1
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
2
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
3
|
Santos ED, Hernández MH, Sérazin V, Vialard F, Dieudonné MN. Human Placental Adaptive Changes in Response to Maternal Obesity: Sex Specificities. Int J Mol Sci 2023; 24:ijms24119770. [PMID: 37298720 DOI: 10.3390/ijms24119770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal obesity is increasingly prevalent and is associated with elevated morbidity and mortality rates in both mothers and children. At the interface between the mother and the fetus, the placenta mediates the impact of the maternal environment on fetal development. Most of the literature presents data on the effects of maternal obesity on placental functions and does not exclude potentially confounding factors such as metabolic diseases (e.g., gestational diabetes). In this context, the focus of this review mainly lies on the impact of maternal obesity (in the absence of gestational diabetes) on (i) endocrine function, (ii) morphological characteristics, (iii) nutrient exchanges and metabolism, (iv) inflammatory/immune status, (v) oxidative stress, and (vi) transcriptome. Moreover, some of those placental changes in response to maternal obesity could be supported by fetal sex. A better understanding of sex-specific placental responses to maternal obesity seems to be crucial for improving pregnancy outcomes and the health of mothers and children.
Collapse
Affiliation(s)
- Esther Dos Santos
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marta Hita Hernández
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| | - Valérie Sérazin
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - François Vialard
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marie-Noëlle Dieudonné
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| |
Collapse
|
4
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
5
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
6
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
7
|
Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice. Clin Sci (Lond) 2021; 135:2049-2066. [PMID: 34406367 PMCID: PMC8410983 DOI: 10.1042/cs20210575] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.
Collapse
|
8
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
9
|
Fairweather SJ, Okada S, Gauthier-Coles G, Javed K, Bröer A, Bröer S. A GC-MS/Single-Cell Method to Evaluate Membrane Transporter Substrate Specificity and Signaling. Front Mol Biosci 2021; 8:646574. [PMID: 33928121 PMCID: PMC8076599 DOI: 10.3389/fmolb.2021.646574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Amino acid transporters play a vital role in metabolism and nutrient signaling pathways. Typically, transport activity is investigated using single substrates and competing amounts of other amino acids. We used GC-MS and LC-MS for metabolic screening of Xenopus laevis oocytes expressing various human amino acid transporters incubated in complex media to establish their comprehensive substrate profiles. For most transporters, amino acid selectivity matched reported substrate profiles. However, we could not detect substantial accumulation of cationic amino acids by SNAT4 and ATB0,+ in contrast to previous reports. In addition, comparative substrate profiles of two related sodium neutral amino acid transporters known as SNAT1 and SNAT2, revealed the latter as a significant leucine accumulator. As a consequence, SNAT2, but not SNAT1, was shown to be an effective activator of the eukaryotic cellular growth regulator mTORC1. We propose, that metabolomic profiling of membrane transporters in Xe nopus laevis oocytes can be used to test their substrate specificity and role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Institute (CSIRO) Land and Water, Canberra, ACT, Australia
| | | | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Nogues P, Dos Santos E, Couturier-Tarrade A, Berveiller P, Arnould L, Lamy E, Grassin-Delyle S, Vialard F, Dieudonne MN. Maternal Obesity Influences Placental Nutrient Transport, Inflammatory Status, and Morphology in Human Term Placenta. J Clin Endocrinol Metab 2021; 106:e1880-e1896. [PMID: 32936881 DOI: 10.1210/clinem/dgaa660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023]
Abstract
CONTEXT Maternal obesity has a significant impact on placental development. However, this impact on the placenta's structure and function (ie, nutrient transport and hormone and cytokine production) is a controversial subject. OBJECTIVE We hypothesized that maternal obesity is associated with morphologic, secretory, and nutrient-related changes and elevated levels of inflammation in the placenta. DESIGN We collected samples of placental tissue from 2 well-defined groups of pregnant women from 2017 to 2019. We compared the 2 groups regarding placental cytokine and hormone secretion, immune cell content, morphology, and placental nutrient transporter expressions. SETTING Placenta were collected after caesarean section performed by experienced clinicians at Centre Hospitalier Intercommunal (CHI) of Poissy-Saint-Germain-en-Laye. PATIENTS The main inclusion criteria were an age between 27 and 37 years old, no complications of pregnancy, and a first-trimester body mass index of 18-25 kg/m2 for the nonobese (control) group and 30-40 kg/m2 for the obese group. RESULTS In contrast to our starting hypothesis, we observed that maternal obesity was associated with (1) lower placental IL-6 expression and macrophage/leukocyte infiltration, (2) lower placental expression of GLUT1 and SNAT1-2, (3) a lower placental vessel density, and (4) lower levels of placental leptin and human chorionic gonadotropin production. CONCLUSION These results suggest that the placenta is a plastic organ and could optimize fetal growth. A better understanding of placental adaptation is required because these changes may partly determine the fetal outcome in cases of maternal obesity.
Collapse
Affiliation(s)
- Perrine Nogues
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Esther Dos Santos
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier Intercommunal de Poissy-Saint-Germain, Poissy, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Paul Berveiller
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Service de Gynécologie-Obstétrique, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Lucie Arnould
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Stanislas Grassin-Delyle
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
- Hôpital Foch, Département des maladies des voies respiratoires, Suresnes, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Marie-Noëlle Dieudonne
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
11
|
Weidenfeld S, Chupin C, Langner DI, Zetoun T, Rozowsky S, Kuebler WM. Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance. Am J Physiol Lung Cell Mol Physiol 2021; 320:L486-L497. [PMID: 33439101 DOI: 10.1152/ajplung.00461.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constant transport of ions across the alveolar epithelial barrier regulates alveolar fluid homeostasis. Dysregulation or inhibition of Na+ transport causes fluid accumulation in the distal airspaces resulting in impaired gas exchange and respiratory failure. Previous studies have primarily focused on the critical role of amiloride-sensitive epithelial sodium channel (ENaC) in alveolar fluid clearance (AFC), yet activation of ENaC failed to attenuate pulmonary edema in clinical trials. Since 40% of AFC is amiloride-insensitive, Na+ channels/transporters other than ENaC such as Na+-coupled neutral amino acid transporters (SNATs) may provide novel therapeutic targets. Here, we identified a key role for SNAT2 (SLC38A2) in AFC and pulmonary edema resolution. In isolated perfused mouse and rat lungs, pharmacological inhibition of SNATs by HgCl2 and α-methylaminoisobutyric acid (MeAIB) impaired AFC. Quantitative RT-PCR identified SNAT2 as the highest expressed System A transporter in pulmonary epithelial cells. Pharmacological inhibition or siRNA-mediated knockdown of SNAT2 reduced transport of l-alanine across pulmonary epithelial cells. Homozygous Slc38a2-/- mice were subviable and died shortly after birth with severe cyanosis. Isolated lungs of Slc38a2+/- mice developed higher wet-to-dry weight ratios (W/D) as compared to wild type (WT) in response to hydrostatic stress. Similarly, W/D ratios were increased in Slc38a2+/- mice as compared to controls in an acid-induced lung injury model. Our results identify SNAT2 as a functional transporter for Na+ and neutral amino acids in pulmonary epithelial cells with a relevant role in AFC and the resolution of lung edema. Activation of SNAT2 may provide a new therapeutic strategy to counteract and/or reverse pulmonary edema.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cécile Chupin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Tamador Zetoun
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Rozowsky
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
LPAR5, GNAT3 and partial amino acid transporters messenger RNA expression patterns in digestive tracts, metabolic organs and muscle tissues of growing goats. Animal 2018; 13:1394-1402. [PMID: 30378518 DOI: 10.1017/s1751731118002823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sufficient amino acid (AA) transport is essential to ensure the normal physiological function and growth of growing animals. The processes of AA sensing and transport in humans and murine animals, but rarely in goats, have been arousing great interest recently. This study was conducted to investigate the messenger RNA expression patterns of lysophosphatidic acid receptor 5 (LPAR5), guanine nucleotide-binding protein α-transducing 3 (GNAT3) and important partial AA transporters in digestive tracts, metabolic organs and muscles of growing goats. The results showed that these genes were widely expressed in goats, and had different expression patterns. LPAR5, GNAT3, solute carrier (SLC38A2), SLC7A7, SLC7A1 and SLC3A1 were rarely expressed in the rumen, but were highly expressed in the abomasum and intestine which are the main sites of AA absorption. GNAT3, SLC38A1, SLC38A2, SLC6A19, SLC7A7 and SLC7A1 showed comparatively high expression in the pancreas and the vital digestive glands, and the relatively high expression of these nine genes were noted in the tibialis posterior, the active muscle in energy metabolism. The correlation analysis showed that there were certain positive correlation among most genes. The current results indicate that the AA sensing and transport occur extensively in the abomasum and small intestine, metabolic organs and muscle tissues of ruminants, and that related genes have tissue specificity.
Collapse
|
13
|
van Geldermalsen M, Quek LE, Turner N, Freidman N, Pang A, Guan YF, Krycer JR, Ryan R, Wang Q, Holst J. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer 2018; 18:689. [PMID: 29940911 PMCID: PMC6019833 DOI: 10.1186/s12885-018-4599-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Background Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. Methods The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. Results BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Conclusions Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways. Electronic supplementary material The online version of this article (10.1186/s12885-018-4599-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle van Geldermalsen
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Natasha Freidman
- Transporter Biology Group, Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Angel Pang
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yi Fang Guan
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - James R Krycer
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Renae Ryan
- Transporter Biology Group, Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute, University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat Struct Mol Biol 2018; 25:522-527. [PMID: 29872228 PMCID: PMC7346717 DOI: 10.1038/s41594-018-0072-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.
Collapse
|
15
|
Takahashi Y, Nishimura T, Maruyama T, Tomi M, Nakashima E. Contributions of system A subtypes to α-methylaminoisobutyric acid uptake by placental microvillous membranes of human and rat. Amino Acids 2017; 49:795-803. [PMID: 28161797 DOI: 10.1007/s00726-017-2384-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
System A consists of three subtypes, sodium-coupled neutral amino acid transporter 1 (SNAT1), SNAT2, and SNAT4, which are all expressed in the placenta. The aim of this study was to evaluate the contributions of each of the three subtypes to total system A-mediated uptake in placental MVM of human and rat, using betaine and L-arginine as subtype-selective inhibitors of SNAT2 and SNAT4, respectively. Appropriate concentrations of betaine and L-arginine for subtype-selective inhibition in SNAT-overexpressing cells were identified. It was found that 10 mM betaine specifically and almost completely inhibited human and rat SNAT2-mediated [14C]α-methylaminoisobutyric acid ([14C]MeAIB) uptake, while 5 mM L-arginine specifically and completely inhibited [3H]glycine uptake via human SNAT4, as well as [14C]MeAIB uptake via rat SNAT4. In both human and rat placental MVM vesicles, sodium-dependent uptake of [14C]MeAIB was almost completely inhibited by 20 mM unlabeled MeAIB. L-Arginine (5 mM) partly inhibited the uptake in humans, but hardly affected that in rats. Betaine (10 mM) partly inhibited the uptake in rats, but hardly affected it in humans. These results suggest that SNAT1 is most likely the major contributor to system A-mediated MeAIB uptake by human and rat MVM vesicles and that the remaining uptake is mainly mediated by SNAT4 in humans and SNAT2 in rats. Thus, inhibition studies using betaine and L-arginine are useful to characterize the molecular mechanisms of system A-mediated transport.
Collapse
Affiliation(s)
- Yu Takahashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
16
|
Lipopolysaccharide and double stranded viral RNA mediate insulin resistance and increase system a amino acid transport in human trophoblast cells in vitro. Placenta 2017; 51:18-27. [PMID: 28292465 DOI: 10.1016/j.placenta.2017.01.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Inflammation and underlying low-grade maternal infection can impair insulin signalling and upregulate nutrient transport in the placenta which contribute to fetal overgrowth associated with GDM and/or obese pregnancies. There are, however, no studies on the role of infection on placental nutrient transport in pregnancies complicated by GDM and/or obesity. Thus, the aims of this study were to determine the effect of the bacterial product lipopolysaccharide (LPS) or the viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on the insulin signalling pathway and amino acid transport in primary human trophoblast cells. METHODS Human primary villous trophoblast cells were treated with LPS or poly(I:C). Protein expression of insulin signalling pathway proteins, insulin receptor (IR)-β, insulin receptor substrate (IRS)-1 and protein kinase B (also known as Akt), and phosphatidylinositol-4,5-bisphosphate 3-kinase p85α subunit (PI3K-p85α) protein were assessed by Western blotting. Glucose and amino acid uptake were assessed by radiolabelled assay. Western blotting and qRT-PCR were used to determine amino acid transporter protein and mRNA expression, respectively. RESULTS LPS and poly(I:C) significantly decreased phosphorylation of IR-β, IRS-1, Akt, total PI3K-p85α protein expression and glucose uptake. LPS and poly(I:C) also significantly increased expression of System A amino acid transporters SNAT1 and SNAT2, and System A-mediated uptake of amino acids. DISCUSSION LPS and poly(I:C) induces insulin resistance and increases amino acid uptake in human primary trophoblast cells. This suggests that the presence of low-grade maternal infection can contribute to excess placental nutrient availability and promote fetal overgrowth in pregnancies complicated by GDM and/or obesity.
Collapse
|
17
|
Zhao J, Verwer RWH, van Wamelen DJ, Qi XR, Gao SF, Lucassen PJ, Swaab DF. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide. J Psychiatr Res 2016; 82:8-15. [PMID: 27450072 DOI: 10.1016/j.jpsychires.2016.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the neuronal/glial glutamate transporters was determined by qPCR in postmortem prefrontal cortex. The anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) were selected from young MDD patients who had committed suicide (MDD-S; n = 17), from MDD patients who died of non-suicide related causes (MDD-NS; n = 7) and from matched control subjects (n = 12). We also compared elderly depressed patients who had not committed suicide (n = 14) with matched control subjects (n = 22). We found that neuronal located components (EAAT3, EAAT4, ASCT1, SNAT1, SNAT2) of the glutamate-glutamine cycle were increased in the ACC while the astroglia located components (EAAT1, EAAT2, GLUL) were decreased in the DLPFC of MDD-S patients. In contrast, most of the components in the cycle were increased in the DLPFC of MDD-NS patients. In conclusion, the glutamate-glutamine cycle - and thus glutamine transmission - is differentially affected in depressed suicide patients and depressed non-suicide patients in an area specific way.
Collapse
Affiliation(s)
- J Zhao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - R W H Verwer
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - D J van Wamelen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - X-R Qi
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S-F Gao
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - P J Lucassen
- Center for Neuroscience, SILS, University of Amsterdam, Amsterdam, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Saidijam M, Azizpour S, Patching SG. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction. J Biomol Struct Dyn 2016; 35:929-949. [PMID: 27159787 DOI: 10.1080/07391102.2016.1167622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Sonia Azizpour
- a Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , UK
| |
Collapse
|
19
|
Akanuma SI, Zakoji N, Kubo Y, Hosoya KI. In Vitro Study of L-Glutamate and L-Glutamine Transport in Retinal Pericytes: Involvement of Excitatory Amino Acid Transporter 1 and Alanine-Serine-Cysteine Transporter 2. Biol Pharm Bull 2016; 38:901-8. [PMID: 26027831 DOI: 10.1248/bpb.b15-00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Glutamate (L-Glu) is known to be a relaxant of pericytes and to induce changes in microcirculatory hemodynamics. Since the concentration of L-Glu which induces the dilation of retinal capillaries is reported to be high compared with the estimated concentration in the retinal interstitial fluid, it is hypothesized that some systems involving concentrative L-Glu release are present in retinal pericytes. The purpose of this study was to investigate the existence of L-Glu-storing systems, which contribute to autocrine L-Glu release, in retinal pericytes using conditionally immortalized rat retinal pericytes (TR-rPCT1 cells), which express mRNAs of L-Glu-synthesizing enzymes from L-glutamine (L-Gln). TR-rPCT1 cells express the mRNAs of vesicular L-Glu transporter 1 (VGLUT1), indicating that L-Glu in the cytoplasm is taken up into VGLUT1-expressing vesicles of retinal pericytes. L-Glu and L-Gln are taken up into TR-rPCT1 cells via Na(+)-dependent saturable process(es) with a Km value of 22.4 µM and 163 µM, respectively. The [(3)H]L-Glu uptake was inhibited by ca. 50% in the presence of D-aspartate, a substrate of excitatory amino acid transporter (EAAT) subtypes, whereas substrates of alanine-serine-cysteine transporter (ASCT) subtypes exhibited only a weak inhibitory effect on [(3)H]L-Glu uptake compared with D-aspartate. Regarding the L-Gln uptake by TR-rPCT1 cells, the inhibitory effect of ASCT substrates on the [(3)H]L-Gln uptake was stronger than that of substrates of other neutral amino acid transport systems. Consequently, it was determined that EAAT1 and ASCT2 play a role in the transport of L-Glu and L-Gln, respectively, from retinal interstitial fluid to the cytoplasm of retinal pericytes.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | |
Collapse
|
20
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
21
|
Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:2531-9. [PMID: 26724577 DOI: 10.1016/j.bbamcr.2015.12.017] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/17/2023]
Abstract
The SLC (solute carrier)-type transporters (~400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
22
|
Aye ILMH, Jansson T, Powell TL. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling. Physiol Rep 2015; 3:3/10/e12594. [PMID: 26508738 PMCID: PMC4632960 DOI: 10.14814/phy2.12594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth.
Collapse
Affiliation(s)
- Irving L M H Aye
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Nishimura T, Yagi R, Usuda M, Oda K, Yamazaki M, Suda S, Takahashi Y, Okazaki F, Sai Y, Higuchi K, Maruyama T, Tomi M, Nakashima E. System A amino acid transporter SNAT2 shows subtype-specific affinity for betaine and hyperosmotic inducibility in placental trophoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1306-12. [DOI: 10.1016/j.bbamem.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 11/27/2022]
|
24
|
Jones H, Crombleholme T, Habli M. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro. Placenta 2013; 35:132-8. [PMID: 24360522 DOI: 10.1016/j.placenta.2013.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022]
Abstract
Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor-11 (hIGF-1) in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined amino acid transporter expression and localization in both a mouse model of placental Insufficiency (PI) and a model of human trophoblast, the BeWo Choriocarcinoma cell line. For in vitro human studies, BeWo Choriocarcinoma cells were maintained in F12 complete medium + 10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 h. MOIs of 10:1 and 100:1 were utilized. In BeWo, transfection efficiency was 100% at an MOI of 100:1 and Ad-IGF-1 significantly increased IGF-1 secretion, proliferation and invasion but reduced apoptosis compared to controls. In vitro, amino acid uptake was increased following Ad-IGF-1 treatment and associated with significantly increased RNA expression of SNAT1, 2, LAT1 and 4F2hc. Only SNAT2 protein expression was increased but LAT1 showed relocalization from a perinuclear location to the cytoplasm and cell membrane. For in vivo studies, timed-pregnant animals were divided into four groups on day 18; sham-operated controls, uterine artery branch ligation (UABL), UABL + Ad-hIGF-1 (10(8) PFU), UABL + Ad-LacZ (10(8) PFU). At gestational day 20, pups and placentas were harvested by C-section. Only LAT1 mRNA expression changed, showing that a reduced expression of the transporter levels in the PI model could be partially rectified with Ad-hIGF1 treatment. At the protein level, System L was reduced in PI but remained at control levels following Ad-hIGF1. The System A isoforms were differentially regulated with SNAT2 expression diminished but SNAT1 increased in PI and Ad-hIGF1 groups. Enhanced amino acid isoform transporter expression and relocalization to the membrane may be an important mechanism contributing to Ad-hIGF-1 mediated correction of placental insufficiency.
Collapse
Affiliation(s)
- H Jones
- The Center for Cellular and Molecular Fetal Therapy, Division of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - T Crombleholme
- Colorado Fetal Care Center, Children's Hospital Colorado and The University of Colorado School of Medicine, Aurora, CO, USA
| | - M Habli
- The Center for Cellular and Molecular Fetal Therapy, Division of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Shi Q, Padmanabhan R, Villegas CJ, Gu S, Jiang JX. Membrane topological structure of neutral system N/A amino acid transporter 4 (SNAT4) protein. J Biol Chem 2011; 286:38086-38094. [PMID: 21917917 DOI: 10.1074/jbc.m111.220277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of system N/A amino acid transporter (SNAT) family mediate transport of neutral amino acids, including l-alanine, l-glutamine, and l-histidine, across the plasma membrane and are involved in a variety of cellular functions. By using chemical labeling, glycosylation, immunofluorescence combined with molecular modeling approaches, we resolved the membrane topological structure of SNAT4, a transporter expressed predominantly in liver. To analyze the orientation using the chemical labeling and biotinylation approach, the "Cys-null" mutant of SNAT4 was first generated by mutating all five endogenous cysteine residues. Based on predicted topological structures, a single cysteine residue was introduced individually into all possible nontransmembrane domains of the Cys-null mutant. The cells expressing these mutants were labeled with N-biotinylaminoethyl methanethiosulfonate, a membrane-impermeable cysteine-directed reagent. We mapped the orientations of N- and C-terminal domains. There are three extracellular loop domains, and among them, the second loop domain is the largest that spans from amino acid residue ∼242 to ∼335. The orientation of this domain was further confirmed by the identification of two N-glycosylated residues, Asn-260 and Asn-264. Together, we showed that SNAT4 contains 10 transmembrane domains with extracellular N and C termini and a large N-glycosylated, extracellular loop domain. This is the first report concerning membrane topological structure of mammalian SNAT transporters, which will provide important implications for our understanding of structure-function of the members in this amino acid transporter family.
Collapse
Affiliation(s)
- Qian Shi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Rugmani Padmanabhan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Carla J Villegas
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
26
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
27
|
Tsitsiou E, Sibley CP, D’Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine is transported by the microvillous plasma membrane of human placenta. J Inherit Metab Dis 2011; 34:57-65. [PMID: 20567909 PMCID: PMC2966547 DOI: 10.1007/s10545-010-9141-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/01/2010] [Accepted: 05/31/2010] [Indexed: 12/18/2022]
Abstract
Elevated maternal plasma concentrations of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes. The postulate that we wish to advance here is that placental transport of Hcy, by competing with endogenous amino acids for transporter activity, may account for some of the damaging impacts of Hcy on placental metabolism and function as well as fetal development. In this article, we provide an overview of some recent studies characterising the transport mechanisms for Hcy across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three Hcy transport systems have been identified, systems L, A and y(+)L. This was accomplished using a strategy of competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each transport system into isolated MVM vesicles. The reverse experiments were also performed, examining the effects of model substrates on [³⁵S]L-Hcy uptake. This article describes the evidence for systems L, A and y(+)L involvement in placental Hcy transport and discusses the physiological implications of these findings with respect to placental function and fetal development.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Colin P. Sibley
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Stephen W. D’Souza
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Otilia Catanescu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donald W. Jacobsen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jocelyn D. Glazier
- Maternal and Fetal Health Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK.
| |
Collapse
|
28
|
The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast. Biochem Biophys Res Commun 2010; 398:130-4. [PMID: 20599747 PMCID: PMC2941036 DOI: 10.1016/j.bbrc.2010.06.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 11/22/2022]
Abstract
System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis–Menten constants for uptake of the system A-specific substrate, 14C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of 14C-MeAIB uptake revealed two distinct transport systems; system 1: Km = 0.38 ± 0.12 mM, Vmax = 27.8 ± 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: Km = 45.4 ± 25.0 mM, Vmax = 1190 ± 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific siRNA significantly reduced system A activity (median 75% knockdown, n = 7). Conclusion: These data enhance our limited understanding of the relative importance of the system A subtypes for amino acid transport in human placental trophoblast by demonstrating that SNAT1 is a key contributor to system A activity at term.
Collapse
|
29
|
Ananth S, Zhuang L, Gopal E, Itagaki S, Ellappan B, Smith SB, Ganapathy V, Martin P. Diclofenac-induced stimulation of SMCT1 (SLC5A8) in a heterologous expression system: a RPE specific phenomenon. Biochem Biophys Res Commun 2010; 394:75-80. [PMID: 20178774 PMCID: PMC2847057 DOI: 10.1016/j.bbrc.2010.02.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 11/23/2022]
Abstract
SMCT1 is a Na(+)-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na(+)-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, beta-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 2010; 4:1. [PMID: 20161990 PMCID: PMC2820376 DOI: 10.3389/neuro.05.001.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/30/2009] [Indexed: 11/13/2022] Open
Abstract
Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Blot A, Billups D, Bjørkmo M, Quazi AZ, Uwechue NM, Chaudhry FA, Billups B. Functional expression of two system A glutamine transporter isoforms in rat auditory brainstem neurons. Neuroscience 2009; 164:998-1008. [PMID: 19751803 PMCID: PMC2789247 DOI: 10.1016/j.neuroscience.2009.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/26/2009] [Accepted: 09/04/2009] [Indexed: 01/11/2023]
Abstract
Glutamine plays multiple roles in the CNS, including metabolic functions and production of the neurotransmitters glutamate and GABA. It has been proposed to be taken up into neurons via a variety of membrane transport systems, including system A, which is a sodium-dependent electrogenic amino acid transporter system. In this study, we investigate glutamine transport by application of amino acids to individual principal neurons of the medial nucleus of the trapezoid body (MNTB) in acutely isolated rat brain slices. A glutamine transport current was studied in patch-clamped neurons, which had the electrical and pharmacological properties of system A: it was sodium-dependent, had a non-reversing current-voltage relationship, was activated by proline, occluded by N-(methylamino)isobutyric acid (MeAIB), and was unaffected by 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH). Additionally, we examined the expression of different system A transporter isoforms using immunocytochemical staining with antibodies raised against system A transporter 1 and 2 (SAT1 and SAT2). Our results indicate that both isoforms are expressed in MNTB principal neurons, and demonstrate that functional system A transporters are present in the plasma membrane of neurons. Since system A transport is highly regulated by a number of cellular signaling mechanisms and glutamine then goes on to activate other pathways, the study of these transporters in situ gives an indication of the mechanisms of neuronal glutamine supply as well as points of regulation of neurotransmitter production, cellular signaling and metabolism in the native neuronal environment.
Collapse
Affiliation(s)
- A Blot
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol 2009; 297:C1228-35. [PMID: 19741197 DOI: 10.1152/ajpcell.00195.2009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in placental nutrient transport are closely associated with abnormal fetal growth. However, the molecular mechanisms underlying the regulation of placental amino acid transporters are unknown. We demonstrate that physiological concentrations of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha stimulate the activity of amino acid transporter system A, but not system L, in cultured human primary trophoblast cells. Both cytokines increased the gene and protein expression of the Na(+)-coupled neutral amino acid transporter (SNAT)2 isoform and upregulated SNAT1 protein expression. IL-6 increased Tyr705 phosphorylation of signal transducer and activator of transcription 3 (STAT3). In cells transfected with small interfering RNA (siRNA) targeting STAT3, the RNA and protein expression of SNAT2, but not SNAT1, was reduced and the stimulating effect of IL-6 on system A activity was abolished. Despite eliciting similar responses in amino acid transport activity and transporter expression, TNF-alpha effects on system A activity were not mediated through the JAK/STAT pathway. In conclusion, we have identified a novel regulatory pathway involving increased gene expression of the SNAT2 isoform mediated by a STAT-dependent pathway, which links IL-6 to increased activity of system A, a ubiquitously expressed transporter of neutral amino acids. From these new findings, we propose that upregulation of amino acid transporters by cytokines may contribute to increased placental nutrient transport and fetal overgrowth, which are commonly found in pregnancies complicated by maternal diabetes and obesity.
Collapse
Affiliation(s)
- H N Jones
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
33
|
Tsitsiou E, Sibley CP, D'Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol 2009; 587:4001-13. [PMID: 19564394 PMCID: PMC2756434 DOI: 10.1113/jphysiol.2009.173393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/29/2009] [Indexed: 12/26/2022] Open
Abstract
Elevated maternal plasma levels of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes, suggesting placental transport of Hcy may impact on fetal development. However, such transport mechanisms have not been defined. In this study we characterise Hcy transport mechanisms across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three candidate transport systems, systems L, A and y(+)L, were examined utilising competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each system into isolated MVM vesicles, and that of model substrates on 10 microm [(35)S]l-Hcy uptake. System L activity was inhibited by both l-Hcy and dl-Hcy, comparable to model substrates including 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH). System L constituted the major transport mechanism, with significant BCH inhibition (69%) of [(35)S]l-Hcy uptake. System A activity was also inhibited by l-Hcy and dl-Hcy with a smaller contribution (21%) to [(35)S]l-Hcy uptake. Inhibition by l-Hcy and dl-Hcy of system y(+)L activity was Na(+) sensitive with a significant inhibition constant (K(i)) shift observed following K(+) replacement; l-arginine reduced [(35)S]l-Hcy uptake by 19%. Kinetic modelling of [(35)S]l-Hcy uptake resolved two, Na(+)-independent, transport components (K(m) 72 microm and 9.7 mm). This study provides evidence for the involvement of systems L, A and y(+)L in placental Hcy transport. Such transport, by competing with endogenous amino acids for transporter activity, could have major implications for syncytiotrophoblast metabolism and function as well as fetal development.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | |
Collapse
|
34
|
Ernst C, Dumoulin P, Cabot S, Erickson J, Turecki G. SNAT1 and a family with high rates of suicidal behavior. Neuroscience 2009; 162:415-22. [DOI: 10.1016/j.neuroscience.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/03/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
35
|
Iruloh CG, D'Souza SW, Fergusson WD, Baker PN, Sibley CP, Glazier JD. Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 2009; 65:51-6. [PMID: 18703994 PMCID: PMC3087423 DOI: 10.1203/pdr.0b013e31818a0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced activity of placental amino acid transport systems beta and A. Whether this phenotype is maintained in fetal cells outside the placenta is unknown. In IUGR, cord blood tumor necrosis factor (TNF)-alpha concentrations are raised, potentially influencing amino acid transport in fetal cells. We used fetal T lymphocytes as a model to study systems beta and A amino acid transporters in IUGR compared with normal pregnancy. We also studied the effect of TNF-alpha on amino acid transporter activity. In fetal lymphocytes from IUGR pregnancies, taurine transporter mRNA expression encoding system beta transporter was reduced, but there was no change in system beta activity. No significant differences were observed in system A mRNA expression (encoding SNAT1 and SNAT2) or system A activity between the two groups. After 24 or 48 h TNF-alpha treatment, fetal T lymphocytes from normal pregnancies showed no significant change in system A or system beta activity, although cell viability was compromised. This study represents the first characterization of amino acid transport in a fetal cell outside the placenta in IUGR. We conclude that the reduced amino acid transporter activity found in placenta in IUGR is not a feature of all fetal cells.
Collapse
Affiliation(s)
- Chibuike G Iruloh
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Manchester M13 0JH, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Desforges M, Mynett KJ, Jones RL, Greenwood SL, Westwood M, Sibley CP, Glazier JD. The SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane. J Physiol 2008; 587:61-72. [PMID: 19015196 PMCID: PMC2667314 DOI: 10.1113/jphysiol.2008.161331] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Placental system A activity is important for the supply of neutral amino acids needed for fetal growth. There are three system A isoforms: SNAT1, SNAT2 and SNAT4, but the contribution of each to system A-mediated transport is unknown. Here, we have used immunohistochemistry to demonstrate that all three isoforms are present in the syncytiotrophoblast suggesting each plays a role in amino acid transport across the placenta. We next tested the hypothesis that the SNAT4 isoform is functional in microvillous plasma membrane vesicles (MVM) from normal human placenta using a method which exploits the unique property of SNAT4 to transport both cationic amino acids as well as the system A-specific substrate MeAIB. The data show that SNAT4 contribution to system A-specific amino acid transport across MVM is higher in first trimester placenta compared to term (approx. 70% and 33%, respectively, P < 0.01). Further experiments performed under more physiological conditions using intact placental villous fragments suggest a contribution of SNAT4 to system A activity in first trimester placenta but minimal contribution at term. In agreement, Western blotting revealed that SNAT4 protein expression is higher in first trimester MVM compared to term (P < 0.05). This study provides the first evidence of SNAT4 activity in human placenta and demonstrates the contribution of SNAT4 to system A-mediated transport decreases between first trimester and term: our data lead us to speculate that at later stages of gestation SNAT1 and/or SNAT2 are more important for the supply of amino acids required for normal fetal growth.
Collapse
Affiliation(s)
- M Desforges
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Umapathy NS, Dun Y, Martin PM, Duplantier JN, Roon P, Prasad P, Smith SB, Ganapathy V. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells. Invest Ophthalmol Vis Sci 2008; 49:5151-60. [PMID: 18689705 PMCID: PMC2586300 DOI: 10.1167/iovs.08-2245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. METHODS The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. RESULTS Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. CONCLUSIONS These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.
Collapse
Affiliation(s)
- Nagavedi S. Umapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Ying Dun
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Jennifer N. Duplantier
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Penny Roon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Puttur Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
- Department of Ophthalmology, Medical College of Georgia, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
38
|
Li H, Gilbert ER, Zhang Y, Crasta O, Emmerson D, Webb KE, Wong EA. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim Genet 2008; 39:407-24. [PMID: 18544075 DOI: 10.1111/j.1365-2052.2008.01744.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18-D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT, y(+)LAT-2 and EAAT3, the peptide transporter PepT1 and the sugar transporters SGLT1, GLUT2 and GLUT5. The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays (SGLT6, SNAT1, SNAT2 and AST). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.
Collapse
Affiliation(s)
- H Li
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061-0306, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Z, Gameiro A, Grewer C. Highly conserved asparagine 82 controls the interaction of Na+ with the sodium-coupled neutral amino acid transporter SNAT2. J Biol Chem 2008; 283:12284-92. [PMID: 18319257 PMCID: PMC2430088 DOI: 10.1074/jbc.m706774200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 03/03/2008] [Indexed: 11/06/2022] Open
Abstract
The neutral amino acid transporter 2 (SNAT2), which belongs to the SLC38 family of solute transporters, couples the transport of amino acid to the cotransport of one Na(+) ion into the cell. Several polar amino acids are highly conserved within the SLC38 family. Here, we mutated three of these conserved amino acids, Asn(82) in the predicted transmembrane domain 1 (TMD1), Tyr(337) in TMD7, and Arg(374) in TMD8; and we studied the functional consequences of these modifications. The mutation of N82A virtually eliminated the alanine-induced transport current, as well as amino acid uptake by SNAT2. In contrast, the mutations Y337A and R374Q did not abolish amino acid transport. The K(m) of SNAT2 for its interaction with Na(+), K(Na(+)), was dramatically reduced by the N82A mutation, whereas the more conservative mutation N82S resulted in a K(Na(+)) that was in between SNAT2(N82A) and SNAT2(WT). These results were interpreted as a reduction of Na(+) affinity caused by the Asn(82) mutations, suggesting that these mutations interfere with the interaction of SNAT2 with the sodium ion. As a consequence of this dramatic reduction in Na(+) affinity, the apparent K(m) of SNAT2(N82A) for alanine was increased 27-fold compared with that of SNAT2(WT). Our results demonstrate a direct or indirect involvement of Asn(82) in Na(+) coordination by SNAT2. Therefore, we predict that TMD1 is crucial for the function of SLC38 transporters and that of related families.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
40
|
Sferruzzi-Perri AN, Owens JA, Standen P, Taylor RL, Robinson JS, Roberts CT. Early pregnancy maternal endocrine insulin-like growth factor I programs the placenta for increased functional capacity throughout gestation. Endocrinology 2007; 148:4362-70. [PMID: 17525121 DOI: 10.1210/en.2007-0411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In early pregnancy, the concentrations of IGFs increase in maternal blood. Treatment of pregnant guinea pigs with IGFs in early to midpregnancy enhances placental glucose transport and fetal growth and viability near term. In the current study, we determined whether exogenous IGFs altered placental gene expression, transport, and nutrient partitioning during treatment, which may then persist. Guinea pigs were infused with IGF-I, IGF-II (both 1 mg/kg x d) or vehicle sc from d 20-35 of pregnancy and killed on d 35 (term is 70 d) after administration of [(3)H]methyl-D-glucose (MG) and [(14)C]amino-isobutyric acid (AIB). IGF-I increased placental and fetal weights (+15 and +17%, respectively) and MG and AIB uptake by the placenta (+42 and +68%, respectively) and fetus (+59 and +90%, respectively). IGF-I increased placental mRNA expression of the amino acid transporter gene Slc38a2 (+780%) and reduced that of Igf2 (-51%), without altering the glucose transporter Slc2a1 or Vegf and Igf1 genes. There were modest effects of IGF-I treatment on MG and AIB uptake by individual maternal tissues and no effect on plasma glucose, total amino acids, free fatty acids, triglycerides, and cholesterol concentrations. IGF-II treatment of the mother did not alter any maternal, fetal or placental parameter. In conclusion, exogenous IGF-I, but not IGF-II, in early pregnancy increases placental transport of MG and AIB, enhancing midgestational fetal nutrient uptake and growth. This suggests that early pregnancy rises in maternal circulating IGF-I play a major role in regulating placental growth and functional development and thus fetal growth throughout gestation.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Glover CN, Wood CM. Absorption of copper and copper–histidine complexes across the apical surface of freshwater rainbow trout intestine. J Comp Physiol B 2007; 178:101-9. [PMID: 17724600 DOI: 10.1007/s00360-007-0203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Bioavailability is integral in mediating the delicate balance between nutritive and potentially toxic levels of copper in fish diets. Brush-border membrane vesicles isolated from freshwater rainbow trout intestine were used to characterise apical copper absorption, and to examine the influence of the amino acid histidine on this process. In the absence of histidine, a low affinity, high capacity copper uptake mechanism was described. However, when expressed as a function of ionic copper (Cu(2+)), absorption was linear, rather than saturable, suggesting that the saturable curve was an artifact of copper speciation. Conversely, in the presence of L: -histidine (780 microM) saturable uptake was characterised. The uptake capacity discerned (J (max) of 354 +/- 81 nmol mg protein(-1) min(-1)) in the presence of histidine indicated a significantly reduced capacity for copper transport than that in the absence of histidine. To determine if copper uptake was achievable through putative histidine uptake pathways, copper and histidine were incubated in the presence of tenfold greater concentrations of amino acids proposed to block histidine transporters. Accounting for changes in copper speciation, significant inhibition of uptake by glycine and lysine were noted at copper levels of 699 and 1,028 microM. These results suggest that copper-histidine complexes may be transportable via specific amino acid-transporters in the brush-border membrane.
Collapse
Affiliation(s)
- Chris N Glover
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | |
Collapse
|
42
|
Lewis RM, Glazier J, Greenwood SL, Bennett EJ, Godfrey KM, Jackson AA, Sibley CP, Cameron IT, Hanson MA. L-serine uptake by human placental microvillous membrane vesicles. Placenta 2007; 28:445-52. [PMID: 16904742 DOI: 10.1016/j.placenta.2006.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/06/2006] [Accepted: 06/18/2006] [Indexed: 11/27/2022]
Abstract
The human fetus requires more glycine than any other amino acid but placental glycine transfer to the fetus is insufficient to meet fetal demand. L-Serine could represent a major metabolic source of glycine for the human fetus but little is known about the kinetics and physiology of L-serine uptake by the human placenta. We have characterised the amino acid transport systems involved in the uptake of L-serine by the microvillous membrane of the human placental syncytiotrophoblast and compared the uptake rates to those of glycine. L-Serine uptake into microvillous membrane (MVM) vesicles was primarily mediated by system A (MeAIB inhibitable) and system L (BCH inhibitable). Further characterisation using specific substrates of LAT1 and LAT2 found the pattern of L-serine uptake was consistent with that expected for uptake mediated by LAT2. Uptakes were performed with tracer levels of (14)C-L-serine, physiological levels of L-serine, or with physiological levels of amino acids. As amino acid concentrations rose, the proportion of uptake by System L decreased while uptake by uncharacterised Na(+)-independent systems increased. Uptake of Lserine into MVM vesicles had a V(max) of 2.1+/-0.4 nmol/mg protein/min, which was significantly higher than for glycine (V(max) 1.0+/-0.2 nmol/mg protein/min). This indicates that MVM vesicles have a higher uptake capacity for L-serine than glycine, despite a greater demand for glycine over serine for fetal protein synthesis. Further studies are now required to define the fate of L-serine taken up by the placenta and its importance for the fetus.
Collapse
Affiliation(s)
- R M Lewis
- Centre for Developmental Origins of Health and Disease, University of Southampton, Level F MP887, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK. <>
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weiss MD, Donnelly WH, Rossignol C, Varoqui H, Erickson JD, Anderson KJ. Ontogeny of the neutral amino acid transporter SNAT1 in the developing rat. J Mol Histol 2007; 36:301-9. [PMID: 16200463 DOI: 10.1007/s10735-005-6061-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
System A is a highly regulated, Na+-dependent transporter that accepts neutral amino acids containing short, polar side chains. System A plays an important role during rat development as decreased pup weights are observed in dams infused during gestation with a non-metabolizable System A substrate. Given the potential importance of SNAT1 during development in the rat brain, we examined whether SNAT1 would be present at an earlier gestation during organogenesis in multiple organs by immunohistochemistry and immunoblotting. SNAT1 protein was observed in the developing lungs, intestines, kidneys, heart, pancreas, and skeletal muscle of rats at prenatal days 14, 17, 19, 21, and postnatal day 2 rats. SNAT1 protein expression decreased in the liver and intestine shortly after birth and as the rat matured. SNAT1 expression was constant throughout development in the lungs and kidney and increased in the heart from prenatal day 19 to postnatal day 2. Highest levels of expression in older animals were seen in organs undergoing rapid cell division.
Collapse
Affiliation(s)
- Michael D Weiss
- Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610-0296, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117:1049-57. [PMID: 17380207 PMCID: PMC1821067 DOI: 10.1172/jci30235] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 01/30/2007] [Indexed: 11/17/2022] Open
Abstract
Because of their low asparagine synthetase (ASNS) expression and asparagine biosynthesis, acute lymphoblastic leukemia (ALL) cells are exquisitely sensitive to asparagine depletion. Consequently, asparaginase is a major component of ALL therapy, but the mechanisms regulating the susceptibility of leukemic cells to this agent are unclear. In 288 children with ALL, cellular ASNS expression was more likely to be high in T-lineage ALL and low in B-lineage ALL with TEL-AML1 or hyperdiploidy. However, ASNS expression levels in bone marrow-derived mesenchymal cells (MSCs), which form the microenvironment where leukemic cells grow, were on average 20 times higher than those in ALL cells. MSCs protected ALL cells from asparaginase cytotoxicity in coculture experiments. This protective effect correlated with levels of ASNS expression: downregulation by RNA interference decreased the capacity of MSCs to protect ALL cells from asparaginase, whereas enforced ASNS expression conferred enhanced protection. Asparagine secretion by MSCs was directly related to their ASNS expression levels, suggesting a mechanism - increased concentrations of asparagine in the leukemic cell microenvironment - for the protective effects we observed. These results provide what we believe to be a new basis for understanding asparaginase resistance in ALL and indicate that MSC niches in the bone marrow can form a safe haven for leukemic cells.
Collapse
Affiliation(s)
- Shotaro Iwamoto
- Department of Oncology and
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - Keichiro Mihara
- Department of Oncology and
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - James R. Downing
- Department of Oncology and
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology and
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
University of Tennessee College of Medicine, Memphis, Tennessee, USA
| | - Dario Campana
- Department of Oncology and
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
University of Tennessee College of Medicine, Memphis, Tennessee, USA
| |
Collapse
|
45
|
Jones HN, Ashworth CJ, Page KR, McArdle HJ. Expression and adaptive regulation of amino acid transport system A in a placental cell line under amino acid restriction. Reproduction 2006; 131:951-60. [PMID: 16672359 DOI: 10.1530/rep.1.00808] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Trans-placental transport of amino acids is vital for the developing fetus. Using the BeWo cell line as a placental model, we investigated the effect of restricting amino acid availability on amino acid transport system type A. BeWo cells were cultured either in amino acid-depleted (without non-essential amino acids) or control media for 1, 3, 5 or 6 h. System A function was analysed using alpha(methyl-amino)isobutyric acid (MeAIB) transcellular transport studies. Transporter (sodium coupled neutral amino acid transporter (SNAT1/2)) expression was analysed at mRNA and protein level by Northern and Western blotting respectively. Localisation was carried out using immunocytochemistry. MeAIB transcellular transport was significantly (P < 0.05) increased by incubation of the cells in amino acid-depleted medium for 1 h, and longer incubation times caused further increases in the rate of transfer. However, the initial response was not accompanied by an increase in SNAT2 mRNA; this occurred only after 3 h and further increased for the rest of the 6-h incubation. Similarly, it took several hours for a significant increase in SNAT2 protein expression. In contrast, relocalisation of existing SNAT2 transporters occurred within 30 min of amino acid restriction and continued throughout the 6-h incubation. When the cells were incubated in medium with even lower amino acid levels (without non-essential plus 0.5 x essential amino acids), SNAT2 mRNA levels showed further significant (P < 0.0001) up-regulation. However, incubation of cells in depleted medium for 6 h caused a significant (P = 0.014) decrease in the expression of SNAT1 mRNA. System L type amino acid transporter 2 (LAT2) expression was not changed by amino acid restriction, indicating that the responses seen in the system A transporters were not a general cell response. These data have shown that placental cells adapt in vitro to nutritional stress and have identified the physiological, biochemical and genomic mechanisms involved.
Collapse
Affiliation(s)
- H N Jones
- Maternal-Fetal Physiology, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | |
Collapse
|
46
|
Hatanaka T, Hatanaka Y, Tsuchida JI, Ganapathy V, Setou M. Amino acid transporter ATA2 is stored at the trans-Golgi network and released by insulin stimulus in adipocytes. J Biol Chem 2006; 281:39273-84. [PMID: 17050538 DOI: 10.1074/jbc.m604534200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we cloned the ATA/SNAT transporters responsible for amino acid transport system A. System A is one of the major transport systems for small neutral and glucogenic amino acids represented by alanine and is involved in the metabolism of glucose and fat. Here, we describe the cellular mechanisms that participate in the acute translocation of ATA2 by insulin stimulus in 3T3-L1 adipocytes. We monitored this insulin-stimulated translocation of ATA2 using an expression system of enhanced green fluorescent protein-tagged ATA2. Studies in living cells revealed that ATA2 is stored in a discrete perinuclear site and that the transporter is released in vesicles from this site toward the plasma membrane. In immunofluorescent analysis, the storage site of ATA2 overlapped with the location of syntaxin 6, a marker of the trans-Golgi network (TGN), but not with that of EEA1, a marker of the early endosomes. The ATA2-containing vesicles on or near the plasma membrane were distinct from GLUT4-containing vesicles. Brefeldin A, an inhibitor of vesicular exit from the TGN, caused morphological changes in the ATA2 storage site along with the similar changes in the TGN. In non-transfected adipocytes, brefeldin A inhibited insulin-stimulated uptake of alpha-(methylamino)isobutyric acid more profoundly than insulin-stimulated uptake of 2-deoxy-d-glucose. These data demonstrate that the ATA2 storage site is specifically associated with the TGN and not with the general endosomal recycling system. Thus, the insulin-stimulated translocation pathways for ATA2 and GLUT4 in adipocytes are distinct, involving different storage sites.
Collapse
Affiliation(s)
- Takahiro Hatanaka
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
47
|
Fang J, Mao D, Smith CH, Fant ME. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms. Growth Horm IGF Res 2006; 16:318-325. [PMID: 17035059 DOI: 10.1016/j.ghir.2006.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE IGF-1 and IGF-1 receptors are major determinants of fetal growth and are expressed primarily on the maternal-facing surface of the syncytiotrophoblast cell membrane in the human placenta. IGF-1 regulates fetal growth, in part, by regulating amino acid transport across the placenta. The objective of these studies was to study the role of IGF-1 and its signaling pathway in regulating neutral amino acid transport in a human trophoblast cell culture model. DESIGN The regulation of neutral amino acid transport by IGF-1 was studied in cultured BeWo(b30) choriocarcinoma cells using the non-metabolizing amino acid analog, [(3)H]-alpha-aminoisobutyric acid (AIB). Transport in the absence of Na was used to distinguish system L from total AIB transport. Similarly, Na-dependent transport in the presence of excess methyl-AIB (MeAIB) permitted discrimination of systems A (MeAIB-sensitive) and ASC (MeAIB-insensitive). Specific inhibitors of intracellular signaling pathways were then used to determine the signaling pathway utilized by IGFs to regulate each amino acid transport system. Specificity of inhibition was assessed using specific markers of p70 S6 kinase activity and MAP kinase activation. RESULTS Maximal stimulating concentrations of IGF-I (100 ng/ml) stimulated AIB transport by 30-40% exclusively through system A. Wortmannin (100 nM), an inhibitor of PI-3-kinase activity, inhibited all IGF-I-stimulated transport. Rapamycin (100 ng/ml), an inhibitor of p70 S6 kinase, and bisindolylmaleimide, an inhibitor of protein kinase C (PKC), had no effect. PD-098059 (50 miccroM), an inhibitor of MAP kinase activation, inhibited 20-30% of basal AIB transport but did not inhibit IGF-I-stimulated transport under the conditions studied. IGF-1 did not increase steady state mRNA levels of the system A transporters, SNAT1 and SNAT2, suggesting IGF-1 stimulates transport via post-transcriptional mechanisms. CONCLUSIONS These data demonstrate that IGF-I stimulates neutral amino acid transport system A by a PI3-kinase dependent, post-transcriptional pathway in the BeWo(b30) cell line. Additionally, system A activity appear to be sensitive to MAP kinase-dependent pathways not regulated by IGFs.
Collapse
Affiliation(s)
- J Fang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
48
|
Hatanaka T, Hatanaka Y, Setou M. Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2. J Biol Chem 2006; 281:35922-30. [PMID: 17003038 DOI: 10.1074/jbc.m606577200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that ubiquitin ligase Nedd4-2 regulates amino acid transporter ATA2 activity on the cell surface. We first found that a proteasome inhibitor MG132 increased the uptake of alpha-(methylamino)isobutyric acid, a model substrate for amino acid transport system A, in 3T3-L1 adipocytes as well as the preadipocytes. Transient expression of Nedd4-2 in Xenopus oocytes and Chinese hamster ovary cells down-regulated the ATA2 transport activity induced by injected cRNA and transfected cDNA, respectively. Neither the Nedd4-2 mutant with defective catalytic domain nor c-Cbl affected the ATA2 activity significantly. RNA-mediated interference of Nedd4-2 increased the ATA2 activity in the cells, and this was associated with decreased polyubiquitination of ATA2 on the cell surface membrane. Immunofluorescent analysis of Nedd4-2 in the adipocytes stably transfected with the enhanced green fluorescent protein (EGFP)-tagged ATA2 showed the co-localization of Nedd4-2 and EGFP-ATA2 in the plasma membrane but not in the perinuclear ATA2 storage site, supporting the idea that the primary site for the ubiquitination of ATA2 is the plasma membrane. These data suggest that ATA2 on the plasma membrane is subject to polyubiquitination by Nedd4-2 with consequent endocytotic sequestration and proteasomal degradation and that this process is an important determinant of the density of ATA2 functioning on the cell surface.
Collapse
Affiliation(s)
- Takahiro Hatanaka
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
49
|
Jones HN, Ashworth CJ, Page KR, McArdle HJ. Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line (BeWo). Am J Physiol Endocrinol Metab 2006; 291:E596-603. [PMID: 16621896 DOI: 10.1152/ajpendo.00359.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both placental system A activity and fetal plasma cortisol concentrations are associated with intrauterine growth retardation, but it is not known if these factors are mechanistically related. Previous functional studies using hepatoma cells and fibroblasts produced conflicting results regarding the regulation of system A by cortisol. Using the b30 BeWo choriocarcinoma cell line, we investigated the regulation of system A by cortisol. System A function was analyzed using methyl amino isobutyric acid (MeAIB) transcellular transport studies. Transporter expression [system A transporter (SNAT)1/2] was studied at the mRNA and protein levels using Northern and Western blotting, respectively. Localization was carried out using immunocytochemistry. The [(14)C]MeAIB transfer rate across BeWo monolayers after preincubation with cortisol for 24 h was significantly increased compared with control. This was associated with a relocalization of the SNAT2 transporter at lower cortisol levels and significant upregulation of mRNA and protein expression levels at cortisol levels >1 microM. This is the first study to show functional and molecular regulation of system A by cortisol in BeWo cells. It is also the first study to identify which system A isoform is regulated. These results suggest that cortisol may be involved in upregulation of system A in the placenta to ensure sufficient amino acid supply to the developing fetus.
Collapse
Affiliation(s)
- Helen N Jones
- Maternal-Fetal Physiology, Rowett Research Institute, Aberdeen, AB21 9SB, UK
| | | | | | | |
Collapse
|
50
|
Novak D, Quiggle F, Haafiz A. Impact of forskolin and amino acid depletion upon System A activity and SNAT expression in BeWo cells. Biochimie 2006; 88:39-44. [PMID: 16125834 DOI: 10.1016/j.biochi.2005.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Amino acid transport System A (SysA) plays an important role in mediating the transplacental transfer of neutral amino acids from mother to fetus. Given that prior work has demonstrated that SysA activity is regulated, both over gestation and in response to dietary restriction during pregnancy, we examined the response of SysA activity and sodium-dependent neutral amino acid transporter (SNAT; responsible for SysA activity) expression to cAMP analogues and amino acid deprivation in BeWo cells, an accepted model of placental syncytia. SysA activity was unaffected by forskolin, a cAMP agonist, at 48 and 72 h. Amino acid depletion was associated with an up-regulation of SysA activity, largely mediated through an enhancement of SNAT2 (Slc38a2) expression at both the protein and mRNA level. SNAT1 (Slc38a1) expression did not change in response to amino acid depletion, while SNAT4 (Slc38a4) could not be detected. In summary, SysA activity in BeWo cells responds to amino acid depletion through the differential regulation of SNAT subtypes.
Collapse
Affiliation(s)
- Don Novak
- Box 100296, University of Florida College of Medicine, Gainesville, FL 32610-0296, USA.
| | | | | |
Collapse
|