathway.
Collapse
|
11
|
Ansari J, Kaur G, Gavins FNE. Therapeutic Potential of Annexin A1 in Ischemia Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19041211. [PMID: 29659553 PMCID: PMC5979321 DOI: 10.3390/ijms19041211] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in the world. Increased inflammation and an enhanced thrombotic milieu represent two major complications of CVD, which can culminate into an ischemic event. Treatment for these life-threatening complications remains reperfusion and restoration of blood flow. However, reperfusion strategies may result in ischemia-reperfusion injury (I/RI) secondary to various cardiovascular pathologies, including myocardial infarction and stroke, by furthering the inflammatory and thrombotic responses and delivering inflammatory mediators to the affected tissue. Annexin A1 (AnxA1) and its mimetic peptides are endogenous anti-inflammatory and pro-resolving mediators, known to have significant effects in resolving inflammation in a variety of disease models. Mounting evidence suggests that AnxA1, which interacts with the formyl peptide receptor (FPR) family, may have a significant role in mitigating I/RI associated complications. In this review article, we focus on how AnxA1 plays a protective role in the I/R based vascular pathologies.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gaganpreet Kaur
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
12
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
13
|
Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, Cai Y, Nagaoka Y, Sehgal M, Cai DJ, Lee YS, Fox K, Silva AJ. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 2016; 5. [PMID: 27996938 PMCID: PMC5213777 DOI: 10.7554/elife.20985] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.
Collapse
Affiliation(s)
- Miou Zhou
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Stuart Greenhill
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.,School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Shan Huang
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Tawnie K Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshitake Sano
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | - Shumin Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Ying Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Denise J Cai
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yong-Seok Lee
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
14
|
Abstract
The resolution of inflammation (RoI), once believed to be a passive process, has lately been shown to be an active and delicately orchestrated process. During the resolution phase of acute inflammation, novel mediators, including lipoxins and resolvins, which are members of the specialized pro-resolving mediators of inflammation, are produced. FPR2/ALXR, a receptor modulated by some of these lipids as well as by peptides (e.g., annexin A1), has been shown to be one of the receptors involved in the RoI. The aim of this perspective is to present the concept of the RoI from a medicinal chemistry point of view and to highlight the effort of the research community to discover and develop anti-inflammatory/pro-resolution small molecules to orchestrate inflammation by activation of FPR2/ALXR.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | |
Collapse
|
15
|
Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci 2013; 14:7193-230. [PMID: 23549262 PMCID: PMC3645683 DOI: 10.3390/ijms14047193] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
The formyl peptide receptor 2 (FPR2) is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR) family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ)-42 and prion protein (Prp)106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP)-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC), protein kinase C (PKC) isoforms, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, the mitogen-activated protein kinase (MAPK) pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2 agonists.
Collapse
|
16
|
Li Y, Ye D. Molecular biology for formyl peptide receptors in human diseases. J Mol Med (Berl) 2013; 91:781-9. [PMID: 23404331 DOI: 10.1007/s00109-013-1005-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 02/07/2023]
Abstract
Leukocytes accumulate at sites of inflammation and immunological reaction in response to locally existing chemotactic mediators. The first chemotactic factors structurally defined were N-formyl peptides. Subsequently, numerous ligands were identified to activate formyl peptide receptors (FPRs) that belong to the seven-transmembrane G protein-coupled receptor superfamily. FPRs interact with this menagerie of structurally diverse pro- and anti-inflammatory ligands to possess important regulatory effects in multiple diseases, including inflammation, amyloidosis, Alzheimer's disease, prion disease, acquired immunodeficiency syndrome, obesity, diabetes, and cancer. How these receptors recognize diverse ligands and how they contribute to disease pathogenesis and host defense are basic questions currently under investigation that would open up new avenues for the future management of inflammation-related diseases.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| | | |
Collapse
|
17
|
Madenspacher JH, Azzam KM, Gong W, Gowdy KM, Vitek MP, Laskowitz DT, Remaley AT, Wang JM, Fessler MB. Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity. J Biol Chem 2012; 287:43730-40. [PMID: 23118226 DOI: 10.1074/jbc.m112.377192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma lipoprotein-associated apolipoproteins (apo) A-I and apoE have well described anti-inflammatory actions in the cardiovascular system, and mimetic peptides that retain these properties have been designed as therapeutics. The anti-inflammatory mechanisms of apolipoprotein mimetics, however, are incompletely defined. Whether circulating apolipoproteins and their mimetics regulate innate immune responses at mucosal surfaces, sites where transvascular emigration of leukocytes is required during inflammation, remains unclear. Herein, we report that Apoai(-/-) and Apoe(-/-) mice display enhanced recruitment of neutrophils to the airspace in response to both inhaled lipopolysaccharide and direct airway inoculation with CXCL1. Conversely, treatment with apoA-I (L-4F) or apoE (COG1410) mimetic peptides reduces airway neutrophilia. We identify suppression of CXCR2-directed chemotaxis as a mechanism underlying the apolipoprotein effect. Pursuing the possibility that L-4F might suppress chemotaxis through heterologous desensitization, we confirmed that L-4F itself induces chemotaxis of human PMNs and monocytes. L-4F, however, fails to induce a calcium flux. Further exploring structure-function relationships, we studied the alternate apoA-I mimetic L-37pA, a bihelical analog of L-4F with two Leu-Phe substitutions. We find that L-37pA induces calcium and chemotaxis through formyl peptide receptor (FPR)2/ALX, whereas its D-stereoisomer (i.e. D-37pA) blocks L-37pA signaling and induces chemotaxis but not calcium flux through an unidentified receptor. Taken together, apolipoprotein mimetic peptides are novel chemotactic agents that possess complex structure-activity relationships to multiple receptors, displaying anti-inflammatory efficacy against innate immune responses in the airway.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sogawa Y, Ohyama T, Maeda H, Hirahara K. Formyl Peptide Receptor 1 and 2 Dual Agonist Inhibits Human Neutrophil Chemotaxis by the Induction of Chemoattractant Receptor Cross-desensitization. J Pharmacol Sci 2011; 115:63-8. [DOI: 10.1254/jphs.10194fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Sogawa Y, Ohyama T, Maeda H, Hirahara K. Inhibition of neutrophil migration in mice by mouse formyl peptide receptors 1 and 2 dual agonist: indication of cross-desensitization in vivo. Immunology 2010; 132:441-50. [PMID: 21039475 DOI: 10.1111/j.1365-2567.2010.03367.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been reported that the stimulation of neutrophils with N-formyl-Met-Leu-Phe (fMLF), an agonist for formyl peptide receptor (Fpr) 1, renders cells unresponsive to other chemoattractants in vitro. This is known as cross-desensitization, but its functional relevance in neutrophil migration in vivo has not been investigated. Here, we show that precedent stimulation of mouse neutrophils with compound 43, a non-peptidyl agonist for mouse Fpr1 and Fpr2, rendered the cells unresponsive to a second stimulation with C5a, leukotriene B₄, or keratinocyte-derived cytokine (KC) in calcium mobilization and chemotaxis assays in vitro. The expression of chemokine (C-X-C motif) receptor 2 (CXCR2) on the surface of neutrophils was concomitantly diminished by stimulating the cells with the compound. Moreover, oral administration of the compound to mice before they were exposed to lipopolysaccharide (LPS) aerosol resulted in a dose-dependent reduction in the neutrophil count in bronchoalveolar lavage fluid. The expression of CXCR2 on blood neutrophils was also reduced in the compound-administered mice. The recipient mice that underwent adoptive transfer of fluorescence-labelled neutrophils that had been incubated with the compound showed a substantial decrease in neutrophil counts in bronchoalveolar lavage fluid after they were exposed to LPS, when compared with the control mice to which vehicle-treated neutrophils had been transferred. These results are consistent with the idea that the agonist for Fpr1 and Fpr2 induced cross-desensitization in neutrophils and attenuated neutrophil migration into the airways. Our results also revealed the unpredicted effect of an Fpr1 and Fpr2 dual agonist, which may act as a functional antagonist for multiple chemoattractant receptors in vivo.
Collapse
Affiliation(s)
- Yoshitaka Sogawa
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo, Co., Ltd, Shinagawa-ku, Tokyo
| | | | | | | |
Collapse
|
20
|
Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther 2010; 127:175-88. [PMID: 20546777 DOI: 10.1016/j.pharmthera.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/25/2010] [Indexed: 12/22/2022]
Abstract
The need for novel anti-inflammatory drugs justifies the search for innovative targets that could satisfy this goal. For quite some time now, we have proposed the study of endogenous anti-inflammation as a distinctive approach to the discovery of new drugs. This approach requires development of new compounds that activate specific receptor targets to downregulate the cellular and tissue pathways operative in the host during inflammation. Here we dwell on a family of G-protein coupled receptors (GPCR) termed FPRs, acronym for formyl-peptide receptors. With three and seven members in man and mouse, respectively, these receptors harness many biological functions, spanning odour perception and hair growth, to the control of multiple facets (pain; cell migration; oxidative burst; xenobiotic engulfment) of the inflammatory reaction. We focus on FPR biology with particular attention to molecules able to produce pharmacological effects by interacting with these GPCRs, describing endogenous agonists of FPRs and, more relevantly, the current development of synthetic agonists. Besides being potential leads for the development of the anti-inflammatory therapeutics of the future, these compounds could also help clarify the properties and roles that each FPR might play in the complex network of pathways that is inflammation. We conclude that FPR2 agonists could be valid warhorses for defining a novel philosophy for anti-inflammatory drug discovery programmes: mimicking - with new compounds - the way our body disposes of inflammation could be a viable approach to regulate aberrant inflammatory responses as in the case of several chronic rheumatic and cardiovascular pathologies.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
21
|
Are formyl peptide receptors novel targets for therapeutic intervention in ischaemia-reperfusion injury? Trends Pharmacol Sci 2010; 31:266-76. [PMID: 20483490 PMCID: PMC7112865 DOI: 10.1016/j.tips.2010.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 01/13/2023]
Abstract
Ischaemia–reperfusion (I/R) injury is a common feature of several diseases associated with high morbidity and mortality, such as stroke and myocardial infarction. The damaged tissue displays cardinal signs of inflammation and microvascular injury that, unless resolved, lead to long-term tissue damage with associated dysfunction. Current therapies are limited and are often associated with many side effects. Increasing evidence suggests that members of the formyl peptide receptor (FPR) family, in particular human FPR2/ALX, might have an important role in the pathophysiology of I/R injury. It was recently demonstrated that several peptides and non-peptidyl small-molecule compounds have anti-inflammatory and pro-resolving properties via their action on members of the FPR family. Here I review this evidence and suggest that FPR ligands, particularly in the brain, could be novel and exciting anti-inflammatory therapeutics for the treatment of a variety of clinical conditions, including stroke.
Collapse
|
22
|
Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. J Virol 2009; 83:8353-63. [PMID: 19553323 DOI: 10.1128/jvi.00780-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.
Collapse
|
23
|
Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61:119-61. [PMID: 19498085 PMCID: PMC2745437 DOI: 10.1124/pr.109.001578] [Citation(s) in RCA: 618] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions.
Collapse
Affiliation(s)
- Richard D Ye
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, M/C 868, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brandenburg LO, Koch T, Sievers J, Lucius R. Internalization of PrP106-126 by the formyl-peptide-receptor-like-1 in glial cells. J Neurochem 2007; 101:718-28. [PMID: 17448144 DOI: 10.1111/j.1471-4159.2006.04351.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies suggest that the formyl-peptide-receptor-like-1 (FPRL1) plays an essential role in inflammatory responses in the host defence mechanisms and neurodegenerative disorders. Furthermore, it may be involved in proinflammatory processes of prion diseases. However, little is known about the induction and regulation of PrP106-126-induced receptor endocytosis. We have thus analysed whether PrP106-126 increases the activity of phospholipase D (PLD) via FPRL1, an enzyme involved in the regulation of the secretion, endocytosis and receptor signalling, in glial cells. PLD activity was determined using a transphosphatidylation assay and the internalization of PrP106-126, and FPRL1 was assessed by fluorescence microscopy and quantified by ELISA. We could show that PLD is activated by PrP106-126 both in astrocytes and microglia, and moreover that PrP106-126 is rapidly internalized via FPRL1 in astrocytes and microglia cells. The determination of receptor activity by extracellular signal-regulated kinases 1/2 phosphorylation and cAMP level measurement verified the PrP106-126-induced activation of FPRL1. FPRL1-mediated PrP106-126 uptake was blocked by the receptor antagonist chenodeoxycholic acid. These studies indicate the involvement of FPRL1-mediated cellular signalling in PrP106-126-endocytosis and may allow the development of therapeutic agents interfering with prion uptake and/or PLD function, using either PLD or the FPRL1 as a possible pharmaceutical target.
Collapse
|
25
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
26
|
Boldt K, Rist W, Weiss SM, Weith A, Lenter MC. FPRL-1 induces modifications of migration-associated proteins in human neutrophils. Proteomics 2006; 6:4790-9. [PMID: 16892486 DOI: 10.1002/pmic.200600121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human polymorphonuclear neutrophils (PMNs) are an important cell population of the innate immune system, which migrates following concentration gradients of chemokines or chemoattractants to locations of infection and inflammation in order to eliminate invading microorganisms and cell debris. For both migration and adhesion of PMNs to various tissues, the dynamic remodeling of the cytoskeleton is key prerequisite. In this context, the formyl peptide receptor-like 1 (FPRL-1) is an important chemoattractant receptor expressed on PMNs. In this study, we show that a short stimulation of FPRL-1 with either a synthetic peptide ligand (W-peptide) or a natural ligand (sCKbeta8-1) changes the protein pattern of PMNs as assessed by 2-D-DIGE. MS analysis of selected deregulated protein species resulted in the identification of proteins that are involved in the remodeling process of the actin- and tubulin-based cytoskeleton, such as L-plastin, moesin, cofilin, and stathmin. Subsequent validation experiments performed either by Western blotting or phosphoprotein-specific gel staining (Pro-Q Diamond) revealed that L-plastin is phosphorylated, whereas moesin, cofilin, and stathmin are dephosphorylated in PMNs upon FPRL-1 stimulation. These findings suggest that FPRL-1 signaling targets proteins that regulate the motility of PMNs and moreover show that 2-D-DIGE is a technique capable of detecting and quantifying differently modified (e.g., phosphorylated) protein variants.
Collapse
Affiliation(s)
- Karsten Boldt
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Respiratory Research, Genomics Group, Biberach an der Riss, Germany
| | | | | | | | | |
Collapse
|
27
|
Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V. Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol 2006; 28:103-27. [PMID: 16684671 DOI: 10.1080/08923970600625975] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ligation of N-formyl-methionyl-leucyl-phenylalanine (fMLP) to its specific cell surface receptors triggers different cascades of biochemical events, eventually leading to cellular activation. The formyl peptide receptors (FPRs) are members of the seven-transmembrane, G-protein coupled receptors superfamily, expressed at high levels on polymorphonuclear and mononuclear phagocytes. The main responses elicited upon ligation of formylated peptides, referred to as cellular activation, are those of morphological polarization, locomotion, production of reactive-oxygen species and release of proteolytic enzymes. FPRs have in recent years been shown to be expressed also in several non myelocytic populations, suggesting other unidentified functions for this receptor family, independent of the inflammatory response. Finally, a number of ligands acting as exogenous or host-derived agonists for FPRs, as well as ligands acting as FPRs antagonists, have been described, indicating that these receptors may be differentially modulated by distinct molecules.
Collapse
Affiliation(s)
- M A Panaro
- Department of Human Anatomy and Histology, University of Bari, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids 2005; 73:163-77. [PMID: 16125378 DOI: 10.1016/j.plefa.2005.05.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endogenous chemical mediators or autacoids play key roles in controlling inflammation and its programmed resolution. Among them, it is known that lipoxins (LX) and aspirin-triggered LX (ATL) evoke bioactions in a range of physiologic and pathophysiologic processes and serve as endogenous lipid/chemical mediators that stop neutrophilic infiltration and initiate resolution. LXA4, ATL and their metabolic stable analogs elicit cellular responses and regulate PMN in vivo via interacting with their specific receptor, namely ALX. ALX is the first cloned and identified lipoxygenase-derived eicosanoid receptor with cell type-specific signaling pathways. Also, ALX could regulate PMN by interacting with each class of ligands (lipid vs. peptide) within specific phases of an inflammatory response. Together LX, ATL and ALX may provide new opportunities to design "resolution-targeted" therapies with high degree of precision in controlling inflammation. In this chapter, we give an overview and update of the current actions for LX and ATL, the identification of ALX and their novel anti-inflammatory and pro-resolving signals.
Collapse
Affiliation(s)
- Nan Chiang
- The Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
29
|
Abstract
Several hundred disulfide-bridged neurotoxic peptides have been characterized from scorpion venom; however, only few scorpion venom peptides without disulfide bridges have been identified and characterized. These non-disulfide-bridged peptides (NDBPs) are a novel class of molecules because of their unique antimicrobial, immunological or cellular signaling activities. This review provides an overview of their structural simplicity, precursor processing, biological activities and evolution, and sheds insight into their potential clinical and agricultural applications. Based on their pharmacological activities and peptide size similarity, we have classified these peptides into six subfamilies.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biotechnology, Key Laboratory of MOE for Virology, Institute of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | | | | |
Collapse
|
30
|
Le Y, Iribarren P, Gong W, Cui Y, Zhang X, Wang JM. TGF-beta1 disrupts endotoxin signaling in microglial cells through Smad3 and MAPK pathways. THE JOURNAL OF IMMUNOLOGY 2004; 173:962-8. [PMID: 15240683 DOI: 10.4049/jimmunol.173.2.962] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human formyl peptide receptor-like 1 and its mouse homologue formyl peptide receptor 2 (FPR2) are G protein-coupled receptors used by a number of exogenous and host-derived chemotactic peptides, including the 42 aa form of beta amyloid peptide, a causative factor of Alzheimer's disease. Functional FPR2 was induced by bacterial LPS in murine microglial cells, the resident phagocytic cells that play a pivotal role in inflammatory and immunological diseases in the CNS. To identify agents that may suppress microglial cell activation under proinflammatory conditions, we investigated the effect of TGF-beta1 on the expression of functional FPR2 by microglial cells activated by LPS. TGF-beta1 dose-dependently inhibited the mRNA expression and function of FPR2 in LPS-activated microglial cells. The inhibitory effect of TGF-beta1 was mediated by Smad3, a key signaling molecule coupled to the TGF-beta receptor, and the transcription coactivator, p300. Also, TGF-beta1 activates MAPKs in microglial cells that became refractory to further stimulation by LPS. These effects of TGF-beta1 culminate in the inhibition of LPS-induced activation of NF-kappaB and the up-regulation of FPR2 in microglial cells. Thus, TGF-beta1 may exert a protective role in CNS diseases characterized by microglial cell activation by proinflammatory stimulants.
Collapse
Affiliation(s)
- Yingying Le
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, and Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bae YS, Lee HY, Jo EJ, Kim JI, Kang HK, Ye RD, Kwak JY, Ryu SH. Identification of Peptides That Antagonize Formyl Peptide Receptor-Like 1-Mediated Signaling. THE JOURNAL OF IMMUNOLOGY 2004; 173:607-14. [PMID: 15210823 DOI: 10.4049/jimmunol.173.1.607] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived molecules. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. In the present study we identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1's agonists (Trp-Lys-Tyr-Met-Val-D-Met-CONH(2) (WKYMVm)) to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-Trp-CONH(2) (WRWWWW (WRW(4))) showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. We also found that WRW(4) inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW(4) to the FPR family, we observed that WRW(4) specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid beta42 (Abeta42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW(4) on endogenous FPRL1 ligand-induced cellular responses, we examined its effect on Abeta42 peptide in human neutrophils. Abeta42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW(4), which also completely inhibited the internalization of Abeta42 peptide in human macrophages. WRW(4) is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.
Collapse
Affiliation(s)
- Yoe-Sik Bae
- Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaneider NC, Lindner J, Feistritzer C, Sturn DH, Mosheimer BA, Djanani AM, Wiedermann CJ. The immune modulator FTY720 targets sphingosine–kinase‐dependent migration of human monocytes in response to amyloid beta‐protein and its precursor. FASEB J 2004; 18:1309-11. [PMID: 15208267 DOI: 10.1096/fj.03-1050fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of inflammatory mononuclear phagocytes in Alzheimer's senile plaques, a hallmark of the innate immune response to beta-amyloid fibrils, can initiate and propagate neurodegeneration characteristic of Alzheimer's disease. Phagocytes migrate toward amyloid beta-protein involving formyl peptide receptor like-1-dependent signaling. Using human peripheral blood monocytes in Boyden chamber micropore filter assays, we show that the amyloid beta-protein- and amyloid beta-precursor protein-induced migration was abrogated by dimethylsphingosine, a sphingosine kinase inhibitor. Amyloid beta-protein stimulated in monocytes the gene expression for sphingosine-1-phosphate receptors 2 and 5, but not 1, 3, and 4. FTY720 that acts as a sphingosine-1-phosphate receptor agonist after endogenous phosphorylation by sphingosine kinase, as well as various neuropeptides that are known to be monocyte chemoattractants, dose-dependently inhibited amyloid beta-protein-induced migration. These data demonstrate that the migratory effects of beta-amyloid in human monocytes involve spingosine-1-phosphate signaling. Whereas endogenous neuropeptides may arrest and activate monocytes at sites of high beta-amyloid concentrations, interference with the amyloid beta-protein-dependent sphingosine-1-phosphate pathway in monocytes by FTY720, a novel immunomodulatory drug, suggests that FTY720 may be efficacious in beta-amyloid-related inflammatory diseases.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Amyloid beta-Peptides/pharmacology
- Amyloid beta-Protein Precursor/pharmacology
- Androstadienes/pharmacology
- Bombesin/pharmacology
- Calcitonin Gene-Related Peptide/pharmacology
- Cell Movement/drug effects
- Chemotaxis, Leukocyte/drug effects
- Cholera Toxin/pharmacology
- Drug Evaluation, Preclinical
- Enzyme Inhibitors/pharmacology
- Fingolimod Hydrochloride
- Gene Expression Regulation/drug effects
- Heterotrimeric GTP-Binding Proteins/physiology
- Humans
- Immunologic Factors/pharmacology
- Indoles/pharmacology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Maleimides/pharmacology
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neuropeptides/pharmacology
- Pertussis Toxin/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/physiology
- Propylene Glycols/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- RNA, Messenger/biosynthesis
- Receptors, Lysosphingolipid/agonists
- Receptors, Lysosphingolipid/biosynthesis
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/physiology
- Secretogranin II
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Staurosporine/pharmacology
- Tyrphostins/pharmacology
- Vasoactive Intestinal Peptide/pharmacology
- Wortmannin
Collapse
Affiliation(s)
- Nicole C Kaneider
- Division of General Internal Medicine, Department of Internal Medicine, Innsbruck University Hospital, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Moerman L, Verdonck F, Willems J, Tytgat J, Bosteels S. Antimicrobial peptides from scorpion venom induce Ca(2+) signaling in HL-60 cells. Biochem Biophys Res Commun 2004; 311:90-7. [PMID: 14575699 DOI: 10.1016/j.bbrc.2003.09.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parabutoporin (PP) and opistoporin 1 (OP1) are amphipathic alpha-helical antimicrobial peptides that were recently isolated from scorpion venom. In assays in which single granulocyte-like HL-60 cells as well as cells in suspension were used, both peptides were able to induce a reversible Ca(2+) release from intracellular stores and to increase Ca(2+) influx. Both effects could be clearly differentiated for OP1, inducing Ca(2+) release at lower concentrations. The Ca(2+) release was pertussis toxin-sensitive indicating the involvement of G-proteins. Ca(2+) release depended on the stage of differentiation of the cells with undifferentiated cells being the most sensitive. Desensitization occurred with OP1. No cross-desensitization occurred between OP1 and the bacterial chemoattractant fMLP indicating the involvement of different types of receptors. Ca(2+) release by OP1 was found not to be mediated via interaction with the formyl peptide receptor-like 1. Although some of the results might favor a receptor-like interaction, the receptor involved could not be identified.
Collapse
Affiliation(s)
- Leentje Moerman
- Interdisciplinary Research Center, Catholic University Leuven Campus Kortrijk, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Bae YS, Park EY, Kim Y, He R, Ye RD, Kwak JY, Suh PG, Ryu SH. Novel chemoattractant peptides for human leukocytes. Biochem Pharmacol 2003; 66:1841-51. [PMID: 14563494 DOI: 10.1016/s0006-2952(03)00552-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipase A(2) plays a key role in phagocytic cell functions. By screening a synthetic hexapeptide combinatorial library, we identified 24 novel peptides based on their ability to stimulate arachidonic acid release associated with cytosolic phospholipase A(2) activity in differentiated HL60 cells. The identified peptides, that contain the consensus sequence (K/R/M)KYY(P/V/Y)M, also induce intracellular calcium release in a pertussis toxin-sensitive manner showing specific action on phagocytic leukocytes, but not on other cells. Functionally, the peptides stimulate superoxide generation and chemotactic migration in human neutrophils and monocytes. Four of the tested active peptides were ligands for formyl peptide receptor like 1. Among these, two peptides with the consensus sequence (R/M)KYYYM can induce intracellular calcium release in undifferentiated HL60 cells that do not express formyl peptide receptor like 1, indicating usage of other receptor(s). A study of intracellular signaling in differentiated HL60 cells induced by the peptides has revealed that four of the novel peptides can induce extracellular signal-regulated protein kinase activation via shared and distinct signaling pathways, based on their dependence of phospatidylinositol-3-kinase, protein kinase C, and MEK. These peptides provide previously unavailable tools for study of differential signaling in leukocytes.
Collapse
Affiliation(s)
- Yoe-Sik Bae
- Department of Biochemistry, College of Medicine, Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 02-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Galey D, Becker K, Haughey N, Kalehua A, Taub D, Woodward J, Mattson MP, Nath A. Differential transcriptional regulation by human immunodeficiency virus type 1 and gp120 in human astrocytes. J Neurovirol 2003; 9:358-71. [PMID: 12775419 DOI: 10.1080/13550280390201119] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astrocytes may be infected with the human immunodeficiency virus type 1 (HIV-1) or exposed to the HIV protein gp120, yet their role in the pathogenesis of HIV dementia is largely unknown. To characterize the effects of HIV on astrocytic transcription, microarray analysis and ribonuclease protection assays (RPA) were performed. Infection of astrocytes by HIV or treatment with gp120 had differential and profound effects on gene transcription. Of the 1153 oligonucleotides on the immune-based array, the expression of 108 genes (53 up; 55 down) and 82 genes (32 up; 50 down) were significantly modulated by gp120 and HIV infection respectively. Of the 1153 oligonucleotides on the neuro-based array, 58 genes (25 up; 33 down) and 47 genes (17 up; 30 down) were significantly modulated by gp120 and HIV infection respectively. Chemokine and cytokine induction occurred predominantly by HIV infection, whereas gp120 had no significant effect. These results were confirmed by RPA. The authors conclude that profound alterations of astrocytic function occur in response to HIV infection or interaction with viral proteins, suggesting that astrocytes may play an important role in the pathogenesis of HIV dementia.
Collapse
Affiliation(s)
- D Galey
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Richardson RM, Tokunaga K, Marjoram R, Sata T, Snyderman R. Interleukin-8-mediated heterologous receptor internalization provides resistance to HIV-1 infectivity. Role of signal strength and receptor desensitization. J Biol Chem 2003; 278:15867-73. [PMID: 12594210 DOI: 10.1074/jbc.m211745200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.
Collapse
Affiliation(s)
- Ricardo M Richardson
- Department of Biochemistry, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
37
|
Cui YH, Le Y, Zhang X, Gong W, Abe K, Sun R, Van Damme J, Proost P, Wang JM. Up-Regulation of FPR2, a Chemotactic Receptor for Amyloid β 1–42 (Aβ42), in Murine Microglial Cells by TNFα. Neurobiol Dis 2002; 10:366-77. [PMID: 12270697 DOI: 10.1006/nbdi.2002.0517] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human FPRL1 and its mouse homologue FPR2 are functional receptors for several exogenous and host-derived chemotactic peptides, including amyloid beta(42) (A beta(42)), a critical pathogenic factor in Alzheimer's disease. We investigated the effect of TNF alpha on the expression and function of FPR2 in mouse microglial cells, a crucial inflammatory cell type in the CNS. Primary murine microglia and a cell line N9 in resting state expressed low levels of FPR2 gene and lacked the response to chemotactic agonists for this receptor. Incubation with TNF alpha, however, increased microglial expression of FPR2 gene, in association with potent chemotactic responses to FPR2-specific agonists including A beta(42). The effect of TNF alpha was dependent on the p55 TNF alpha receptor and activation of MAP kinase p38. TNF alpha concomitantly down-regulated microglial response to the chemokine SDF-1 alpha. Thus, by selectively up-regulating FPR2 in microglia, TNF alpha has the capacity to amplify host response in inflammatory diseases in the CNS.
Collapse
Affiliation(s)
- Y H Cui
- Laboratory of Molecular immunoregulation, Center for Cancer Research, SAIC Frederick, National Cancer Institute at Frederick, National Institutes of Health, MD 27110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Le Y, Yang Y, Cui Y, Yazawa H, Gong W, Qiu C, Wang JM. Receptors for chemotactic formyl peptides as pharmacological targets. Int Immunopharmacol 2002; 2:1-13. [PMID: 11789660 DOI: 10.1016/s1567-5769(01)00150-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukocytes accumulate at sites of inflammation and immunological reaction in response to locally existing chemotactic mediators. N-formyl peptides, such as fMet-Leu-Phe (fMLF), are some of the first identified and most potent chemoattractants for phagocytic leukocytes. In addition to the bacterial peptide fMLF and the putative endogenously produced formylated peptides, a number of novel peptide agonists have recently been identified that selectively activate the high-affinity fMLF receptor FPR and/or its low-affinity variant FPRL1, both of which belong to the seven-transmembrane (STM), G protein-coupled receptor (GPCR) superfamily. These agonists include peptide domains derived from the envelope proteins of human immunodeficiency virus type 1 (HIV-1) and at least three amyloidogenic polypeptides, the human acute phase protein serum amyloid A, the 42 amino acid form of beta amyloid peptide and a 21 amino acid fragment of human prion. Furthermore, a cleavage fragment of neutrophil granule-derived bactericidal cathelicidin, LL-37, is also a chemotactic agonist for FPRL1. Activation of formyl peptide receptors results in increased cell migration, phagocytosis, release of proinflammatory mediators, and the signaling cascade culminates in heterologous desensitization of other STM receptors including chemokine receptors CCR5 and CXCR4, two coreceptors for HIV-1. Thus, by interacting with a variety of exogenous and host-derived agonists, formyl peptide receptors may play important roles in proinflammatory and immunological diseases and constitute a novel group of pharmacological targets.
Collapse
Affiliation(s)
- Yingying Le
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cui YH, Le Y, Gong W, Proost P, Van Damme J, Murphy WJ, Wang JM. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:434-42. [PMID: 11751990 DOI: 10.4049/jimmunol.168.1.434] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptors for the bacterial chemotactic peptide fMLP are implicated in inflammation and host defense against microbial infection. We investigated the expression and function of fMLPR in microglial cells, which share characteristics of mononuclear phagocytes and play an important role in proinflammatory responses in the CNS. The expression of the genes encoding formyl peptide receptor (FPR)1 and FPR2, the high- and low-affinity fMLPR, was detected in a murine microglial cell line N9, but these cells did not respond to chemotactic agonists known for these receptors. N9 cells incubated with bacterial LPS increased the expression of fMLPR genes and developed a species of specific, but low-affinity, binding sites for fMLP, in association with marked calcium mobilization and chemotaxis responses to fMLP in a concentration range that typically activated the low-affinity receptor FPR2. In addition, LPS-treated N9 cells were chemoattracted by two FPR2-specific agonists, the HIV-1 envelope-derived V3 peptide, and the 42 aa form of the amyloid beta peptide which is a pathogenic agent in Alzheimer's disease. Primary murine microglial cells also expressed FPR1 and FPR2 genes, but similar to N9 cells, exhibited FPR2-mediated activation only after LPS treatment. In contrast to its effect on the function of FPR2, LPS reduced N9 cell binding and biological responses to the chemokine stromal cell-derived factor-1alpha. Thus, LPS selectively modulates the function of chemoattractant receptors in microglia and may promote host response in inflammatory diseases in the CNS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Central Nervous System Bacterial Infections/immunology
- Chemotactic Factors/pharmacology
- Chemotaxis, Leukocyte
- Dose-Response Relationship, Drug
- Inflammation/immunology
- Kinetics
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred BALB C
- Microglia/cytology
- Microglia/drug effects
- Microglia/immunology
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Protein Isoforms/agonists
- Protein Isoforms/physiology
- RNA, Messenger/biosynthesis
- Receptors, Formyl Peptide
- Receptors, Immunologic/agonists
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Peptide/agonists
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Up-Regulation
Collapse
Affiliation(s)
- You-Hong Cui
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Building 560, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 2002; 3:76-82. [PMID: 11743584 DOI: 10.1038/ni745] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipoxins are eicosanoid mediators that show potent inhibitory effects on the acute inflammatory process. We show here that the induction of lipoxin A(4) (LXA(4)) accompanied the in vivo suppression of interleukin 12 (IL-12) responsiveness of murine splenic dendritic cells (DCs) after microbial stimulation with an extract of Toxoplasma gondii. This paralysis of DC function could not be triggered in mice that were deficient in a key lipoxygenase involved in LXA(4) biosynthesis. In addition, DCs pre-treated with LXA(4) became refractory to microbial stimulation for IL-12 production in vitro and mice injected with a stable LXA(4) analog showed reduced splenic DC mobilization and IL-12 responses in vivo. Together, these findings indicate that the induction of lipoxins in response to microbial stimulation can provide a potent mechanism for regulating DC function during the innate response to pathogens.
Collapse
Affiliation(s)
- J Aliberti
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
41
|
Hu JY, Le Y, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM. Synthetic peptide MMK‐1 is a highly specific chemotactic agonist for leukocyte FPRL1. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jin Yue Hu
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute‐Frederick Cancer Research and Development Center, and Frederick, Maryland
- Cancer Research Institute, Hunan Medical University, Changsha, China
| | - Yingying Le
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute‐Frederick Cancer Research and Development Center, and Frederick, Maryland
| | - Wanghua Gong
- The Intramural Research Support Program, SAIC Frederick, Frederick, Maryland;
| | - Nancy M. Dunlop
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute‐Frederick Cancer Research and Development Center, and Frederick, Maryland
| | - Ji Liang Gao
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Philip M. Murphy
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute‐Frederick Cancer Research and Development Center, and Frederick, Maryland
| |
Collapse
|
42
|
Le Y, Wetzel MA, Shen W, Gong W, Rogers TJ, Henderson EE, Wang JM. Desensitization of chemokine receptor CCR5 in dendritic cells at the early stage of differentiation by activation of formyl peptide receptors. Clin Immunol 2001; 99:365-72. [PMID: 11358433 DOI: 10.1006/clim.2001.5021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemokine receptors are subjected to heterologous desensitization by activation of formyl peptide receptors. We investigated the cross-talk between formyl peptide receptors and the chemokine receptor CCR5 in human monocyte-differentiated immature dendritic cells (iDC). Monocytes cultured with GM-CSF and IL-4 for 4 days exhibit markers characteristic of iDC and maintain the expression of both formyl peptide receptors FPR and FPRL1, as well as CCR5. Pretreatment of iDC with W peptide (WKYMVm), a potent agonist for FPR and FPRL1 but with preference for FPRL1, resulted in down-regulation of CCR5 from the cell surface and reduced cell response to the CCR5 ligands through a PKC-dependent pathway. Furthermore, W peptide induced a PKC-dependent phosphorylation of CCR5 and inhibited infection of iDC by R5 HIV-1. Our results indicate that the expression and functions of CCR5 in iDC can be attenuated by W peptide, which activates formyl peptide receptors, and suggest an approach to the design of novel anti-HIV-1 agents.
Collapse
Affiliation(s)
- Y Le
- Laboratory of Molecular Immunoregulation, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Li BQ, Wetzel MA, Mikovits JA, Henderson EE, Rogers TJ, Gong W, Le Y, Ruscetti FW, Wang JM. The synthetic peptide WKYMVm attenuates the function of the chemokine receptors CCR5 and CXCR4 through activation of formyl peptide receptor-like 1. Blood 2001; 97:2941-7. [PMID: 11342415 DOI: 10.1182/blood.v97.10.2941] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G protein-coupled 7 transmembrane (STM) chemoattractant receptors can be inactivated by heterologous desensitization. Earlier work showed that formly peptide receptor-like 1 (FPRL1), an STM receptor with low affinity for the bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalamine (fMLF), is activated by peptide domains derived from the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp120 and its activation results in desensitization and down-regulation of the chemokine receptors CCR5 and CXCR4 from monocyte surfaces. This study investigated the possibility of interfering with the function of CCR5 or CXCR4 as HIV-1 coreceptors by activating FPRL1. Cell lines were established expressing FPRL1 in combination with CD4/CXCR4 or CD4/CCR5 and the effect of a synthetic peptide, WKYMVm, a potent activator of formyl peptide receptors with preference for FPRL1 was determined. Both CXCR4 and CCR5 were desensitized by activation of the cells with WKYMVm via a staurosporine-sensitive pathway. This desensitization of CXCR4 and CCR5 also attenuated their capacity as the fusion cofactors for HIV-1 envelope glycoprotein and resulted in a significant inhibition of p24 production by cell lines infected with HIV-1 that use CCR5 or CXCR4 as coreceptors. Furthermore, WKYMVm inhibited the infection of human peripheral monocyte-derived macrophages and CD4(+) T lymphocytes by R5 or X4 strains of HIV-1, respectively. These results indicate that heterologous desensitization of CCR5 and CXCR4 by an FPRL1 agonist attenuates their major biologic functions and suggest an approach to the development of additional anti-HIV-1 agents. (Blood. 2001;97:2941-2947)
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- CD4-Positive T-Lymphocytes/virology
- Cells, Cultured
- Gene Expression
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/physiology
- HIV-1/drug effects
- HIV-1/physiology
- Humans
- Macrophages/virology
- Monocyte Chemoattractant Proteins/pharmacology
- Oligopeptides/pharmacology
- Osteosarcoma
- Receptors, CCR5/drug effects
- Receptors, CCR5/physiology
- Receptors, CXCR4/drug effects
- Receptors, CXCR4/physiology
- Receptors, Formyl Peptide
- Receptors, HIV/genetics
- Receptors, Immunologic/drug effects
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Lipoxin
- Receptors, Peptide/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B Q Li
- Intramural Research Support Program and the Laboratory of Antiviral Drug Mechanism, NCI-Screening Technologies Branch, SAIC Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|