1
|
Rigueur D. A primer for Fibroblast Growth Factor 16 (FGF16). Differentiation 2024; 140:100817. [PMID: 39632143 DOI: 10.1016/j.diff.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
During the discovery of the Fibroblast Growth Factor superfamily, scientists were determined to uncover all the genes that encoded FGF proteins. In 1998, FGF16 was discovered with classical cloning techniques in human and rat heart samples. FGF16 loss- and gain-of-function experiments in several organisms demonstrated a conserved function in vertebrates, and as a component of the FGF9 subfamily of ligands (FGF-E/-9/-20), is functionally conserved and sufficient to rescue loss-of-function phenotypes in invertebrates, like C. elegans. FGF16 has a broad expression pattern, predominantly expressed in brown adipose tissue, heart, with low but detectable levels in the brain, olfactory bulb, inner ear, muscle, thymus, pancreas, spleen, stomach, small intestine, and gonads (testis and ovary). FGF16 is also expressed moderately in the late developing limb bud. Despite its expression levels, this ligand plays notable roles in autopod metacarpal development; loss of one allele causes congenital metacarpal 4-5 fusion and hand deformities in humans. The broad expression pattern of FGF16 in several tissues underscores its multifaceted roles in stem cell maintenance, proliferation, cell fate specification, and metabolism.
Collapse
Affiliation(s)
- Diana Rigueur
- University of California, Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Prakash N. Developmental pathways linked to the vulnerability of adult midbrain dopaminergic neurons to neurodegeneration. Front Mol Neurosci 2022; 15:1071731. [PMID: 36618829 PMCID: PMC9815185 DOI: 10.3389/fnmol.2022.1071731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The degeneration of dopaminergic and other neurons in the aging brain is considered a process starting well beyond the infantile and juvenile period. In contrast to other dopamine-associated neuropsychiatric disorders, such as schizophrenia and drug addiction, typically diagnosed during adolescence or young adulthood and, thus, thought to be rooted in the developing brain, Parkinson's Disease (PD) is rarely viewed as such. However, evidences have accumulated suggesting that several factors might contribute to an increased vulnerability to death of the dopaminergic neurons at an already very early (developmental) phase in life. Despite the remarkable ability of the brain to compensate such dopamine deficits, the early loss or dysfunction of these neurons might predispose an individual to suffer from PD because the critical threshold of dopamine function will be reached much earlier in life, even if the time-course and strength of naturally occurring and age-dependent dopaminergic cell death is not markedly altered in this individual. Several signaling and transcriptional pathways required for the proper embryonic development of the midbrain dopaminergic neurons, which are the most affected in PD, either continue to be active in the adult mammalian midbrain or are reactivated at the transition to adulthood and under neurotoxic conditions. The persistent activity of these pathways often has neuroprotective functions in adult midbrain dopaminergic neurons, whereas the reactivation of silenced pathways under pathological conditions can promote the survival and even regeneration of these neurons in the lesioned or aging brain. This article summarizes our current knowledge about signaling and transcription factors involved in midbrain dopaminergic neuron development, whose reduced gene dosage or signaling activity are implicated in a lower survival rate of these neurons in the postnatal or aging brain. It also discusses the evidences supporting the neuroprotection of the midbrain dopaminergic system after the external supply or ectopic expression of some of these secreted and nuclear factors in the adult and aging brain. Altogether, the timely monitoring and/or correction of these signaling and transcriptional pathways might be a promising approach to a much earlier diagnosis and/or prevention of PD.
Collapse
|
4
|
Quan W, Li J, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Quantitative assessment of the effect of FGF20 rs1721100 and rs12720208 variant on the risk of sporadic Parkinson's disease: a meta-analysis. Neurol Sci 2021; 43:3145-3152. [PMID: 34845561 DOI: 10.1007/s10072-021-05754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES While many studies have investigated the associations between fibroblast growth factor 20 (FGF20) rs1721100 (C/G) and rs12720208 (C/T) polymorphisms and susceptibility to Parkinson's disease (PD), their results are controversial. Our present meta-analysis estimated the overall association between FGF20 rs1721100 and rs12720208 polymorphisms and the risk of sporadic PD. METHODS We performed a comprehensive literature search of the PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, and Wanfang Medicine electronic databases, which was updated in April 2021. Based on strict inclusion and exclusion criteria, the analysis included a total of 10 papers involving 14 studies with 5262 cases of PD and 6075 controls. Review Manager 5.4 software was used to assess the available data from each study. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between the FGF20 rs1721100 and rs12720208 polymorphisms and sporadic PD risk. RESULTS Our results showed that the FGF20 rs1721100 G allele frequency and genotype distribution did not differ between PD patients and controls. Similarly, the FGF20 rs12720208 T allele frequency and genotype distribution did not differ significantly between the two groups. A subgroup analysis of Asian and Caucasian populations also showed the same results. CONCLUSIONS The results of this meta-analysis indicated that neither the rs1721100 C/G nor the rs12720208 C/T variants were associated with sporadic PD susceptibility.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Li Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Qinghui Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China.
| |
Collapse
|
5
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
6
|
Boshoff EL, Fletcher EJR, Duty S. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology 2018; 137:156-163. [PMID: 29698669 PMCID: PMC6063078 DOI: 10.1016/j.neuropharm.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Neuroprotective strategies are an unmet medical need for Parkinson's disease. Fibroblast growth factor 20 (FGF20) enhances survival of cultured dopaminergic neurons but little is known about its in vivo potential. We set out to examine whether manipulation of the FGF20 system affected nigrostriatal tract integrity in rats, to identify which fibroblast growth factor receptors (FGFRs) might reside on dopaminergic neurons and to discover the source of endogenous FGF20 in the substantia nigra (SN). Male Sprague Dawley rats were subject to a partial 6-OHDA lesion alongside treatment with exogenous FGF20 or an FGFR antagonist. Behavioural readouts and tyrosine-hydroxylase (TH) immunohistochemistry were used to evaluate nigrostriatal tract integrity. Fluorescent immunohistochemistry was used to examine FGFR subtype expression on TH-positive dopamine neurons and FGF20 cellular localisation within the SN. FGF20 (2.5 μg/day) significantly protected TH-positive cells in the SN and terminals in the striatum, while reducing the development of motor asymmetry at 5, 8 and 11 days post lesion. Conversely, the FGFR antagonist PD173074 (2 mg/kg) significantly worsened both the 6-OHDA lesion and resultant motor asymmetry. Within the SN, TH-positive cells expressed FGFR1, 3 and 4 while FGF20 co-localised with GFAP-positive astrocytes. In conclusion, FGF20 protects dopaminergic neurons in vivo, an action likely mediated through activation of FGFRs1, 3 or 4 found on these neurons. Given FGF20 is localised to astrocytes in the adult SN, endogenous FGF20 provides its protection of dopamine neurons through a paracrine action. Boosting the endogenous FGF20 production might offer potential as a future therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- Eugene L Boshoff
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Edward J R Fletcher
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
7
|
Wang X, Sun X, Zhang X, Li H, Xie A. Quantitative assessment of the effect of FGF20 rs12720208 variant on the risk of Parkinson’s disease: a meta-analysis. Neurol Res 2017; 39:374-380. [PMID: 28191856 DOI: 10.1080/01616412.2017.1286542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaoli Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxuan Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhao X, Wu Y, Zhao C, Feng M. Association between FGF20 rs12720208 gene polymorphism and Parkinson’s disease: a meta-analysis. Neurol Sci 2016; 37:1119-26. [DOI: 10.1007/s10072-016-2559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
9
|
Yuan L, Song Z, Deng X, Zheng W, Yang Z, Yang Y, Deng H. Genetic analysis of FGF20 variants in Chinese Han patients with essential tremor. Neurosci Lett 2016; 620:159-62. [PMID: 27040428 DOI: 10.1016/j.neulet.2016.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022]
Abstract
Essential tremor (ET) is one of the most frequent neurological disorders with elusive etiology, typically characterized by postural and kinetic tremors. Evidence reveals that genetic components are implicated in the development of ET and there are some overlaps between ET and Parkinson's disease in clinical features and etiology. Variants in the fibroblast growth factor 20 gene (FGF20) have been reported to be associated with the risk of Parkinson's disease. To evaluate the association between the FGF20 gene variants and ET susceptibility, we conducted genetic analysis of five FGF20 variants (rs1721100, rs1989754, rs10089600, rs12720208, and rs17550360) in 200 patients with ET and 426 ethnically-matched Chinese Han normal controls. Statistical analysis did not identify significant differences in genotypic or allelic frequencies of variants between ET patients and normal controls (all P>0.05). No related haplotype was found to be related to the risk of ET. The findings indicate the FGF20 gene might not play a dominating role in the genetic predisposition to ET in Chinese Han population.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
11
|
High production in E. coli of biologically active recombinant human fibroblast growth factor 20 and its neuroprotective effects. Appl Microbiol Biotechnol 2015; 100:3023-34. [PMID: 26603761 DOI: 10.1007/s00253-015-7168-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023]
Abstract
Fibroblast growth factor 20 (FGF20) has a wide range of biological activities; its expression is most pronounced in neural tissues where it has functions in development and neuroprotection. Given these activities, interest in the clinical applications of FGF20 is rising, which will lead to increasing demand for active recombinant human FGF20 (rhFGF20). To improve the production of rhFGF20, an artificial gene encoding fgf20 was cloned into pET3a and expressed in E. coli BL21(DE3)pLysS. By optimizing induction conditions, we successfully induced large amounts of insoluble rhFGF20. Following solubilization and refolding of the rhFGF20 from inclusion bodies, it was purified by HiTrap heparin affinity chromatography to a purity of over 96% with a yield of 218 mg rhFGF20/100 g wet cells. The purified rhFGF20 could stimulate proliferation of both NIH 3T3 cells and PC-12 cells, measured by the MTT assay. In a model of Aβ25-35-induced apoptosis on PC-12 cells, rhFGF20 had a clear protective effect. RT-PCR and Western blot analysis of apoptosis-related genes and proteins revealed that the FGF20-derived protective mechanism was likely due to the relief of endoplasmic reticulum stress (ER stress). In conclusion, the approach described here may be a better means to produce active rhFGF20 in good quantity, thereby allowing for its future pharmacological and clinical use.
Collapse
|
12
|
Fibroblast growth factor 20 (FGF20) gene polymorphism and risk of Parkinson’s disease: a meta-analysis. Neurol Sci 2014; 35:1889-94. [DOI: 10.1007/s10072-014-1853-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
13
|
Ustinova VV, Shadrina MI, Fedotova EY, Illarioshkin SN, Limborska SA, Slominsky PA. Analysis of the rs12720208 single-nucleotide polymorphism of the FGF20 gene in Russian patients with sporadic Parkinson’s disease. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412090086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sleeman IJ, Boshoff EL, Duty S. Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Neuropharmacology 2012; 63:1268-77. [PMID: 22971544 DOI: 10.1016/j.neuropharm.2012.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 06/25/2012] [Accepted: 07/15/2012] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor-20 (FGF-20) has been shown to protect dopaminergic neurons against a range of toxic insults in vitro, through activation of fibroblast growth factor receptor 1 (FGFR1). This study set out to examine whether FGF-20 also displayed protective efficacy in the unilateral, 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease. Initial studies demonstrated that, in embryonic ventral mesencephalic (VM) cultures, FGFR1 was expressed on tyrosine hydroxylase (TH)-positive neurons and that, in line with previous data, FGF-20 (100 and 500 ng/ml) almost completely protected these TH-positive neurons against 6-OHDA-induced toxicity. Co-localisation of FGFR1 and TH staining was also demonstrated in the substantia nigra pars compacta (SNpc) of naïve adult rat brain. In animals subject to 6-OHDA lesion of the nigrostriatal tract, supra-nigral infusion of FGF-20 (2.5 μg/day) for 6 days post-lesion gave significant protection (∼40%) against the loss of TH-positive cells in the SNpc and the loss of striatal TH immunoreactivity. This protection of the nigrostriatal tract was accompanied by a significant preservation of gross locomotion and fine motor movements and reversal of apomorphine-induced contraversive rotations, although forelimb akinesia, assessed using cylinder test reaching, was not improved. These results support a role for FGF-20 in preserving dopamine neuron integrity and some aspects of motor function in a rodent model of Parkinson's disease (PD) and imply a potential neuroprotective role for FGF-20 in this disease.
Collapse
Affiliation(s)
- Isobel J Sleeman
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
15
|
Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:574768. [PMID: 22701813 PMCID: PMC3373204 DOI: 10.1155/2012/574768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
Abstract
The fibroblast growth factor receptor (FGFR) family consists of four members, named FGFR1, 2, 3, and 4. All 4 FGFRs and their ligands, fibroblast growth factors (FGFs), are expressed in colorectal cancer (CRC). Recent studies have shown that FGFR2 plays important roles in cancer progression; therefore, it is of great interest as a novel target for cancers. Expression of FGFR2 regulates migration, invasion, and growth in CRC. Expression of the FGFR2 isoform FGFR2 IIIb was associated with well-differentiated histological types, and its specific ligand, FGF7, enhanced angiogenesis and adhesion to type-IV collagen via FGFR2 IIIb in CRC. FGFR2 IIIc is detected in CRC, but its roles have not been well elucidated. Interactions between FGFR2 IIIb and IIIc and FGFs may play important roles in CRC via autocrine and/or paracrine signaling. Several kinds of molecular-targeting agents against FGFR2 have been developed; however, it is not clear how a cancer treatment can most effectively inhibit FGFR2 IIIb or FGFR2 IIIc, or both isoforms. The aim of this paper is to summarize the roles of FGFR2 and its isoforms in CRC and clarify whether they are potent therapeutic targets for CRC.
Collapse
|
16
|
Tulin S, Stathopoulos A. Extending the family table: Insights from beyond vertebrates into the regulation of embryonic development by FGFs. ACTA ACUST UNITED AC 2010; 90:214-27. [PMID: 20860061 DOI: 10.1002/bdrc.20182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of fibroblast growth factors (FGFs) much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, frog, chick, and zebrafish have made great contributions to our understanding of the role of FGFs in specific processes. However, in recent years, as more genomes are sequenced, information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases, less redundancy in these FGF signaling systems may allow for more mechanistic insights. Studies in sea anemones have highlighted how ancient FGF signaling is and helped provide insight into the evolution of the FGF gene family. Work in nematodes has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs between urochordates and vertebrates as well as between different insect species reveals important clues into the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and signaling mechanism. Further studies on FGF signaling outside of vertebrates is likely to continue to complement work in vertebrates by contributing additional insights to the FGF field and providing unexpected information that could be used for medical applications.
Collapse
Affiliation(s)
- Sarah Tulin
- California Institute of Technology, Pasadena, USA.
| | | |
Collapse
|
17
|
Lu SY, Jin Y, Li X, Sheppard P, Bock ME, Sheikh F, Duckworth ML, Cattini PA. Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice. DNA Cell Biol 2010; 29:407-15. [PMID: 20618076 DOI: 10.1089/dna.2010.1024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disruption of the X-chromosome fibroblast growth factor 16 (Fgf-16) gene, a member of the FGF-9 subfamily with FGF-20, was linked with an effect on cardiac development in two independent studies. However, poor trabeculation with lethality by embryonic day (E) 11.5 was associated with only one, involving maintenance in Black Swiss (Bsw) versus C57BL/6 mice. The aim of this study was to examine the potential influence of genetic background through breeding the null mutation onto an alternate (C57BL/6) background. After three generations, 25% of Fgf-16(-/Y) mice survived to adulthood, which could be reversed by reducing the contribution of the C57BL/6 genetic background by back crossing to another strain. There was no significant difference between FGF-9 and FGF-20 RNA levels in Fgf-16 null versus wild-type mice regardless of strain. However, FGF-8 RNA levels were reduced significantly in Bsw but not C57BL/6 mice. FGF-8 is linked to anterior heart development and like the FGF-9 subfamily is reportedly expressed at E10.5. Like FGF-16, neuregulin as well as signaling via ErbB2 and ErbB4 receptors have been linked to trabeculae formation and cardiac development around E10.5. Basal neuregulin, ErbB2, and ErbB4 as well as FGF-8, FGF-9, and FGF-16 RNA levels varied in Bsw versus C57BL/6 mice. These data are consistent with the ability of genetic background to modify the phenotype and affect embryonic survival in Fgf-16 null mice.
Collapse
Affiliation(s)
- Shun Yan Lu
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Maity H, Karkaria C, Davagnino J. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20. Int J Pharm 2009; 378:122-35. [PMID: 19505546 DOI: 10.1016/j.ijpharm.2009.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/18/2022]
Abstract
This study discusses the effect of key factors like containers, buffers and the freeze (controlled vs. flash freezing) and thawing processes on the stability of a therapeutic protein fibroblast growth factor 20 (FGF-20). The freezing profiles monitored by 15 temperature probes located at different regions in a 2-L bottle during freezing can be grouped into three categories. A rapid drop in temperature was observed at the bottom followed by the top and middle center of the bottle. The freeze-thawing behavior in a 50 ml tube is considerably uniform, as expected. Among phosphate, HEPES (4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid), citrate and histidine (each containing 0.5 M arginine-sulfate) buffer systems, a minimum pH change (0.4 pH unit vs. approximately 1.7 pH unit) was observed for the phosphate buffer system. Thawing in a 50 ml tube at room temperature standing resulted in a significant phase separation in citrate, histidine and HEPES buffers; however, phase separation was least in the phosphate buffer system. These phase separations were found to be temperature dependent. No effect of Polysorbate 80 on freeze-thawing of FGF-20 was observed. Significant concentration gradients in major buffer components and protein concentration were observed during freeze-thawing in a 2-L bottle. The segregation patterns of the various components were similar with the top and bottom layers containing lowest and highest concentrations, respectively. In the formulation buffer no pH gradient was formed, and the precipitation of FGF-20 during thawing at the top layer was related to an insufficient amount of arginine-sulfate and the precipitation at the bottom layer was due to a salting out effect. The precipitate generated during thawing goes into solution easily upon mixing whole solution of the bottle and the various gradient formations do not cause any irreversible change in structure, stability and isoform distribution of FGF-20. Comparison of slow freezing and flash freezing data suggests that the gradients in excipient and protein concentrations are mainly formed during thawing.
Collapse
Affiliation(s)
- Haripada Maity
- Biopharmaceutical Process Sciences, CuraGen Corporation, 322 East Main Street, Branford, CT 06405, USA.
| | | | | |
Collapse
|
19
|
Yoshikawa H, Matsubara K, Zhou X, Okamura S, Kubo T, Murase Y, Shikauchi Y, Esteller M, Herman JG, Wei Wang X, Harris CC. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer. Mol Biol Cell 2007; 18:4292-303. [PMID: 17761539 PMCID: PMC2043567 DOI: 10.1091/mbc.e06-10-0889] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.
Collapse
Affiliation(s)
- Hirohide Yoshikawa
- *Department of Epigenetic Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | - Xiaoling Zhou
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20896; and
| | - Shu Okamura
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20896; and
| | - Takahiko Kubo
- *Department of Epigenetic Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yaeko Murase
- *Department of Epigenetic Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yuko Shikauchi
- *Department of Epigenetic Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Manel Esteller
- The Johns Hopkins University School of Medicine, The Oncology Center, Baltimore, MD 21231
| | - James G. Herman
- The Johns Hopkins University School of Medicine, The Oncology Center, Baltimore, MD 21231
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20896; and
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20896; and
| |
Collapse
|
20
|
Satake W, Mizuta I, Suzuki S, Nakabayashi Y, Ito C, Watanabe M, Takeda A, Hasegawa K, Sakoda S, Yamamoto M, Hattori N, Murata M, Toda T. Fibroblast growth factor 20 gene and Parkinson's disease in the Japanese population. Neuroreport 2007; 18:937-40. [PMID: 17515805 DOI: 10.1097/wnr.0b013e328133265b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A genetic association between the fibroblast growth factor 20 (FGF20) gene and Parkinson's disease has been found by the pedigree disequilibrium test. This association, however, was not replicated by a case-control association study. In order to clarify the association between the FGF20 gene and Parkinson's disease, we attempted to replicate this association by a case-control association study using a large number of Japanese samples (1388 patients and 1891 controls). rs1721100 exhibited a significant difference in allele C versus G (P=0.0089), and in genotype CC+CG versus GG (P=0.0053). Haplotype association analysis showed that haplotype 2 was the protective haplotype for Parkinson's disease (permutation-P=0.0075). These results suggest that the FGF20 gene is a susceptibility gene for Parkinson's disease in the Japanese population.
Collapse
Affiliation(s)
- Wataru Satake
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fan H, Vitharana SN, Chen T, O'Keefe D, Middaugh CR. Effects of pH and Polyanions on the Thermal Stability of Fibroblast Growth Factor 20. Mol Pharm 2007; 4:232-40. [PMID: 17397238 DOI: 10.1021/mp060097h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor 20 (FGF20) is a member of the FGF family with potential for use in several different therapeutic categories. In this work, we provide the first structural characterization of FGF20 using a wide variety of approaches. Like other members of the FGF family, FGF20 appears to possess a beta-trefoil structure. The effect of pH on the conformation and thermal stability of FGF20 is evaluated using far-UV circular dichroism (CD), intrinsic and ANS fluorescence, and high-resolution derivative UV absorption spectroscopy. Empirical phase diagrams are constructed to describe the solution behavior of FGF20 over a wide pH and temperature range. The protein appears to be unstable at pH <5, with aggregation and precipitation observed during dialysis. A major heat-induced conformational change also causes aggregation and precipitation of FGF20 at elevated temperatures. The highest thermal stability is observed near neutral pH (Tm ~55 degrees C at pH 7). The effect of several high- and low-molecular mass polyanions on the thermal stability of FGF20 is also examined using CD, intrinsic fluorescence, and DSC analysis. Among these ligands, heparin exhibits the greatest stabilizing effect on FGF20, increasing the Tm by more than 10 degrees C.
Collapse
Affiliation(s)
- Haihong Fan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66044, USA
| | | | | | | | | |
Collapse
|
22
|
Murase S, McKay RD. A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 2006; 26:9750-60. [PMID: 16988046 PMCID: PMC6674460 DOI: 10.1523/jneurosci.2745-06.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The specific expression of fibroblast growth factor 20 (FGF-20) in the adult substantia nigra and the association between FGF-20 mutations and Parkinson's disease provoked exploration of the function of this growth factor. We show by gain- and loss-of-function in vitro experiments that FGF-20 promotes survival and stimulates dopamine (DA) release in a calbindin-negative subset of cells that are preferentially lost in Parkinson's disease. FGF-20 selectively activates tyrosine hydroxylase in calbindin-negative neurons. In the adult substantia nigra, calbindin-negative neurons specifically express high levels of FGFR1 (FGF receptor 1). These data show that FGF signals to elevate DA levels and protect the specific midbrain neuron type at most risk in Parkinson's patients.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ronald D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
24
|
van der Walt JM, Noureddine MA, Kittappa R, Hauser MA, Scott WK, McKay R, Zhang F, Stajich JM, Fujiwara K, Scott BL, Pericak-Vance MA, Vance JM, Martin ER. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 2004; 74:1121-7. [PMID: 15122513 PMCID: PMC1182076 DOI: 10.1086/421052] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/10/2004] [Indexed: 12/20/2022] Open
Abstract
The pathogenic process responsible for the loss of dopaminergic neurons within the substantia nigra of patients with Parkinson disease (PD) is poorly understood. Current research supports the involvement of fibroblast growth factor (FGF20) in the survival of dopaminergic cells. FGF20 is a neurotrophic factor that is preferentially expressed within the substantia nigra of rat brain. The human homologue has been mapped to 8p21.3-8p22, which is within an area of PD linkage revealed through our published genomic screen. To test whether FGF20 influences risk of PD, we genotyped five single-nucleotide polymorphisms (SNPs) lying within the FGF20 gene, in a large family study. We analyzed our sample (644 families) through use of the pedigree disequilibrium test (PDT), the genotype PDT, the multilocus-genotype PDT, and the family-based association test to assess association between risk of PD and alleles, genotypes, multilocus genotypes, and haplotypes. We discovered a highly significant association of PD with one intronic SNP, rs1989754 (P=.0006), and two SNPs, rs1721100 (P=.02) and ss20399075 (P=.0008), located in the 3' regulatory region in our overall sample. Furthermore, we detected a haplotype (A-G-C-C-T) that is positively associated with risk of PD (P=.0003), whereas a second haplotype (A-G-G-G-C) was found to be negatively associated with risk of PD (P=.0009). Our results strongly support FGF20 as a risk factor for PD.
Collapse
Affiliation(s)
- Joelle M. van der Walt
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Maher A. Noureddine
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Raja Kittappa
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Michael A. Hauser
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - William K. Scott
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Ron McKay
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Fengyu Zhang
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Jeffrey M. Stajich
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Kenichiro Fujiwara
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Burton L. Scott
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Margaret A. Pericak-Vance
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Jeffery M. Vance
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| | - Eden R. Martin
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, NC; and National Institute for Neurological Disorders and Stroke, National Institute of Health, Bethesda
| |
Collapse
|
25
|
Affiliation(s)
- Alan C Rapraeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Kornmann M, Ishiwata T, Matsuda K, Lopez ME, Fukahi K, Asano G, Beger HG, Korc M. IIIc isoform of fibroblast growth factor receptor 1 is overexpressed in human pancreatic cancer and enhances tumorigenicity of hamster ductal cells. Gastroenterology 2002; 123:301-13. [PMID: 12105858 DOI: 10.1053/gast.2002.34174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Fibroblast growth factors (FGFs) are mitogenic polypeptides that signal via FGF receptors (FGFRs). Pancreatic ductal adenocarcinomas (PDACs) overexpress multiple FGFs, implying a potential for growth modulation. In this study we investigated the importance of the IIIc splice variant of FGFR-1 (FGFR-1 IIIc) in PDAC. METHODS Expression of FGFR-1 IIIc was determined by a ribonuclease protection assay in pancreatic cancer cell lines and in tissues. In situ hybridization was used to localize FGFR-1 IIIc messenger RNA (mRNA) in pancreatic tissues. A cDNA encoding FGFR-1 IIIc was stably transfected into the well-differentiated TAKA-1 pancreatic ductal cell line that is not responsive to FGF5 and does not express FGFR-1. RESULTS FGFR-1 IIIc was expressed in 5 of 7 pancreatic cancer cell lines and in the majority of the cancer cells in 4 of 7 PDAC samples. In vitro, TAKA-1 cells stably transfected with FGFR-1 IIIc exhibited increased basal growth; enhanced basal tyrosine phosphorylation of FGFR substrate-2 (FRS2), Shc, and phospholipase Cgamma; and increased activation of mitogen-activated protein kinase (MAPK). PD98059, an inhibitor of MAPK, suppressed the basal growth of parental and transfected clones, but the effect was more marked in clones expressing FGFR-1 IIIc. In vivo, tumor formation in nude mice was dramatically enhanced with FGFR-1 IIIc transfected (20 of 20) in comparison with sham transfected (0 of 10) cells. CONCLUSIONS Our data indicate that FGFR-1 IIIc is expressed in human pancreatic cancer cells, promotes mitogenic signaling via the FRS2-MAPK pathway, and has the potential to enhance pancreatic ductal cell transformation.
Collapse
Affiliation(s)
- Marko Kornmann
- Department of General Surgery, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Imai KS, Satoh N, Satou Y. Early embryonic expression ofFGF4/6/9gene and its role in the induction of mesenchyme and notochord inCiona savignyiembryos. Development 2002; 129:1729-38. [PMID: 11923208 DOI: 10.1242/dev.129.7.1729] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In early Ciona savignyi embryos, nuclear localization of β-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of β-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of β-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in β-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
28
|
Ota Y, Saitoh Y, Suzuki S, Ozawa K, Kawano M, Imamura T. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochem Biophys Res Commun 2002; 290:169-76. [PMID: 11779149 DOI: 10.1006/bbrc.2001.6140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor (FGF) 5 inhibits hair growth and induces catagen in mouse hair follicles, in vivo. Given that FGF-5 receptor (FGFR1) is expressed in dermal papilla cells (DPCs), which are known to stimulate outer root sheath cell (ORSC) proliferation, we hypothesized that FGF-5 attenuates DPC-mediated ORSC proliferation. In the present study, DPCs and ORSCs were isolated from rat vibrissae, after which the effects of FGF-5 on proliferation of ORSCs cultured in DPC-conditioned medium were assessed. We first confirmed that FGFR1 was expressed in cultured DPCs and detected FGFR2-4 as well. ORSC proliferation was increased approximately twofold when the cells were cultured in DPC-conditioned medium, and the effect was unaltered by FGF-5. In addition, FGF-5 did not directly inhibit ORSC proliferation; indeed, it actually promoted proliferation of both DPCs and ORSCs. When DPCs were first activated by exposure to FGF-1 and FGF-2, which are expressed in hair follicles during anagen, ORSC proliferation observed in the resultant conditioned medium was substantially greater than in medium conditioned by unstimulated DPCs. The FGF-1-induced enhancement was reversed by FGF-5, diminishing ORSC proliferation to control levels. By contrast, the enhancement of DPC-mediated ORSC proliferation by FGF-2 was not suppressed by FGF-5. Proliferation of ORSCs did not depend on DPC proliferation, nor did FGF-1 directly promote ORSC proliferation. Dermal papillae thus appear to require activation before they will efficiently stimulate hair growth, and FGF-5 appears to inhibit hair growth and induce catagen by blocking that activation.
Collapse
Affiliation(s)
- Yutaka Ota
- POLA Laboratories, POLA Chemical Institute Inc., 560 Kashio-cho, Totsuka-ku, Yokohama 244-0812, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Sviderskaya EV, Hill SP, Balachandar D, Barsh GS, Bennett DC. Agouti signaling protein and other factors modulating differentiation and proliferation of immortal melanoblasts. Dev Dyn 2001; 221:373-9. [PMID: 11500974 DOI: 10.1002/dvdy.1153] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The melanocyte lineage potentially forms an attractive model system for studies in cell differentiation, developmental genetics, cell signaling, and melanoma, because differentiated cells produce the visible pigment melanin. Immortal lines of murine melanoblasts (melanocyte precursors) have been described previously, but induction of differentiation involved a complex culture system with keratinocyte feeder cells. Here we describe conditions for both growth and induced differentiation of the melanoblast line melb-a, without feeder cells, and analyze factors that directly control proliferation and differentiation of these pure melanoblasts. Several active factors are products of developmental and other coat color genes, including stem cell factor (SCF), melanocyte-stimulating hormone (alphaMSH), and agouti signaling protein (ASP), a natural antagonist at the MSH receptor (melanocortin 1 receptor, MC1R) encoded by the agouti gene. A stable analog of alphaMSH (NDP-MSH) stimulated differentiation and inhibited growth. ASP in excess inhibited both effects of NDP-MSH, that is, ASP could inhibit pigmentation and stimulate growth. These effects provide an explanation for the interactions in mice of melanocyte developmental mutations with yellow agouti and Mc1r alleles, and a role for embryonic expression patterns of ASP.
Collapse
Affiliation(s)
- E V Sviderskaya
- Department of Anatomy and Developmental Biology, St George's Hospital Medical School, London, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson JD, Murison JG. Identification of a new fibroblast growth factor receptor, FGFR5. Gene 2001; 271:171-82. [PMID: 11418238 DOI: 10.1016/s0378-1119(01)00518-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel fibroblast growth factor receptor (FGFR), designated FGFR5, was identified from an EST database of a murine lymph node stromal cell cDNA library. The EST has approximately 32% identity to the extracellular domain of FGFR1-4. Library screening with this EST identified two full-length alternative transcripts which we designated as FGFR5 beta and FGFR5 gamma. The main difference between these transcripts is that FGFR5 beta contains three extracellular Ig domains whereas FGFR5 gamma contains only two. A unique feature of FGFR5 is that it does not contain an intracellular tyrosine kinase domain. Predictive structural modelling of the extracellular domain of FGFR5 gamma suggested that it was a member of the I-set subgroup of the Ig-superfamily, consistent with the known FGFRs. Northern analysis of mouse and human FGFR5 showed detectable mRNA in a broad range of tissues, including kidney, brain and lung. Genomic sequencing identified four introns but identified no alternative transcripts containing a tyrosine kinase domain. Extracellular regions of FGFR5 beta and 5 gamma were cloned in-frame with the Fc fragment of human IgG(1) to generate recombinant non-membrane bound protein. Recombinant FGFR5 beta Fc and R5 gamma Fc demonstrated specific binding to the ligand FGF-2, but not FGF-7 or EGF. However, biological data suggest that FGF-2 binding to these proteins is with lower affinity than its cognate receptor FGFR2C. The above data indicate that this receptor should be considered as the fifth member of the FGFR family.
Collapse
MESH Headings
- 3T3 Cells
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Northern
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Female
- Fibroblast Growth Factor 2/metabolism
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Mice
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 5
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Sleeman
- Genesis Research and Development Corporation Ltd., 1 Fox Street, Parnell, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Fgf-8 is one of the key signaling molecules implicated in the initiation, outgrowth, and patterning of vertebrate limbs. However, it is not clear whether FGF-8 plays similar role in development and regeneration of urodele limbs. We isolated a Fgf-8 cDNA from the Mexican axolotl (Ambystoma mexicanum) through the screening of an embryo cDNA library. The cloned 1.26-kb cDNA contained an open reading frame encoding 212 amino acid residues with 84%, 86%, and 80% amino acid identities to those of Xenopus, chick, and mouse, respectively. By using the above clone as a probe, we examined the temporal and spatial expression patterns of Fgf-8 in developing embryos and in regenerating larval limbs. In developing embryos, Fgf-8 was expressed in the neural fold, midbrain-hindbrain junction, tail and limb buds, pharyngeal clefts, and primordia of maxilla and mandible. In the developing axolotl limb, Fgf-8 began to be expressed in the prospective forelimb region at pre-limb-bud and limb bud stages. Interestingly, strong expression was detected in the mesenchymal tissue of the limb bud before digit forming stages. In the regenerating limb, Fgf-8 expression was noted in the basal layer of the apical epithelial cap (AEC) and the underlying thin layer of mesenchymal tissue during blastema formation stages. These data suggest that Fgf-8 is involved in the organogenesis of various craniofacial structures, the initiation and outgrowth of limb development, and the blastema formation and outgrowth of regenerating limbs. In the developing limb of axolotl, unlike in Xenopus or in amniotes such as chick and mouse, the Fgf-8 expression domain was localized mainly in the mesenchyme rather than epidermis. The unique expression pattern of Fgf-8 in axolotl suggests that the regulatory mechanism of Fgf-8 expression is different between urodeles and other higher species. The expression of Fgf-8 in the deep layer of the AEC and the thin layer of underlying mesenchymal tissue in the regenerating limbs support the previous notion that the amphibian AEC is a functional equivalent of the AER in amniotes.
Collapse
Affiliation(s)
- M J Han
- Department of Life Science, Sogang University, Seoul, Korea
| | | | | |
Collapse
|
32
|
Abstract
SUMMARY Fibroblast growth factors (FGFs) make up a large family of polypeptide growth factors that are found in organisms ranging from nematodes to humans. In vertebrates, the 22 members of the FGF family range in molecular mass from 17 to 34 kDa and share 13-71% amino acid identity. Between vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. FGFs have a high affinity for heparan sulfate proteoglycans and require heparan sulfate to activate one of four cell-surface FGF receptors. During embryonic development, FGFs have diverse roles in regulating cell proliferation, migration and differentiation. In the adult organism, FGFs are homeostatic factors and function in tissue repair and response to injury. When inappropriately expressed, some FGFs can contribute to the pathogenesis of cancer. A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- D M Ornitz
- Department of Molecular Biology and Pharmacology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|