1
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lee KH, Lee J, Woo J, Lee CH, Yoo CG. Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells. Mol Cells 2018; 41:1008-1015. [PMID: 30396235 PMCID: PMC6315323 DOI: 10.14348/molcells.2018.0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/27/2022] Open
Abstract
IκB, a cytoplasmic inhibitor of nuclear factor-κB (NF-κB), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces IκBα degradation via an alternative pathway, lysosome, which results in NF-κB activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced IκBα degradation is necessary. Here, we demonstrated that PI upregulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for IκBα degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced IκBα degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent IκBα degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the IκB/NF-κB pathway, which attenuates the anti-tumor efficacy of PIs.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| | - Jungsil Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
4
|
Zhu J, Xin Y, Liu X, Wang Y, Liu Y. Nimotuzumab enhances the sensitivity of non-small cell lung cancer cells to tumor necrosis factor-α by inhibiting the nuclear factor-кB signaling pathway. Exp Ther Med 2018; 15:3345-3351. [PMID: 29545853 PMCID: PMC5841043 DOI: 10.3892/etm.2018.5856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for ~85% of lung cancer cases worldwide. Current guidelines recommend the use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for patients with NSCLC. The EGF/EGFR signaling pathway has been demonstrated to activate nuclear factor (NF)-κB, which may inhibit tumor necrosis factor (TNF)-α induced cell apoptosis. The aim of the present study was to investigate whether inhibiting the EGF/EGFR signaling pathway sensitizes NSCLC cell lines to TNF-α-induced apoptosis. The resistance of NSCLC cell lines to TNF-α was evaluated by cell viability assay. The effect of nimotuzumab (Ni) on NSCLC cell sensitivity to TNF-α, as well as the role of NF-κB in mediating resistance to TNF-α-induced apoptosis, was explored by western blot analysis, cell viability assay, apoptosis assay and an NF-κB DNA binding assay. It was demonstrated that EGFR protein expression was markedly higher in the H292 and H1975 cell lines compared with H460 and H1299 cell lines. H292 and H1975 also exhibited significantly increased TNF-α resistance compared with H460 and H1299 cells. Low dose Ni treatment slightly reduced the viability of H292 and H1975 cells; however, combined treatment with low dose Ni and TNF-α significantly inhibited H292 and H1299 cell viability compared with H460 and H1299 cells by inducing cell apoptosis. NF-κB protein expression and activity were also inhibited by the combination treatment. TNF-α treatment alone induced apoptosis in NF-κB deficient H292 and H1975 cells, similar to the effect of combination treatment in wild type H292 and H1975 cells. The results of the present study suggest that Ni sensitizes NSCLC cell lines to TNF-α-induced cell death by inhibiting NF-κB protein expression and activation, indicating a novel mechanism by which Ni suppresses the development of NSCLC.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Ying Xin
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Xiaoliang Liu
- Department of Blood Cancer, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Wang
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Ying Liu
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
5
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/25/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|
6
|
Jiang X, Kanda T, Wu S, Nakamoto S, Nakamura M, Sasaki R, Haga Y, Wakita T, Shirasawa H, Yokosuka O. Hepatitis C Virus Nonstructural Protein 5A Inhibits MG132-Induced Apoptosis of Hepatocytes in Line with NF-κB-Nuclear Translocation. PLoS One 2015; 10:e0131973. [PMID: 26133378 PMCID: PMC4489642 DOI: 10.1371/journal.pone.0131973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is one of the major causes of cirrhosis and hepatocellular carcinoma. HCV nonstructural protein 5A (NS5A) is an attractive antiviral target and plays an important role in HCV replication as well as hepatocarcinogenesis. The aim of this study was to assess the effect of HCV NS5A protein in the abrogation of apoptotic cell death induced by the proteasome inhibitor MG132. METHODS Apoptotic responses to MG132 and the expression of molecules involved in NF-κB signaling pathways in human hepatocytes were investigated with or without the expression of HCV NS5A. RESULTS HCV NS5A protected HepG2 cells against MG132-induced apoptosis, in line with NF-κB-nuclear translocation. A similar NF-κB-nuclear translocation was observed in Huh7 cells infected with HCV JFH1. In agreement with this, after treatment with MG132, HCV NS5A could elevate the transcription of several NF-κB target genes such as BCL2 and BCLXL to inhibit MG132-induced apoptosis in hepatocytes. HCV HCV NS5A also enhanced phosphorylation of IκBα. Consistent with a conferred prosurvival advantage, HCV NS5A reduced MG132-induced poly(adenosine diphosphate-ribose) polymerase cleavage. CONCLUSIONS HCV NS5A expression enhances phosphorylation of IκBα, liberates NF-κB for nuclear translocation and downregulates MG132-induced apoptotic pathways in human hepatocytes. It is possible that the disruption of proteasome-associated apoptosis plays a role in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Xia Jiang
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shuang Wu
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masato Nakamura
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reina Sasaki
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuki Haga
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Shirasawa
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Ban JO, Hwang CJ, Park MH, Hwang IK, Jeong HS, Lee HP, Hyun BK, Kim JY, Youn HS, Ham YW, Yoon DY, Han SB, Song MJ, Hong JT. Enhanced cell growth inhibition by thiacremonone in paclitaxel-treated lung cancer cells. Arch Pharm Res 2015; 38:1351-62. [PMID: 25791937 DOI: 10.1007/s12272-015-0589-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
Activation of nuclear factor kappa-B (NF-κB) is implicated in drug resistant of lung cancer cells. Our previous data showed that thiacremonone inhibited activation of NF-κB. In the present study, we investigated whether thiacremonone enhanced susceptibility of lung cancer cells to a common anti-cancer drug paclitaxel by further inhibition of NF-κB. Thus, we used the threefold lower doses of IC50 values (50 μg/ml thiacremonone and 2.5 nM paclitaxel). We found that combination treatment with thiacremonone and paclitaxel was more susceptible (combination index; 0.40 in NCI-H460 cells and 0.46 in A549 cells) in cell growth inhibition of two types of lung cancer cell lines compared to a single agent treatment. Consistent with the combination effect on cancer cell growth inhibition, the combination treatment further induced apoptotic cell death and arrested the cancer cells in G2/M phase accompanied with a much lower expression of cdc2 and cyclin B1, and inhibited colony formation. Much more inactivation of NF-κB and greater expression of NF-κB target apoptosis regulated genes such as caspase-8 and PARPs were found by the combination treatment. Molecular model and pull down assay as well as MALDI-TOF analysis demonstrated that thiacremonone directly binds to p50. These data indicated that thiacremonone leads to increased apoptotic cell death in lung cancer cell lines through greater inhibition of NF-κB by the combination treatment with paclitaxel.
Collapse
Affiliation(s)
- Jung Ok Ban
- College of Pharmacy and Medical Research Center, Chungbuk National University, 52, Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee MS. Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes. J Korean Med Sci 2014; 29:1038-41. [PMID: 25120311 PMCID: PMC4129193 DOI: 10.3346/jkms.2014.29.8.1038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/10/2014] [Indexed: 01/22/2023] Open
Abstract
The importance of innate immunity in host defense is becoming clear after discovery of innate immune receptors such as Toll-like receptor or Nod-like receptor. Innate immune system plays an important role in diverse pathological situations such as autoimmune diseases. Role of innate immunity in the pathogenesis of metabolic disorders such as type 2 diabetes, metabolic syndrome or atherosclerosis that has not been previously considered as inflammatory disorders, is also being appreciated. Here, the role of innate immunity in the development of type 1 diabetes, a classical organ-specific autoimmune disease, and type 2 diabetes will be discussed, focusing on the role of specific innate immune receptors involved in these disease processes.
Collapse
Affiliation(s)
- Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Lee KH, Jeong J, Yoo CG. Long-term incubation with proteasome inhibitors (PIs) induces IκBα degradation via the lysosomal pathway in an IκB kinase (IKK)-dependent and IKK-independent manner. J Biol Chem 2013; 288:32777-32786. [PMID: 24085292 DOI: 10.1074/jbc.m113.480921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome inhibitors (PIs) have been reported to induce apoptosis in many types of tumor. Their apoptotic activities have been suggested to be associated with the up-regulation of molecules implicated in pro-apoptotic cascades such as p53, p21(Waf1), and p27(Kip1). Moreover, the blocking of NF-κB nuclear translocation via the stabilization of IκB is an important mechanism of PI-induced apoptosis. However, we found that long-term incubation with PIs (PS-341 or MG132) increased NF-κB-regulated gene expression such as COX-2, cIAP2, XIAP, and IL-8 in a dose- and time-dependent manner, which was mediated by phosphorylation of IκBα and its subsequent degradation via the alternative route, lysosome. Overexpression of the IκBα superrepressor (IκBα-SR) blocked PI-induced NF-κB activation. Treatment with lysosomal inhibitors (ammonium chloride or chloroquine) or inhibitors of cathepsins (Z-FF-FMK or Z-FA-FMK) or knock-down of LC3B expression by siRNAs suppressed PI-induced IκBα degradation. Furthermore, we found that both IKK-dependent and IKK-independent pathways were required for PI-induced IκBα degradation. Pretreatment with IKKβ specific inhibitor, SC-514, partially suppressed IκBα degradation and IL-8 production by PIs. Blockade of IKK activity using insolubilization by heat shock (HS) and knock-down by siRNAs for IKKβ only delayed IκBα degradation up to 8 h after treatment with PIs. In addition, PIs induced Akt-dependent inactivation of GSK-3β. Inactive GSK-3β accelerated PI-induced IκBα degradation. Overexpression of active GSK-3β (S9A) or knock-down of GSK-3β delayed PI-induced IκBα degradation. Collectively, our data demonstrate that long-term incubation with PIs activates NF-κB, which is mediated by IκBα degradation via the lysosome in an IKK-dependent and IKK-independent manner.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jiyeong Jeong
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Chul-Gyu Yoo
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; the Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; the Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea.
| |
Collapse
|
10
|
Wang Y, Yue B, Yu X, Wang Z, Wang M. SLUG is activated by nuclear factor kappa B and confers human alveolar epithelial A549 cells resistance to tumor necrosis factor-alpha-induced apoptosis. World J Surg Oncol 2013; 11:12. [PMID: 23339680 PMCID: PMC3561261 DOI: 10.1186/1477-7819-11-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/23/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of tumor necrosis factor alpha (TNF-α) in cancer is complex with both apoptotic and anti-apoptotic roles proposed. However the mechanism is not clear. In the study, we designed to investigate the effect of TNF-α on the activation and expression of nuclear factor kappa B (NF-κB)/p65/SLUG/PUMA/Bcl-2 levels in human lung cancer A549 cell line, and in conditions of TNF-α-induced apoptosis. METHODS We have engineered three A549 cell lines that were transiently transfected with PUMA siRNA, SLUG siRNA and Bcl-2 siRNA, respectively. We have measured the in vitro effects of siRNA on apoptosis, and sensitivity to 20 ng/ml of TNF-α treatment for 24-48 h. RESULTS We found the NF-κB activity and PUMA mRNA/protein was significantly increased after treatment of TNF-α for 24 h in untreated A549 cells, and led to a significant increase in TNF-α-induced apoptosis, no significant increase of SLUG and Bcl-2 level was shown. However, after treatment of TNF-α for 48 h in untreated A549 cells, SLUG and Bcl-2 level was significant increased, and PUMA level was significant decreased, and TNF-α-induced apoptosis was significantly decreased compared to the apoptosis level after treatment of TNF-α for 24 h. Inhibition of the NF-κB activity could effectively decrease the PUMA level and increase the SLUG and Bcl-2 level. PUMA silencing by siRNA led to a significant decrease in TNF-α-induced apoptosis after treatment of TNF-α for 24 h. Bcl-2 and SLUG silencing by siRNA led to a significant increase in TNF-α-induced apoptosis for 48 h. Furthermore, SLUG silencing increased PUMA level and decreased Bcl-2 level. CONCLUSIONS The findings suggested that TNF-α treatment promoted apoptosis via the NF-κB-dependent PUMA pathway. The anti-apoptotic role of TNF-α was via NF-κB-dependent SLUG and Bcl-2 pathway at a later time.
Collapse
Affiliation(s)
- Yaopeng Wang
- Department of Thoracic Surgery, the Affiliated Hospital of Medical College Qingdao University, 19 Jiangsu Road, Qingdao, Shandong, 266001, China.
| | | | | | | | | |
Collapse
|
11
|
Nishihori T, Alekshun TJ, Shain K, Sullivan DM, Baz R, Perez L, Pidala J, Kharfan-Dabaja MA, Ochoa-Bayona JL, Fernandez HF, Yarde DN, Oliveira V, Fulp W, Han G, Kim J, Chen DT, Raychaudhuri J, Dalton W, Anasetti C, Alsina M. Bortezomib salvage followed by a Phase I/II study of bortezomib plus high-dose melphalan and tandem autologous transplantation for patients with primary resistant myeloma. Br J Haematol 2012; 157:553-63. [PMID: 22449149 DOI: 10.1111/j.1365-2141.2012.09099.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/30/2012] [Indexed: 12/22/2022]
Abstract
We conducted a Phase 1/2 study of bortezomib administered in combination with high-dose melphalan followed by tandem autologous transplants in patients with primary resistant multiple myeloma. Thirty patients received two cycles of salvage bortezomib followed by stem cell mobilization with granulocyte colony-stimulating factor and harvest. Melphalan 100 mg/m(2) per day on two consecutive days was administered, immediately followed by one dose of bortezomib (dose escalation) and stem cell infusion. The median beta 2-microglobulin was 4·35 mg/l (range: 1·8-11·4); albumin was 37 g/l (range: 3·1-4·9); high-risk karyotypes were noted in 45% of patients. The maximum planned dose of bortezomib at 1·3 mg/m(2) was well tolerated and a formal maximum tolerated dose was not determined. The peak of best overall response (≥partial response) and complete response rates after tandem transplants were 84% and 36%, respectively. With a median follow-up of 48 months, the median progression-free survival was 15 [95% confidence interval (CI): 11-21] months and the median overall survival was 35 (95% CI: 22-43) months. Correlative studies demonstrated decreased expression of BRCA2 (P = 0·0072) and FANCF (P = 0·0458) mRNA following bortezomib treatment. Bortezomib combined with high-dose melphalan is a well-tolerated conditioning with some activity in patients with resistant myeloma.
Collapse
Affiliation(s)
- Taiga Nishihori
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effect of antisense oligodeoxynucleotide targeted against NF-κB/P65 on cell proliferation and tumorigenesis of gastric cancer. Clin Exp Med 2012; 13:11-9. [PMID: 22234797 DOI: 10.1007/s10238-011-0174-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
Abstract
To study the inhibitory effect of nuclear transcription factor-kappa B(NF-κB) antisense oligodeoxynucleotide(ASODN) on the growth and tumorgenesis of human gastric cancer. We synthesized and transfected the ASODN of NF-κB/P65 to gastric cancer cell line. The effect of ASODN of NF-κB/P65 on the proliferation of gastric cancer cells was measured by MTT method. The subcutaneous xenograft model of human gastric cancer was established in nude mice, and the tumor growth curve was observed. The cell proliferation was significantly inhibited in P65 ASODN-transfected group in vitro (P<0.05). In vivo, tumor formation test showed that the tumor volume in nude mice in ASODN group was obviously smaller than in other groups (P<0.05); the apoptosis index (AI) was significantly higher (P<0.001). Simultaneously, MVD in ASODN group was markedly lower than in other groups (P<0.01). NF-κB could be used as a new biological therapeutic target of gastric cancer.
Collapse
|
13
|
Leung KC, Li MY, Leung BC, Hsin MK, Mok TS, Underwood MJ, Chen GG. Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-κB. Exp Cell Res 2010; 316:3468-77. [DOI: 10.1016/j.yexcr.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/02/2010] [Accepted: 07/03/2010] [Indexed: 12/11/2022]
|
14
|
Wu GQ, Liao YJ, Qin ZQ, He LR, Chen YC, Zeng YX, Kung HF, Xie D. PYRIN domain of NALP2 inhibits cell proliferation and tumor growth of human glioblastoma. Plasmid 2010; 64:41-50. [PMID: 20388524 DOI: 10.1016/j.plasmid.2010.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/21/2009] [Accepted: 01/10/2010] [Indexed: 01/08/2023]
Abstract
NACHT leucine-rich domain and pyrin-containing protein 2 (NALP2) plays a crucial role in inflammation through regulation of NF-kappaB activity. The N-terminal PRYIN domain of NALP2 (PYD) functions similarly in inhibiting NF-kappaB activity. To investigate if NALP2 or PYD regulates cell proliferation or tumor growth of glioblastoma, lentiviruses carrying PYD (Lenti-PYD-Flag) was successfully packaged. Lenti-PYD-Flag is able to transduce tumor cells with high efficiency and mediate high expression of peptide PYD-Flag. Transduction with Lenti-PYD-Flag significantly inhibited cell proliferation and tumor growth of U-87 MG, but not other cell lines tested. PYD inhibited nuclear accumulation of endogenous p65. These findings imply that: (i) our pRRL-based lentiviral system can transduce tumor cells with high transduction efficiency, and mediate high level expression of, at least 1.8 kb, foreign genes; (ii) PYD inhibits cell proliferation and tumor growth of glioblastoma possibly through the inhibition of NF-kappaB activity, and PYD appears to be a promising candidate for the development of targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Guo-Qing Wu
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Saitoh Y, Martínez Bruyn VJ, Uota S, Hasegawa A, Yamamoto N, Imoto I, Inazawa J, Yamaoka S. Overexpression of NF-κB inducing kinase underlies constitutive NF-κB activation in lung cancer cells. Lung Cancer 2010; 70:263-70. [PMID: 20338663 DOI: 10.1016/j.lungcan.2010.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/17/2010] [Accepted: 03/01/2010] [Indexed: 01/22/2023]
Abstract
The present study investigates roles for NF-κB inducing kinase (NIK) in constitutive NF-κB activation in lung cancer cells. A wealth of evidence showed that NF-κB is often constitutively activated in human cancer cells, including non-small cell lung cancer tissue specimens and cell lines, which may lead to deregulated apoptosis and enhanced resistance of tumor cells to chemotherapy. However, the mechanisms of NF-κB activation in lung cancer cells remain largely unknown. We report here that NF-κB inducing kinase (NIK) is aberrantly expressed at the pre-translational level in non-small cell lung cancer (NSCLC) cell lines. Depletion of NIK by RNA interference remarkably diminished nuclear NF-κB DNA binding activity and reporter gene expression. NIK depletion induced apoptosis in A549 cells, reduced the matrix metalloproteinase 9 (MMP-9) and survivin mRNA expression and affected efficiency of anchorage-independent H1299 cell growth, suggesting a role for NIK in the manifestation of oncogenic phenotype. These results indicate that NIK plays a key role in constitutive NF-κB activation in NSCLC cells and implicate NIK as a molecular target for lung cancer therapy.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Department of Molecular Virology, Bio Response, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Galimberti S, Canestraro M, Pacini S, Fazzi R, Orciuolo E, Trombi L, Mattii L, Battolla B, Capodanno A, Collecchi P, Veroni F, Simi P, Piaggi S, Casini A, Petrini M. PS-341 (Bortezomib) inhibits proliferation and induces apoptosis of megakaryoblastic MO7-e cells. Leuk Res 2008; 32:103-12. [PMID: 17629554 DOI: 10.1016/j.leukres.2007.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/13/2007] [Accepted: 05/19/2007] [Indexed: 10/23/2022]
Abstract
PS-341 (Bortezomib) is a dipeptide boronic acid proteasome inhibitor with antitumor activity that induces apoptosis in different human cancer cell lines. We investigated effects of PS-341 (Bortezomib) on cell proliferation, cell cycle progression, induction of apoptosis and differentiation in a megakaryoblastic (MO7-e) cell line. PS-341 was able to retain NF-kappaB in the cytoplasm and inhibit cell growth (IC(50)=22.5 nM), in a dose/time-dependent way. This anti-proliferative activity resulted to be lineage-specific, because other leukemic cell lines (KG1a, K562/R7, HL60/DNR) were unaffected by the PS-341 treatment. Moreover, PS-341 in MO7-e induced a significant pro-apoptotic effect from 10 nM concentration (40% versus 12% in the control, p<0.05). On the other hand, at lower concentration (5 nM), Bortezomib blocked cell cycle in the G2 phase. Finally, this compound was able to down-regulate WT1 expression. No significant effects on cell differentiation were found. Because a spontaneous NF-kappaB activation has been reported in megakaryocytes from patients affected by myeloproliferative disorders, Bortezomib would so be an attractive therapeutic tool for these malignancies, including essential thrombocythemia or idiopathic myelofibrosis. Preliminary data show an inhibiting activity of Bortezomib in the megakaryocytic colonies formation. Finally, also down-regulation of the WT1 gene Bortezomib-driven could be relevant, because of the role that this gene would play in the pathogenesis of acute and chronic myeloproliferative disorders.
Collapse
Affiliation(s)
- S Galimberti
- Department of Oncology, Transplant and Advances in Medicine, Section of Hematology, University of Pisa, Ospedale S. Chiara, Via Roma, 56, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN, Vassiliou S, Karatza M, Papiris SA, Graf D, Orphanidou D, Light RW, Roussos C, Blackwell TS, Kalomenidis I. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res 2007; 67:9825-34. [PMID: 17942913 DOI: 10.1158/0008-5472.can-07-1064] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF)-alpha is present in the microenvironment of human tumors, including malignant pleural effusion (MPE). Although the cytokine is produced in the pleural cavity by both tumor and host cells, its effects on MPE formation are unknown. In these studies, we sought to determine the role of TNF-alpha in the pathogenesis of MPE and to assess the therapeutic effects of its neutralization in a preclinical model. For this, MPEs were generated in immunocompetent mice using intrapleural injection of mouse lung adenocarcinoma cells. The roles of tumor- and host-derived TNF-alpha were assessed using combined experimentation with TNF-alpha gene-deficient mice and in vivo TNF-alpha neutralization. To expand the scope of preclinical data, TNF-alpha and vascular endothelial growth factor (VEGF) expression were determined in human cancer cell lines and human MPE. In the MPE model, TNF-alpha of host and tumor origin was present. TNF-alpha neutralization significantly limited tumor dissemination, effusion formation, vascular hyperpermeability, TNF-alpha and VEGF expression, and angiogenesis, thereby improving survival. In contrast, these variables were not different between TNF-alpha gene-sufficient and TNF-alpha gene-deficient mice. In mouse cancer cells, TNF-alpha functioned via nuclear factor-kappaB- and neutral sphingomyelinase-dependent pathways to induce TNF-alpha and VEGF, respectively. These results were recapitulated in human cancer cells, and a correlation was detected between TNF-alpha and VEGF content of human MPE. We conclude that tumor-derived TNF-alpha is important in the development of MPE in mice, and provide preclinical evidence supporting the efficacy of TNF-alpha blockade against malignant pleural disease.
Collapse
Affiliation(s)
- Georgios T Stathopoulos
- Applied Biomedical Research and Training Center Marianthi Simou, Department of Critical Care and Pulmonary Services, General Hospital Evangelismos, School of Medicine, National and Kapodistrian University of Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis. Proc Natl Acad Sci U S A 2007; 104:18514-9. [PMID: 18000061 DOI: 10.1073/pnas.0705316104] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation is linked to carcinogenesis in several organ systems. In the lungs, NF-kappaB, a central effector of inflammatory responses, is frequently activated in non-small-cell lung cancer, but its role in tumor promotion has not been studied. Several lines of evidence indicate that ethyl carbamate (urethane)-induced lung tumor formation, a prototypical mouse model of multistage lung carcinogenesis, is potentiated by inflammation. We found that mouse strains susceptible to lung tumor formation (FVB, BALB/c) exhibited early NF-kappaB activation and inflammation in the lungs after urethane treatment. However, a resistant strain (C57B6) failed to activate NF-kappaB or induce lung inflammation. In FVB mice, we identified urethane-induced NF-kappaB activation in airway epithelium, as well as type II alveolar epithelial cells and macrophages. Using an inducible transgenic mouse model (FVB strain) to express a dominant inhibitor of NF-kappaB specifically in airway epithelial cells, we found that urethane-induced lung inflammation was blocked and tumor formation was reduced by >50%. Selective NF-kappaB inhibition resulted in increased apoptosis of airway epithelial cells at 2 weeks after urethane treatment in association with a marked reduction of Bcl-2 expression. These studies indicate that NF-kappaB signaling in airway epithelium is integral to tumorigenesis in the urethane model and identify the NF-kappaB pathway as a potential target for chemoprevention of lung cancer.
Collapse
|
19
|
Baby J, Pickering BF, Vashisht Gopal YN, Van Dyke MW. Constitutive and inducible nuclear factor-κB in immortalized normal human bronchial epithelial and non-small cell lung cancer cell lines. Cancer Lett 2007; 255:85-94. [PMID: 17493745 DOI: 10.1016/j.canlet.2007.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/20/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
Constitutive activation of the proinflammatory nuclear factor kappaB (NF-kappaB) transcription factor p65(RelA)/p50 has been implicated in many cancers, including leukemias, lymphomas, and several solid tumors, including lung cancer. In many cases, constitutive NF-kappaB activation can be recapitulated in cell lines isolated from these cancers. To test whether this is the case with non-small cell lung cancer (NSCLC) cell lines, we investigated the basal levels of NF-kappaB proteins, their subcellular distribution, their DNA-binding activities, and the expression of NF-kappaB-responsive genes in 10 NSCLC cell lines. The immortalized human bronchial epithelial cell line BEAS-2B served as a normal control. We found little evidence of substantial constitutive NF-kappaB activation in NSCLC cell lines, although most all of the normal and NSCLC cells possessed inducible NF-kappaB. Our findings provide a resource for the use of particular NSCLC cell lines for the investigation of constitutive and inducible NF-kappaB activity in vitro.
Collapse
Affiliation(s)
- Johnson Baby
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|
20
|
Berenson JR, Matous J, Swift RA, Mapes R, Morrison B, Yeh HS. A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res 2007; 13:1762-8. [PMID: 17363530 DOI: 10.1158/1078-0432.ccr-06-1812] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This multicenter, open-label, phase I/II dose escalation study assessed the safety/tolerability and initial efficacy of arsenic trioxide/bortezomib/ascorbic acid (ABC) combination therapy in patients with relapsed/refractory multiple myeloma. EXPERIMENTAL DESIGN Enrolled in six cohorts, patients were given arsenic trioxide (0.125 or 0.250 mg/kg), bortezomib (0.7, 1.0, or 1.3 mg/m(2)), and a fixed dose of ascorbic acid (1 g) i.v. on days 1, 4, 8, and 11 of a 21-day cycle for a maximum of eight cycles. The primary end point was safety/tolerability of the ABC regimen. RESULTS Twenty-two patients (median age, 63 years) were enrolled, having failed a median of 4 (range, 3-9) prior therapies. One occurrence of grade 4 thrombocytopenia was observed. One patient had asymptomatic arrhythmia and withdrew from the study. Objective responses were observed in 6 (27%) patients, including two partial responses and four minor responses. Median progression-free survival was 5 months (95% confidence interval, 2-9 months), and median overall survival had not been reached. The 12-month progression-free survival and overall survival rates were 34% and 74%, respectively. One (minor response) of six patients receiving the lowest dose of bortezomib (0.7 mg/m(2)) and 5 (2 partial responses and 3 minor responses) of 16 patients receiving the higher doses (1.0 or 1.3 mg/m(2)) responded. CONCLUSIONS The ABC regimen was well tolerated by most patients, and it produced preliminary signs of efficacy with an objective response rate of 27% in this heavily pretreated study population. These findings warrant further clinical evaluation of the ABC combination for treatment of relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- James R Berenson
- Institute for Myeloma and Bone Cancer Research and Oncotherapeutics Inc, West Hollywood, CA 90069, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Malignant stem cells are central to the pathogenesis and perpetuation of acute myelogenous leukaemia (AML). Despite their crucial role, standard chemotherapy often does not target these critical cells and, thus, the 'root' of leukaemic disease is not eradicated. To derive better therapies, unique molecular features of malignant stem cells have been characterised for AML and evaluated with regard to ablation of disease. In the course of such studies, the compound parthenolide, which is derived from the medicinal plant feverfew, has recently been shown to preferentially induce AML stem cells to undergo apoptosis. Importantly, parthenolide had no discernable effect on normal blood cells. Thus, this naturally occurring agent may provide new avenues of investigation for the treatment of leukaemia. In this article, characteristics of parthenolide are reviewed.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis
- Cell Line, Tumor
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Plants, Medicinal/chemistry
- Sesquiterpenes/isolation & purification
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Tanacetum parthenium/chemistry
- Xenograft Model Antitumor Assays
Collapse
|
22
|
Lara PN, Chansky K, Davies AM, Franklin WA, Gumerlock PH, Guaglianone PP, Atkins JN, Farneth N, Mack PC, Crowley JJ, Gandara DR. Bortezomib (PS-341) in Relapsed or Refractory Extensive Stage Small Cell Lung Cancer: A Southwest Oncology Group Phase II Trial (S0327). J Thorac Oncol 2006. [DOI: 10.1016/s1556-0864(15)31633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bortezomib (PS-341) in Relapsed or Refractory Extensive Stage Small Cell Lung Cancer: A Southwest Oncology Group Phase II Trial (S0327). J Thorac Oncol 2006. [DOI: 10.1097/01243894-200611000-00013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Nadkar A, Pungaliya C, Drake K, Zajac E, Singhal SS, Awasthi S. Therapeutic resistance in lung cancer. Expert Opin Drug Metab Toxicol 2006; 2:753-77. [PMID: 17014393 DOI: 10.1517/17425255.2.5.753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress over the last 25 years in the systemic therapy of lung cancer, intrinsic and acquired resistance to chemotherapeutic agents and radiation remains a vexing problem. The number of mechanisms of therapeutic resistance in lung cancer has expanded considerably over the past three decades, and the crucial role of stress resistance pathways is increasingly recognised as a cause of intrinsic and acquired chemo- and radiotherapy resistance. This paper reviews recent evidence for stress defence proteins, particularly RALBP1/RLIP76, in mediating intrinsic and acquired chemotherapy and radiation resistance in human lung cancer.
Collapse
Affiliation(s)
- Aalok Nadkar
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, CPB # 351, 76019-0065, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Fujita T, Washio K, Takabatake D, Takahashi H, Yoshitomi S, Tsukuda K, Ishibe Y, Ogasawara Y, Doihara H, Shimizu N. Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance. Int J Cancer 2005; 117:670-82. [PMID: 15945097 DOI: 10.1002/ijc.21063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous signaling pathways were reported to be involved in the resistance for conventional cytotoxic drugs, although one of the main reasons is the overexpression of P-glycoprotein (P-gp) in multidrug resistant cancer cells. The overexpression of P-gp has been associated with the resistance to a wide range of anticancer drugs. Doxorubicin and paclitaxel are substrates of this transporter system and have an important role for the various human malignancies. In the present study, drug-sensitive MCF7 and multidrug resistant MCF7/ADR (characterized by overexpression of P-gp) human breast cancer cell lines were used as an experimental model. We have found that PS341 and MG132, proteasome inhibitors, reduced the degree of the multidrug resistance (MDR) in MCF7/ADR cells. This phenomenon was accompanied by a decrease in the IC50 value of doxorubicin and paclitaxel from 55.9 +/- 3.46 to 0.60 +/- 0.08 microM, and from 17.61 +/- 1.77 to 0.59 +/- 0.12 microM, respectively. The IC50 values of sensitive cells for doxorubicin and paclitaxel were about 0.42 and 0.83 microM, respectively. The effect of PS341 and MG132 on MCF7/ADR cells was associated with a significant decrease in both protein and gene levels of P-gp expression. Moreover, with regard to the expression of possible signal transduction pathways of mitogen-activated protein kinase (MAPK) related to the activation of mdr1, proteasome inhibitors did significantly influence the activation of these proteins. Western blot analysis revealed that 24 hr exposure of multidrug resistant MCF7/ADR cells with proteasome inhibitors did change the levels of DNA binding activity of nuclear factor-kappaB (NF-kappaB), pERK1/2, c-Jun, and p-c-Jun. In conclusion, we could remark that proteasome inhibitors (especially PS341) attenuate the resistance of MCF7/ADR cells for P-gp substrate drugs of doxorubicin and paclitaxel. Several proteins are supposed to be associated with the resensitization of the cells to conventional cytotoxic drugs, although decreased activity of P-gp is at least involved in the proteasome inhibitor-related resensitization. And influence with MAPK pathways, which have been reported to be associated with the regulation of P-gp, might be contributed to the resensitization brought by proteasome inhibitors.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cancer and Thoracic Surgery, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lara PN, Bold RJ, Mack PC, Davies AM, Gumerlock PH, Gandara DR. Proteasome Inhibition in Small-Cell Lung Cancer: Preclinical Rationale and Clinical Applications. Clin Lung Cancer 2005; 7 Suppl 2:S67-71. [PMID: 16250931 DOI: 10.3816/clc.2005.s.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small-cell lung cancer (SCLC) is a tobacco-related malignancy that usually presents in an extensive and therefore incurable stage. Although initially sensitive to platinum agent-based therapy, SCLC rapidly becomes refractory to chemotherapy, leading to disease recurrence and ultimately patient death. Treatment options following failure of first-line platinum agent-based therapy are limited. Small-cell lung cancer is characterized by molecular aberrancies such as overexpression of the antiapoptotic protein Bcl-2, which is regulated in part by the inhibitory IkappaB, a target of the ubiquitin-proteasome degradative pathway. Bortezomib is a proteasome inhibitor that can decrease Bcl-2 expression through diminished IkappaB degradation. Efforts to promote apoptosis in SCLC through the integration of bortezomib into therapy are under way.
Collapse
Affiliation(s)
- Primo N Lara
- University of California Davis Cancer Center, Sacramento, 95817, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Sharma V, Lansdell TA, Peddibhotla S, Tepe JJ. Sensitization of tumor cells toward chemotherapy: enhancing the efficacy of camptothecin with imidazolines. ACTA ACUST UNITED AC 2005; 11:1689-99. [PMID: 15610853 DOI: 10.1016/j.chembiol.2004.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 09/16/2004] [Accepted: 10/04/2004] [Indexed: 11/21/2022]
Abstract
Activation of nuclear transcription factor kappaB (NF-kappaB) by chemotherapeutic agents was found to protect cells from apoptosis. In light of its central role in regulating the cellular resistance to apoptotic agents, inhibition of NF-kappaB-mediated gene transcription may sensitize tumor cells to chemotherapeutic agents and enhance their efficacy. We describe herein a noncytotoxic imidazoline scaffold that sensitizes leukemia T cells to the chemotherapeutic agent camptothecin. No significant induction of apoptosis was found when cells were treated with the imidazoline; however, pretreatment of cells with this agent resulted in a drastic enhancement in efficacy of camptothecin (approximately 75-fold). Elucidation of the potential cellular mechanism revealed that the imidazoline prevents nuclear translocation of NF-kappaB. These findings indicate that inhibition of NF-kappaB by this imidazoline may present improved strategies in the chemotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
28
|
Lee KH, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation. Exp Cell Res 2005; 307:276-84. [PMID: 15922746 DOI: 10.1016/j.yexcr.2005.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/01/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Heat shock (HS) treatment has been previously shown to suppress the IkappaB/nuclear factor-kappaB (NF-kappaB) cascade by denaturing, and thus inactivating IkappaB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IkappaB/NF-kappaB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-alpha-induced IkappaBalpha degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IkappaBalpha stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IkappaB/NF-kappaB cascade by facilitating the renaturation of IKK and blocking its further denaturation.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Yoon JM, Lim JJ, Yoo CG, Lee CT, Bang YJ, Han SK, Shim YS, Kim YW. Adenovirus-uteroglobin suppresses COX-2 expression via inhibition of NF-kappaB activity in lung cancer cells. Lung Cancer 2005; 48:201-209. [PMID: 15829319 DOI: 10.1016/j.lungcan.2004.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 12/25/2022]
Abstract
Uteroglobin (UG, Clara cell secretory protein) is a steroid inducible, multifunctional protein that is secreted by the mucosal epithelia. UG has anti-proliferative and anti-metastatic effects in cancer cells. COX-2, which catalyzes the first step in the synthesis of prostanoids, has been shown to be overexpressed in tumors. This study investigated the effect of UG on the inhibition of COX-2 expression in lung cancer cells. The level of the COX-2 protein and its mRNA were decreased by UG, as demonstrated by Western blot and the RT-PCR, respectively. The EIA shows that UG suppressed PGE2 synthesis. Western blot showed that the NF-kappaB nuclear translocation was inhibited by the transduction of UG. In addition, an EMSA demonstrated the inhibition of the NF-kappaB-DNA binding by UG. The luciferase assay showed that UG also inhibited the NF-kappaB-mediated transcription activity. Furthermore, transfection of the lung cancer cell lines with the COX-2 reporter gene constructs demonstrated that the transcription of COX-2 gene was suppressed by UG. These results show that the inhibition of COX-2 expression by UG transduction correlated with the suppression of NF-kappaB activity in the lung cancer cells. This suggests that UG have the possibility for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jung Min Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Youngon-Dong, Chongno-Gu, Seoul 110-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene 2005; 23:8731-42. [PMID: 15480428 DOI: 10.1038/sj.onc.1208106] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rhotekin (RTKN), the gene coding for the Rho effector, RTKN, was shown to be overexpressed in human gastric cancer (GC). In this study, we further showed that RTKN is expressed at a low level in normal cells and is overexpressed in many cancer-derived cell lines. The function of RTKN as an effector protein in Rho GTPase-mediated pathways regulating apoptosis was investigated. By transfection and expression of RTKN in cells that expressed endogenous RTKN at a low basal level, we showed that RTKN overexpression conferred cell resistance to apoptosis induced by serum deprivation or treatment with sodium butyrate, and the increased resistance correlated to the level of RTKN. Conversely, reducing RTKN expression by small interfering RNAs greatly sensitized cells to apoptosis. The RTKN-mediated antiapoptotic effect was blocked by the nuclear factor-kappaB (NF-kappaB) inhibitors, curcumin or parthenolide, but not by the phosphatidylinositol 3'-OH-kinase inhibitor, LY294002, or the MAP kinase inhibitor, PD98059. Reporter gene assays and electrophoretic mobility shift assay confirmed that RTKN overexpression led to constitutive activation of NF-kappaB through the phosphorylation of IkappaB by IKKbeta. By using the RTKN truncation mutants, we showed that RTKN mediated Rho activity eliciting signaling pathway to activate NF-kappaB, with a concomitant induction of expression of the NF-kappaB antiapoptotic genes, cIAP-2, BCl-xL, A1, and A20. Consistent with these data, RTKN-expressing cells showed increased chemoresistance to 5-fluorouracil and paclitaxol, and the resistance was greatly attenuated by NF-kappaB inhibitor. In conclusion, overactivated Rho/RTKN/NF-kappaB signaling pathway through overexpression of RTKN may play a key role in gastric tumorigenesis by conferring cells resistance to apoptosis, and this signaling pathway may serve as an important target for novel therapeutic approaches to the treatment of human GC.
Collapse
Affiliation(s)
- Ching-Ann Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Yoon HS, Kim HA, Song YW. Inhibition of NF-kappaB renders human juvenile costal chondrocyte cell lines sensitive to TNF-alpha-mediated cell death. Rheumatol Int 2005; 26:201-8. [PMID: 15703956 DOI: 10.1007/s00296-004-0562-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 10/18/2004] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recently, therapeutics employing knowledge on various signaling pathways are being developed, with NF-kappaB being one of the most promising targets. NF-kappaB has been suggested to play a role not only in the induction of inflammatory mediators, but also in the protection from cell death. OBJECTIVES This study pursued the role of the NF-kappaB pathway in the regulation of chondrocyte death induced by tumor necrosis factor alpha (TNF-alpha) and of the pertinent target molecules involved. METHODS The human chondrocyte cell line C28/I2 was used for the experiment. Chondrocytes were transduced with adenovirus-encoding IkappaB (IkappaB) superrepressor which inhibits NF-kappaB activation, and treated with TNF-alpha. The proportion of cell death was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazdium bromide (MTT) assay. Activation of p38 mitogen activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3K) by TNF-alpha was inhibited with SB202190 and Ly 294002 respectively. The expression of apoptosis related protein was analyzed with western blot assay, and the activation of c-Jun N-terminal kinase (JNK) by solid-phase kinase assay. RESULTS Treatment with TNF-alpha led to cell death in 23% and 50% of ad-IkappaB-SR infected chondrocytes after 24 and 72 h respectively. The expression of Bcl-XL, Bcl-2, and XIAP significantly decreased, and activation of JNK was prolonged for up to 6 h in infected cells treated with TNF-alpha. Preincubation with p38 inhibitor or PI3K inhibitor before TNF-alpha led to a significant increase in cell death in ad-IkappaB-SR transduced chondrocytes, resulting in 53% and 30% cell death after 24 h for p38 inhibitor and PI3K inhibitor respectively. CONCLUSION In our experimental system, specific inhibition of NF-kappaB activation rendered chondrocytes susceptible to cell death induced by TNF-alpha. The cell death was enhanced by inhibition of another signaling pathway such as p38 MAP kinase or PI3K. The expression of Bcl-XL, Bcl-2 and XIAP and activation of JNK were affected by ad-IkappaB-SR transduction, implying a role in the NF-kappaB regulated cell survival signaling in human chondrocytes.
Collapse
Affiliation(s)
- Ho Sung Yoon
- Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, 445 Gil-dong, Kangdong-gu, Seoul, 134-701, South Korea
| | | | | |
Collapse
|
32
|
Abstract
Androgen ablation and chemotherapy provide effective palliation for most patients with advanced prostate cancer, but eventually progressing androgen-independent prostate cancer threatens the lives of patients usually within a few years, mandating improvement in therapy. Proteasome inhibition has been proposed as a therapy target for the treatment of solid and hematological malignancies. The proteasome is a ubiquitous enzyme complex that is a hub for the regulation of many intracellular regulatory pathways; because of its essential function, this enzyme has become a new target for cancer treatment. Studies with bortezomib (VELCADE, formerly known as PS-341) and other proteasome inhibitors indicate that cancer cells are especially dependent on the proteasome for survival, and several mechanisms used by prostate cancer cells require proteasome function. Bortezomib has been studied extensively in vitro and in vivo, and anticancer activity has been seen in cell and animal models for several solid tumor types, including prostate cancer. A Phase I trial to determine the maximum tolerated dose of once-weekly bortezomib has been completed. This trial included a large fraction of patients with androgen-independent prostate cancer. The maximum tolerated dose was reached at 1.6 mg/m(2). A correlation was seen among bortezomib dose, proteasome inhibition, and positive modulation of serum prostate-specific antigen. There was also evidence of down-regulation of serum interleukin 6, a downstream nuclear factor kappaB effector. This Phase I trial and preclinical studies support additional testing of bortezomib in combination with radiation or chemotherapy for androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Christos N Papandreou
- Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
33
|
Cortes J, Thomas D, Koller C, Giles F, Estey E, Faderl S, Garcia-Manero G, McConkey D, Ruiz SL, Patel G, Guerciolini R, Wright J, Kantarjian H. Phase I Study of Bortezomib in Refractory or Relapsed Acute Leukemias. Clin Cancer Res 2004; 10:3371-6. [PMID: 15161691 DOI: 10.1158/1078-0432.ccr-03-0508] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bortezomib (Velcade, formerly PS-341) is proteasome inhibitor with documented antitumor activity in multiple myeloma and other lymphoid malignancies. We performed a Phase I study to investigate the maximum tolerated dose and dose-limiting toxicity of bortezomib in patients with acute leukemias refractory to or relapsing after prior therapy. Fifteen patients were treated with 0.75 (n = 3), 1.25 (n = 7), or 1.5 (n = 5) mg/m(2) bortezomib administered twice weekly for 4 weeks every 6 weeks. Dose-limiting toxicity included orthostatic hypotension (n = 2), nausea (n = 2), diarrhea (n = 1), and fluid retention (n = 1), all at 1.5 mg/m(2) bortezomib. Proteasome inhibition was dose dependent and reached 68% at 1.5 mg/m(2) bortezomib. Peak inhibition was observed 1 h after treatment and returned to near baseline levels by 72 h after treatment. Incubation of blast cells with bortezomib in vitro showed induction of apoptosis in three of five patients investigated. We conclude that the maximum tolerated dose of bortezomib in patients with acute leukemia is 1.25 mg/m(2), using a twice-weekly for 4 weeks every 6 weeks schedule. The in vitro evidence of antileukemia and transient hematological improvements observed in some patients warrants further investigation of bortezomib in acute leukemias, probably in combination with other agents.
Collapse
Affiliation(s)
- Jorge Cortes
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sanlioglu AD, Aydin C, Bozcuk H, Terzioglu E, Sanlioglu S. Fundamental principals of tumor necrosis factor-alpha gene therapy approach and implications for patients with lung carcinoma. Lung Cancer 2004; 44:199-211. [PMID: 15084385 DOI: 10.1016/j.lungcan.2003.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/05/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis, known as programmed cell death, is defined as a cell's preferred form of death under hectic conditions through genetically conserved and complex pathways. There is a decisive balance between stimulatory and inhibitory signaling pathways to maintain homeostasis in cells. In order to shift the balance towards apoptosis, the modulation of both apoptotic and anti-apoptotic pathways represents an attractive target for cancer therapeutics. Currently, chemotherapy and radiotherapy are among the most commonly used treatment modalities against lung cancer. Tumor suppressor gene, p53, is required in order for both of these treatment methods to work as anti-tumor agents. As a result, tumors lacking p53 display resistance to both chemotherapy and radiotherapy. However, death ligands induce apoptosis regardless of p53 status of cells. Thus, these methods constitute a complementary therapeutic approach to currently employed conventional treatment modalities. At present, death ligands are being evaluated as potential cancer therapeutic agents. Since resistance to tumor necrosis factor (TNF)-alpha-mediated apoptosis represented an obstacle for the treatment of patients with lung carcinoma in the earlier attempts, an extensive research was recently initiated to understand molecular mechanism of TNF-alpha signaling. NF-kappaB transcription factors have been demonstrated to modulate the apoptotic program, mostly as blockers of apoptosis in different cell types. In this review, we concentrate on the current progress in the understanding of TNF-alpha-mediated apoptosis for lung carcinoma. Representative models of NF-kappaB-inhibiting gene therapy strategies from various labs including ours are also provided as examples of up-to-date approaches to defeat TNF resistance. In order to give the reader better understanding and appreciation of such approaches, previously unpublished in vivo assays are also incorporated into this review. Current progress in clinical trials using adenovirus-mediated delivery of TNF-alpha is also discussed.
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- The Human Gene Therapy Unit, Faculty of Medicine, Akdeniz University Campus, B-Block, 1st Floor, Antalya 07070, Turkey.
| | | | | | | | | |
Collapse
|
35
|
Lara PN, Davies AM, Mack PC, Mortenson MM, Bold RJ, Gumerlock PH, Gandara DR. Proteasome inhibition with PS-341 (bortezomib) in lung cancer therapy. Semin Oncol 2004; 31:40-6. [PMID: 14981579 DOI: 10.1053/j.seminoncol.2003.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PS-341 (bortezomib) represents a new class of therapeutics that targets the ubiquitin-proteasome pathway. It has broad-spectrum single-agent anticancer activity and can potentiate chemotherapy and radiation in preclinical models. Early phase clinical studies have shown tolerability and activity in multiple myeloma, lymphoma, prostate cancer, and lung cancers. By its mechanism of inhibiting protein degradation, PS-341 targets a wide range of pathways relevant to tumor progression and therapy resistance and can directly modulate expression of cyclins, p27(Kip1), p53, nuclear factor-kappaB, Bcl-2, and Bax. PS-341 is currently in phase I/II clinical development in both non-small cell lung cancer and small cell lung cancer. This article will review the preclinical and clinical experience with PS-341 as it relates to lung cancer.
Collapse
Affiliation(s)
- Primo N Lara
- Department of Internal Medicine, University of California Davis School of Medicine, UCD Cancer Center, Sacramento 95817, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Park SM, Park HY, Lee TH. Functional effects of TNF-alpha on a human follicular dendritic cell line: persistent NF-kappa B activation and sensitization for Fas-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2004; 171:3955-62. [PMID: 14530313 DOI: 10.4049/jimmunol.171.8.3955] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Follicular dendritic cells (FDC) play crucial roles in germinal center (GC) formation and differentiation of GC B cells. FDC functions are influenced by cytokines produced in the GC. Among the GC cytokines, TNF is known to be essential for the formation and maintenance of the FDC network in the GC. We found that TNF is a mitogenic growth factor to an established FDC-like cell line, HK cells. Differing from most cell types which become desensitized to TNF action, HK cells exhibited persistent TNF signaling, as demonstrated by prolonged and biphasic NF-kappaB activation even after 3 days of TNF treatment. As a result, antiapoptotic genes including TNFR-associated factors 1 and 2, and cellular inhibitor of apoptosis proteins 1 and 2 were persistently induced by TNF, leading to the protection against TNF-mediated cell death. However, TNF pretreatment enhanced Fas-mediated apoptosis by up-regulating surface Fas expression in an NF-kappaB-dependent pathway. During the GC responses, proliferation followed by FDC death has not been documented. However, our in vitro results suggest that FDCs proliferate in response to TNF, and die by Fas-mediated apoptosis whose susceptibility is enhanced by TNF, representing a mode of action for TNF in the maintenance of FDC networks by regulating the survival or death of FDC.
Collapse
Affiliation(s)
- Sun-Mi Park
- Department of Biology and Protein Network Research Center, Yonsei University, Seodaemoon, Seoul, Korea
| | | | | |
Collapse
|
37
|
Chopra DP, Menard RE, Januszewski J, Mattingly RR. TNF-α-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines. Cancer Lett 2004; 203:145-54. [PMID: 14732222 DOI: 10.1016/j.canlet.2003.09.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we compared the role of TNF-alpha in the regulation of growth and apoptosis in normal human prostate epithelial cells (NP) and prostate tumor cell lines PC3 and LNCap. The NP and PC3 cells were resistant whereas the LNCap cell line was highly sensitive to TNF-alpha induced growth arrest and apoptosis. The resistance of NP and PC3 cells was mediated via an NF-kB survival pathway as treatment of resistant cells with TNF-alpha was accompanied by phosphorylation of I-kBalpha and translocation of NF-kB to the nucleus. TNF-alpha did not induce phosphorylation of I-kB in the sensitive LNCap cells. The sensitivity of LNCap cells involved a cysteine protease cascade as Z-VAD-CH2 F reversed the sensitivity of LNCap cells and induced resistance to TNF-alpha. The differences in susceptibilities to TNF-alpha induced apoptosis of NP and certain prostate tumor cells offer intriguing possibilities for the treatment of prostate cancer without affecting the normal prostate tissue.
Collapse
Affiliation(s)
- Dharam P Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
38
|
Mack PC, Davies AM, Lara PN, Gumerlock PH, Gandara DR. Integration of the proteasome inhibitor PS-341 (Velcade) into the therapeutic approach to lung cancer. Lung Cancer 2003; 41 Suppl 1:S89-96. [PMID: 12867067 DOI: 10.1016/s0169-5002(03)00149-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PS-341, a potent and selective proteasome inhibitor, is the prototype for a new class of therapeutics that targets the ubiquitin-proteasome pathway. It is active as a single agent and potentiates chemotherapy and radiation in pre-clinical models. Early phase clinical studies have demonstrated tolerability and activity in multiple myeloma, lymphoma, prostate cancer and lung cancer. By its mechanism of inhibiting protein degradation, PS-341 targets a wide-range of pathways that are relevant to tumor progression and therapy resistance, and can directly modulate expression of cyclins, p27(Kip1), p53, NF-kappaB, Bcl-2 and Bax. PS-341 is currently in phase I/II clinical development in lung cancer. This paper will review the pre-clinical and clinical experience with PS-341 as it relates to lung cancer.
Collapse
Affiliation(s)
- Philip C Mack
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Cancer Center, 4501 X Street, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
39
|
Lee CT, Seol JY, Lee SY, Park KH, Han SJ, Yoo CG, Han SK, Shim YS, Kim YW. The effect of adenovirus-IkappaBalpha transduction on the chemosensitivity of lung cancer cell line with resistance to cis-diamminedichloroplatinum(II)(cisplatin) and doxorubicin(adriamycin). Lung Cancer 2003; 41:199-206. [PMID: 12871783 DOI: 10.1016/s0169-5002(03)00227-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to chemotherapeutic agents is the major reason for treatment failure of cancer chemotherapy. Some chemotherapeutic drugs induce the activation of NF-kappaB in cancer cells that results in their resistance to anticancer drugs. But the role of NF-kappaB in acquired resistance has not been well investigated. In this study, we transferred the "super-repressor" form of the NF-kappaB inhibitor by adenoviral vector (ad-IkappaBalpha) to human lung cancer cell lines with resistant to cisplatin (PC-14-DDP) and adriamycin (PC-14-ADR), and observed the sensitivity change. Electrophoretic mobility shift assay showed that ad-IkappaBalpha blocked the activation of NF-kappaB induced by cisplatin and adriamycin. Transduction with ad-IkappaBalpha restored the sensitivity of cisplatin and adriamycin resistant lung cancer cell lines (PC-14-DDP and PC-14-ADR) to a level compatible to the parental cell lines. Annexin-V analysis suggested that the enhancement of chemosensitivity was probably a result of the induction of apoptosis. These data demonstrated that ad-IkappaBalpha blockade of chemotherapeutic induced NF-kappaB activation increased apoptosis induction and the chemosensitivity of lung cancer cell lines with acquired resistance to cisplatin and adriamycin. Therefore, gene transfer of IkappaBalpha-SR seems to represent a new therapeutic strategy for the solution of low sensitivity and lung cancer resistance to anticancer drugs.
Collapse
Affiliation(s)
- Choon-Taek Lee
- Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Seol JY, Park KH, Hwang CI, Park WY, Yoo CG, Kim YW, Han SK, Shim YS, Lee CT. Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther 2003; 10:540-8. [PMID: 12833134 DOI: 10.1038/sj.cgt.7700597] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TRAIL is a cytokine with a unique ability to induce apoptosis selectively in many transformed cell lines. The instability of TRAIL and the resistance of some cancer cells to TRAIL present the main obstacles for clinical experimentation. We generated an adenovirus expressing full-length TRAIL and tested its efficacy in several cancer cell lines. Ad-TRAIL-infected cancer cells localized full-length TRAIL protein to the cytoplasm and released same-sized TRAIL in the media. Ad-TRAIL was found to induce apoptotic cell death in several cancer cell lines resistant to soluble TRAIL (A549, SKOV3, HT-29 and LNCap) and in TRAIL-sensitive cell lines. Ad-TRAIL, but not soluble TRAIL, induced apoptotic cell death in TRAIL-resistant cell lines, manifested by an increased sub-G1 proportion, caspase-3 activation and PARP cleavage. Ad-TRAIL also induced a media-transferable bystander effect, but only in soluble TRAIL-sensitive cell lines. In conclusion, two novel characteristics of ad-TRAIL were found during this study. First, that ad-TRAIL can induce apoptotic cell death in several cancer cell lines resistant to sTRAIL. Second, that ad-TRAIL induces a media-transferable bystander effect, which is expected to increase its therapeutic value by allowing TRAIL to overcome the locally acting nature and low transduction rate commonly encountered in clinical situation.
Collapse
Affiliation(s)
- Ja Young Seol
- Department of Internal Medicine, Lung Institute of Medical Research Center, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang I, Kim S, Kim JY, Cho N, Kim YH, Kim HS, Lee MK, Kim KW, Lee MS. Nuclear factor kappaB protects pancreatic beta-cells from tumor necrosis factor-alpha-mediated apoptosis. Diabetes 2003; 52:1169-75. [PMID: 12716748 DOI: 10.2337/diabetes.52.5.1169] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies incriminating tumor necrosis factor (TNF)-alpha as the final effector in pancreatic beta-cell death in type 1 diabetes underscore the potential role of TNF-alpha-dependent NF-kappaB activation as an important modulator of pancreatic beta-cell death in autoimmune diabetes. Although nuclear factor (NF)-kappaB activation has been implicated in the protection of target cells against apoptosis by a variety of death effectors, its role in pancreatic islet cell death is not clear. We studied the role of NF-kappaB activation in pancreatic islet cell death by using a gamma-interferon (IFN-gamma)/TNF-alpha synergism model we had previously reported. TNF-alpha induced inhibitor of kappaB (IkappaB) degradation and p65 translocation from cytoplasm to nuclei in MIN6N8 insulinoma cells. The NF-kappaB DNA-binding nuclear complex activated by TNF-alpha contained both the p65 and p50 subunit. IFN-gamma pretreatment did not affect TNF-alpha-induced NF-kappaB activation. Treatment with a proteasome inhibitor blocked p65 translocation and induced susceptibility to TNF-alpha in otherwise resistant insulinoma cells or primary pancreatic islet cells. Specific inhibition of NF-kappaB activation by adenoviral transduction of IkappaB "superrepressor" also sensitized insulinoma cells and primary islet beta-cells to TNF-alpha-induced apoptosis. These results suggest the protective role of NF-kappaB activation against cytokine-mediated pancreatic beta-cell death, contrary to previous reports implicating NF-kappaB as a mediator of pancreatic islet cell death.
Collapse
Affiliation(s)
- Inik Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:795-804. [PMID: 12517943 DOI: 10.4049/jimmunol.170.2.795] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.
Collapse
Affiliation(s)
- Jiang Huai Wang
- Department of Academic Surgery, National University of Ireland, Cork University Hospital, Ireland.
| | | | | | | | | | | |
Collapse
|
43
|
Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98:2301-7. [PMID: 11588023 DOI: 10.1182/blood.v98.8.2301] [Citation(s) in RCA: 582] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human acute myelogenous leukemia (AML) is thought to arise from a rare population of malignant stem cells. Cells of this nature, herein referred to as leukemic stem cells (LSCs), have been documented for nearly all AML subtypes and appear to fulfill the criteria for stem cells in that they are self-renewing and give rise to the cells found in many leukemic populations. Because these cells are likely to be critical for the genesis and perpetuation of leukemic disease, the present studies sought to characterize unique molecular properties of the LSC population, with particular emphasis on the transcription factor, nuclear factor-kappaB (NF-kappaB). Previous experiments have shown that unstimulated human CD34(+) progenitor cells do not express NF-kappaB. In contrast, primary AML CD34(+) cells display readily detectable NF-kappaB activity as assessed by electrophoretic mobility shift assay and gene expression studies. Furthermore, detailed analyses of enriched AML stem cells (CD34(+)/CD38(-)/CD123(+)) indicate that NF-kappaB is also active in the LSC population. Given the expression of NF-kappaB in leukemic, but not normal primitive cells, the hypothesis that inhibition of NF-kappaB might induce leukemia-specific apoptosis was tested by treating primary cells with the proteasome inhibitor MG-132, a well-known inhibitor of NF-kappaB. Leukemic CD34(+)/CD38(-) cells displayed a rapid induction of cell death in response to MG-132, whereas normal CD34(+)/CD38(-) cells showed little if any effect. Taken together, these data indicate that primitive AML cells aberrantly express NF-kappaB and that the presence of this factor may provide unique opportunities to preferentially ablate LSCs.
Collapse
Affiliation(s)
- M L Guzman
- Blood and Marrow Transplant Program, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky Medical Center, Lexington 40536-0093, USA
| | | | | | | | | | | | | | | |
Collapse
|