1
|
Würger LTD, Alarcan J, Braeuning A. Effects of marine biotoxins on drug-metabolizing cytochrome P450 enzymes and their regulation in mammalian cells. Arch Toxicol 2024; 98:1311-1322. [PMID: 38416141 PMCID: PMC10965580 DOI: 10.1007/s00204-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Marine biotoxins are a heterogenous group of natural toxins, which are able to trigger different types of toxicological responses in animals and humans. Health effects arising from exposure to marine biotoxins are ranging, for example, from gastrointestinal symptoms to neurological effects, depending on the individual toxin(s) ingested. Recent research has shown that the marine biotoxin okadaic acid (OA) can strongly diminish the expression of drug-metabolizing cytochrome P450 (CYP) enzymes in human liver cells by a mechanism involving proinflammatory signaling. By doing so, OA may interfere with the metabolic barrier function of liver and intestine, and thus alter the toxico- or pharmacokinetic properties of other compounds. Such effects of marine biotoxins on drug and xenobiotic metabolism have, however, not been much in the focus of research yet. In this review, we present the current knowledge on the effects of marine biotoxins on CYP enzymes in mammalian cells. In addition, the role of CYP-regulating nuclear receptors as well as inflammatory signaling in the regulation of CYPs by marine biotoxins is discussed. Strong evidence is available for effects of OA on CYP enzymes, along with information about possible molecular mechanisms. For other marine biotoxins, knowledge on effects on drug metabolism, however, is scarce.
Collapse
Affiliation(s)
- Leonie T D Würger
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
2
|
Makihara H, Maezawa M, Kaiga K, Satake T, Muto M, Tsunoda Y, Shimada T, Akase T. mRNA expression levels of cytochrome P450 CYP1A2, CYP3A4, and CYP3A5 in the epidermis: a focus on individual differences among Japanese individuals. Xenobiotica 2024; 54:226-232. [PMID: 38646717 DOI: 10.1080/00498254.2024.2344664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Various cytochrome P450 enzymes (CYPs) that contribute to drug metabolism are expressed in the skin. However, variation among individuals in CYP expression profiles is not well-understood.To investigate CYPs related to the metabolism of transdermal preparations in Japan, multiple skin tissue specimens of individuals of Japanese descent were prepared, and the mRNA expression levels of CYP1A2, CYP3A4, and CYP3A5 were measured. Associations between the expression patterns of these CYPs and body mass index (BMI) were also investigated.There were considerable individual differences in epidermal CYP1A2 mRNA expression levels, and CYP1A2 showed a weak positive correlation with CYP3A4 mRNA expression levels. In contrast to previous results for other organs, epidermal CYP3A4 mRNA expression levels showed a weak positive correlation with BMI.CYP3A4 in the epidermis may have been locally enhanced as a defence mechanism against xenobiotics in response to impaired barrier function. These differences in mRNA expression in the skin may affect the transdermal absorption of drugs, such as lidocaine and fentanyl, which are metabolised by multiple overlapping CYPs.Our study provides new insights into drug metabolism in the skin. These results are valuable for predicting drug effects and transdermal drug transfer rates in Japanese patients.
Collapse
Affiliation(s)
- Hiroko Makihara
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mika Maezawa
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazusa Kaiga
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshihiko Satake
- Department of Plastic, Reconstructive and Aesthetic Surgery, Toyama University Hospital, Toyama, Toyama, Japan
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Mayu Muto
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Yui Tsunoda
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Akase
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Bhardwaj M, Kour D, Rai G, Bhattacharya S, Manhas D, Vij B, Kumar A, Mukherjee D, Ahmed Z, Gandhi SG, Nandi U. EIDD-1931 Treatment Tweaks CYP3A4 and CYP2C8 in Arthritic Rats to Expedite Drug Interaction: Implication in Oral Therapy of Molnupiravir. ACS OMEGA 2024; 9:13982-13993. [PMID: 38559969 PMCID: PMC10976394 DOI: 10.1021/acsomega.3c09287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Garima Rai
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Srija Bhattacharya
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department
of Chemical Sciences, Bose institute, Kolkata 700091, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit G. Gandhi
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Tsang YP, Hao T, Mao Q, Kelly EJ, Unadkat JD. Dysregulation of the mRNA Expression of Human Renal Drug Transporters by Proinflammatory Cytokines in Primary Human Proximal Tubular Epithelial Cells. Pharmaceutics 2024; 16:285. [PMID: 38399338 PMCID: PMC10893102 DOI: 10.3390/pharmaceutics16020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA expression of hepatic transporters and drug-metabolizing enzymes. However, many antibiotics and antivirals used to treat infections are cleared by renal transporters, including the basal organic cation transporter 2 (OCT2), organic anion transporters 1 and 3 (OAT1 and 3), the apical multidrug and toxin extrusion proteins 1 and 2-K (MATE1/2-K), and multidrug resistance-associated protein 2 and 4 (MRP2/4). Here, we determined the concentration-dependent effect of interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF)-α, and interferon-γ (IFN-γ) on the mRNA expression of human renal transporters in freshly isolated primary human renal proximal tubular epithelial cells (PTECs, n = 3-5). PTECs were exposed to either a cocktail of cytokines, each at 0.01, 0.1, 1, or 10 ng/mL or individually at the same concentrations. Exposure to the cytokine cocktail for 48 h was found to significantly downregulate the mRNA expression, in a concentration-dependent manner, of OCT2, the organic anion transporting polypeptides 4C1 (OATP4C1), OAT4, MATE2-K, P-glycoprotein (P-gp), and MRP2 and upregulate the mRNA expression of the organic cation/carnitine transporter 1 (OCTN1) and MRP3. OAT1 and OAT3 also appeared to be significantly downregulated but only at 0.1 and 10 ng/mL, respectively, without a clear concentration-dependent trend. Among the cytokines, IL-1β appeared to be the most potent at down- and upregulating the mRNA expression of the transporters. Taken together, our results demonstrate for the first time that proinflammatory cytokines transcriptionally dysregulate renal drug transporters in PTECs. Such dysregulation could potentially translate into changes in transporter protein abundance or activity and alter renal transporter-mediated drug PK during inflammation or infections.
Collapse
Affiliation(s)
| | | | | | | | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; (Y.P.T.); (T.H.); (E.J.K.)
| |
Collapse
|
5
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Mohamed DS, Shaban NS, Labib MM, Shehata O. Sesame oil ameliorates valproic acid-induced hepatotoxicity in mice: integrated in vivo-in silico study. J Biomol Struct Dyn 2023; 41:8485-8505. [PMID: 36271831 DOI: 10.1080/07391102.2022.2135593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Sesame oil (SO) has been exhibited to have anti-inflammatory and antioxidant influences. The goal of this experiment was to look into SO's hepato-protective properties and underlying processes in valproic acid (VPA)-induced hepatotoxicity. Molecular docking was carried out to clarify the functional and structural underlying mechanism of SO ameliorative effect. Mice were given 8 mL/kg/day of SO (orally) and 100 mg/kg/day of VPA (i.p.) for 21 days. The results revealed that VPA caused a considerable increase in hepatic malondialdehyde levels while decreasing the activity of glutathione peroxidase (GPx) enzyme. There was also a significant rise in serum levels of interleukins 1β and 6 (IL-1β and IL-6) and a significant decrease in hepatic (PXR) gene expression level. SO co-administration with VPA significantly normalized the antioxidant and anti-inflammatory status and upregulated the gene expression level of PXR. In silico docking analysis results confirmed these results. This study concluded that supplementation of SO attenuated VPA-induced oxidative stress and inflammation. Hence, it was recommended as a dietary supplement for protection against VPA-induced hepatotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Doaa Shaaban Mohamed
- Department of Biochemistry and Chemistry of nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Nema S Shaban
- Department of pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai M Labib
- Department of bioinformatics and computer networks, Agriculture Genetic Engineering Research Institute (AGERI), Cairo, Egypt
| | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
8
|
Effect of DSS-Induced Ulcerative Colitis and Butyrate on the Cytochrome P450 2A5: Contribution of the Microbiome. Int J Mol Sci 2022; 23:ijms231911627. [PMID: 36232929 PMCID: PMC9569822 DOI: 10.3390/ijms231911627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.
Collapse
|
9
|
Development of a new assay system for bladder cancer using interactions between cytochromes P450 and serum. Drug Metab Pharmacokinet 2022; 47:100472. [DOI: 10.1016/j.dmpk.2022.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022]
|
10
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Nopwinyoowong N, Chatuphonprasert W, Tatiya-Aphiradee N, Jarukamjorn K. Garcinia mangostana and α-Mangostin Revive Ulcerative Colitis-Modified Hepatic Cytochrome P450 Profiles in Mice. Pak J Biol Sci 2022; 25:843-851. [PMID: 36098087 DOI: 10.3923/pjbs.2022.843.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Ulcerative colitis (UC) is inflammation of the large intestine with ulceration but can also cause extraintestinal manifestations (EIM) by damaging surrounding organs such as the liver. <i>Garcinia mangostana</i> (GM) pericarp and α-mangostin (MGS) have been reported to have anti-inflammatory activity. This study evaluated the effects of GM pericarp extract and MGS on the expression of hepatic cytochrome P450 (CYP) enzymes as an EIM of UC. <b>Materials and Methods:</b> Male ICR mice were orally administered GM pericarp extract (40, 200 and 1000 mg/kg/day), MGS (30 mg/kg/day) or sulfasalazine (SUL) (100 mg/kg/day) daily for 7 days. On days 4-7, UC was induced by dextran sulfate sodium (DSS 40 kDa, 6 g/kg/day). Profiles of CYP mRNA expression were determined by RT/qPCR. Alkoxyresorufin <i>O</i>-dealkylation (including ethoxy-, methoxy-, pentoxy- and benzyloxy-resorufin), aniline hydroxylation and erythromycin <i>N</i>-demethylation CYP responsive activities were also examined. <b>Results:</b> The DSS-induced UC mice showed suppressed expression<i> </i>of <i>Cyp1a1</i>, <i>Cyp1a2</i>, <i>Cyp2b9/10</i>, <i>Cyp2e1</i>, <i>Cyp2c29</i>, <i>Cyp2d9</i>, <i>Cyp3a11</i> and <i>Cyp3a13</i> mRNAs. The GM pericarp extract and MGS restored expression of all investigated CYPs and their responsive enzyme activities in DSS-induced UC mice to levels comparable to the control and parallel to the effects of the anti-inflammatory control SUL. <b>Conclusion:</b> The GM is a promising therapy to restore UC-modified hepatic CYP profiles.
Collapse
|
14
|
Vizzini A, Bonura A, La Paglia L, Fiannaca A, La Rosa M, Urso A, Mauro M, Vazzana M, Arizza V. Transcriptomic Analyses Reveal 2 and 4 Family Members of Cytochromes P450 (CYP) Involved in LPS Inflammatory Response in Pharynx of Ciona robusta. Int J Mol Sci 2021; 22:ijms222011141. [PMID: 34681801 PMCID: PMC8537429 DOI: 10.3390/ijms222011141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Cytochromes P450 (CYP) are enzymes responsible for the biotransformation of most endogenous and exogenous agents. The expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, and regulation by cytokines and hormones. In recent years, Ciona robusta, one of the closest living relatives of vertebrates, has become a model in various fields of biology, in particular for studying inflammatory response. Using an in vivo LPS exposure strategy, next-generation sequencing (NGS) and qRT-PCR combined with bioinformatics and in silico analyses, compared whole pharynx transcripts from naïve and LPS-exposed C. robusta, and we provide the first view of cytochrome genes expression and miRNA regulation in the inflammatory response induced by LPS in a hematopoietic organ. In C. robusta, cytochromes belonging to 2B,2C, 2J, 2U, 4B and 4F subfamilies were deregulated and miRNA network interactions suggest that different conserved and species-specific miRNAs are involved in post-transcriptional regulation of cytochrome genes and that there could be an interplay between specific miRNAs regulating both inflammation and cytochrome molecules in the inflammatory response in C. robusta.
Collapse
Affiliation(s)
- Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy; (M.M.); (M.V.); (V.A.)
- Correspondence:
| | - Angela Bonura
- Istituto per la Ricerca e l’Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Massimo La Rosa
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy; (M.M.); (M.V.); (V.A.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy; (M.M.); (M.V.); (V.A.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy; (M.M.); (M.V.); (V.A.)
| |
Collapse
|
15
|
Dunvald ACD, Järvinen E, Mortensen C, Stage TB. Clinical and Molecular Perspectives on Inflammation-Mediated Regulation of Drug Metabolism and Transport. Clin Pharmacol Ther 2021; 112:277-290. [PMID: 34605009 DOI: 10.1002/cpt.2432] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a possible cause of variability in drug response and toxicity due to altered regulation in drug-metabolizing enzymes and transporters (DMETs) in humans. Here, we evaluate the clinical and in vitro evidence on inflammation-mediated modulation of DMETs, and the impact on drug metabolism in humans. Furthermore, we identify and discuss the gaps in our current knowledge. A systematic literature search on PubMed, Embase, and grey literature was performed in the period of February to September 2020. A total of 203 papers was included. In vitro studies in primary human hepatocytes revealed strong evidence that CYP3A4 is strongly downregulated by inflammatory cytokines IL-6 and IL-1β. CYP1A2, CYP2C9, CYP2C19, and CYP2D6 were downregulated to a lesser extent. In clinical studies, acute and chronic inflammatory diseases were observed to cause downregulation of CYP enzymes in a similar pattern. However, there is no clear correlation between in vitro studies and clinical studies, mainly because most in vitro studies use supraphysiological cytokine doses. Moreover, clinical studies demonstrate considerable variability in terms of methodology and inconsistencies in evaluation of the inflammatory state. In conclusion, we find inflammation and pro-inflammatory cytokines to be important factors in regulation of drug-metabolizing enzymes and transporters. The observed downregulation is clinically relevant, and we emphasize caution when treating patients in an inflammatory state with narrow therapeutic index drugs. Further research is needed to identify the full extent of inflammation-mediated changes in DMETs and to further support personalized medicine.
Collapse
Affiliation(s)
- Ann-Cathrine Dalgård Dunvald
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Christina Mortensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Tore B Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
16
|
De-Oliveira ACAX, Paumgartten FJR. Malaria-induced Alterations of Drug Kinetics and Metabolism in Rodents and Humans. Curr Drug Metab 2021; 22:127-138. [PMID: 33397251 DOI: 10.2174/1389200221999210101232057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infections and inflammation lead to a downregulation of drug metabolism and kinetics in experimental animals. These changes in the expression and activities of drug-metabolizing enzymes may affect the effectiveness and safety of pharmacotherapy of infections and inflammatory conditions. OBJECTIVE In this review, we addressed the available evidence on the effects of malaria on drug metabolism activity and kinetics in rodents and humans. RESULTS An extensive literature review indicated that infection by Plasmodium spp consistently decreased the activity of hepatic Cytochrome P450s and phase-2 enzymes as well as the clearance of a variety of drugs in mice (lethal and non-lethal) and rat models of malaria. Malaria-induced CYP2A5 activity in the mouse liver was an exception. Except for paracetamol, pharmacokinetic trials in patients during acute malaria and in convalescence corroborated rodent findings. Trials showed that, in acute malaria, clearance of quinine, primaquine, caffeine, metoprolol, omeprazole, and antipyrine is slower and that AUCs are greater than in convalescent individuals. CONCLUSION Notwithstanding the differences between rodent models and human malaria, studies in P. falciparum and P. vivax patients confirmed rodent data showing that CYP-mediated clearance of antimalarials and other drugs is depressed during the symptomatic disease when rises in levels of acute-phase proteins and inflammatory cytokines occur. Evidence suggests that inflammatory cytokines and the interplay between malaria-activated NF-kB-signaling and cell pathways controlling phase 1/2 enzyme genes transcription mediate drug metabolism changes. The malaria-induced decrease in drug clearance may exacerbate drug-drug interactions, and the occurrence of adverse drug events, particularly when patients are treated with narrow-margin-of-safety medicines.
Collapse
Affiliation(s)
- Ana C A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant 2021; 37:1218-1228. [PMID: 33527986 DOI: 10.1093/ndt/gfaa297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Several theories regarding acute kidney injury (AKI)-related mortality have been entertained, although mounting evidence supports the paradigm that impaired kidney function directly and adversely affects the function of several remote organs. The kidneys and liver are fundamental to human metabolism and detoxification, and it is therefore hardly surprising that critical illness complicated by hepatorenal dysfunction portends a poor prognosis. Several diseases can simultaneously impact the proper functioning of the liver and kidneys, although this review will address the impact of AKI on liver function. While evidence for this relationship in humans remains sparse, we present supportive studies and then discuss the most likely mechanisms by which AKI can cause liver dysfunction. These include 'traditional' complications of AKI (uremia, volume overload and acute metabolic acidosis, among others) as well as systemic inflammation, hepatic leukocyte infiltration, cytokine-mediated liver injury and hepatic oxidative stress. We conclude by addressing the therapeutic implications of these findings to clinical medicine.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Stiles
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
18
|
Bromek E, Daniel WA. The regulation of liver cytochrome P450 expression and activity by the brain serotonergic system in different experimental models. Expert Opin Drug Metab Toxicol 2021; 17:413-424. [PMID: 33400885 DOI: 10.1080/17425255.2021.1872543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Cytochrome P450 (CYP) metabolizes vital endogenous (steroids, vitamins) and exogenous (drugs, toxins) substrates. Studies of the last decade have revealed that the brain dopaminergic and noradrenergic systems are involved in the regulation of CYP. Recent research indicates that the brain serotonergic system is also engaged in its regulation.Areas covered: This review focuses on the role of the brain serotonergic system in the regulation of liver CYP expression. It shows the effect of lesion and activation of the serotonergic system after peripheral or intracerebral injections of neurotoxins, serotonin precursor, or serotonin (5-HT) receptor agonists. An opposite role of the hypothalamic paraventricular and arcuate nuclei and 5-HT receptors present therein in the regulation of CYP is described. The engagement of those nuclei in the neuroendocrine regulation of CYP by hypothalamic releasing or inhibiting hormones, pituitary hormones, and peripheral gland hormones are shown.Expert opinion: In general, the brain serotonergic system negatively regulates liver cytochrome P450. However, the effects of serotonergic agents on the enzyme expression depend on their mechanism of action, the route of administration (intracerebral/peripheral), as well as on local intracerebral site of injection and 5-HT receptor-subtypes present therein.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
19
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
20
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
21
|
Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition. Exp Cell Res 2020; 397:112343. [PMID: 33132196 DOI: 10.1016/j.yexcr.2020.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Bile acid synthesis is restricted to hepatocytes and is rate-limited by CYP7A1 (cholesterol 7α hydroxylase). CYP7A1 expression undergoes tight regulation and is repressed after partial hepatectomy to prevent the accumulation of toxic bile acids. Augmenter of Liver Regeneration (ALR) is a hepatotrophic factor shown to support liver regeneration by augmenting cell proliferation and reducing apoptosis. Nevertheless, less is known about ALR's role in protecting hepatocytes from bile acid accumulation and bile acid-induced apoptosis. Therefore, HepG2 and Huh-7 cells were incubated with recombinant human ALR (rALR) and the expression of CYP7A1, bile acid-induced apoptosis as well as potential molecular mechanisms were analyzed. We found that rALR reduces CYP7A1 expression by increasing nuclear NFκB levels. Moreover, rALR reduced glycochenodeoxycholate (GCDC)-induced-apoptosis by decreased expression of pro-apoptotic Bax and enhanced expression of anti-apoptotic Mcl-1, which is regulated by phosphatidylinositol-3-kinase (PI3K)/Akt activation and glycogen synthase kinase-3β (GSK3β) phosphorylation. Inhibitors for PI3K/Akt (GSK690693) and GSK3β (SB415286) confirmed the specificity of rALR treatment for this pathway. In addition, rALR reduces pro-death signaling by decreasing GCDC-induced JNK phosphorylation. Taken all together, rALR might contribute to protecting hepatocytes from toxic concentrations of bile acids by down-regulating their denovo synthesis, attenuating apoptosis by activation of PI3K/Akt - GSK3β pathway and inhibition of JNK signaling. Thereby this suggests a new role of ALR in augmenting the process of liver regeneration.
Collapse
|
22
|
Nudischer R, Renggli K, Hierlemann A, Roth AB, Bertinetti-Lapatki C. Characterization of a long-term mouse primary liver 3D tissue model recapitulating innate-immune responses and drug-induced liver toxicity. PLoS One 2020; 15:e0235745. [PMID: 32645073 PMCID: PMC7347206 DOI: 10.1371/journal.pone.0235745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional liver in vitro systems have recently attracted a lot of attention in drug development. These systems help to gain unprecedented insights into drug-induced liver injury (DILI), as they more closely reproduce liver biology, and as drug effects can be studied in isolated and controllable microenvironments. Many groups established human-based in vitro models but so far neglected the animal equivalent, although the availability of both models would be desirable. Animal in vitro models enable back- and forward translation of in vitro and in vivo findings, bridge the gap between rodent in vivo and human in vitro scenarios, and ultimately support the interpretation of data generated with preclinical species and humans. Since mice are often used in drug development and physiologically relevant in vitro systems are lacking, we established, for the first time, a mouse liver model that encompasses primary parenchymal and non-parenchymal cells with preserved viability and functionality over three weeks. Using our three-dimensional liver spheroids, we were able to predict the toxicity of known DILI compounds, demonstrated the interaction cascades between the different cell types and showed evidence of drug-induced steatosis and cholestasis. In summary, our mouse liver spheroids represent a valuable in vitro model that can be applied to study DILI findings, reported from mouse studies, and offers the potential to detect immune-mediated drug-induced liver toxicity.
Collapse
Affiliation(s)
- Ramona Nudischer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- * E-mail:
| | - Kasper Renggli
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Zurich, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Zurich, Switzerland
| | - Adrian B. Roth
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Bertinetti-Lapatki
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
23
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Swart M, Dandara C. MicroRNA Mediated Changes in Drug Metabolism and Target Gene Expression by Efavirenz and Rifampicin In Vitro: Clinical Implications. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:496-507. [PMID: 31526233 PMCID: PMC6806364 DOI: 10.1089/omi.2019.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efavirenz (EFV) and rifampicin (RMP) are widely prescribed in Africa for treatment of HIV/AIDS and tuberculosis epidemics. Exposure to medicines can alter drug metabolism, for example, through changes in expression of microRNAs. We report, in this study, novel observations on the ways in which EFV and RMP change microRNA expression signatures in vitro in HepaRG cells. Additionally, we discuss the clinical implications of changes in expression of drug-metabolizing enzyme genes, such as CYP3A4, CYP3A5, UGT1A1, CYP2B6, and NR1I3. Differentiated HepaRG cells were treated with EFV (6.4 μM) or RMP (24.4 μM) for 24 h. Treatment of HepaRG cells with EFV resulted in a significant increase in messenger RNA (mRNA) expression for CYP3A4 (12.51-fold, p = 0.002), CYP3A5 (2.10-fold, p = 0.019), and UGT1A1 (2.52-fold, p = 0.005), whereas NR1I3 expression decreased (0.41-fold, p = 0.02). On the other hand, treatment of HepaRG cells with RMP resulted in a significant increase in mRNA expression for CYP2B6 (6.68-fold, p = 0.007) and CYP3A4 (111.96-fold, p = 0.001), whereas NR1I3 expression decreased (0.46-fold, p = 0.033). These data point to several important clinical implications through changes in drug/drug interaction risks and achieving optimal therapeutics. All in all, this study shows that differential expression of microRNAs after treatment with EFV and RMP adds another layer of complexity that should be incorporated in pharmacogenomic algorithms to render drug response more predictable.
Collapse
Affiliation(s)
- Marelize Swart
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Trousil S, Lee P, Edwards RJ, Maslen L, Lozan-Kuehne JP, Ramaswami R, Aboagye EO, Clarke S, Liddle C, Sharma R. Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol 2019; 176:3712-3722. [PMID: 31236938 DOI: 10.1111/bph.14776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work has focussed on changes in drug metabolism caused by altered activity of CYP3A in the presence of inflammation and, in particular, inflammation associated with malignancy. However, drug metabolism involves a number of other P450s, and therefore, we assessed the effect of cancer-related inflammation on multiple CYP enzymes using a validated drug cocktail. EXPERIMENTAL APPROACH Patients with advanced stage ovarian cancer and healthy volunteers were recruited. Participants received caffeine, chlorzoxazone, dextromethorphan, and omeprazole as in vivo probes for CYP1A2, CYP2E1, CYP2D6, CYP3A, and CYP2C19. Blood was collected for serum C-reactive protein and cytokine analysis. KEY RESULTS CYP2E1 activity was markedly up-regulated in cancer (6-hydroxychlorzoxazone/chlorzoxazone ratio of 1.30 vs. 2.75), while CYP3A phenotypic activity was repressed in cancer (omeprazole sulfone/omeprazole ratio of 0.23 vs. 0.49). Increased activity of CYP2E1 was associated with raised serum levels of IL-6, IL-8, and TNF-α. Repression of CYP3A correlated with raised levels of serum C-reactive protein, IL-6, IL-8, and TNF-α. CONCLUSIONS AND IMPLICATIONS CYP enzyme activity is differentially affected by the presence of tumour-associated inflammation, affecting particularly CYP2E1- and CYP3A-mediated drug metabolism, and may have profound implications for drug development and prescribing in oncological settings.
Collapse
Affiliation(s)
- Sebastian Trousil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Patrizia Lee
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert J Edwards
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Lynn Maslen
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Ramya Ramaswami
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Westmead, Westmead, NSW, Australia
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
27
|
Monostory K, Nagy A, Tóth K, Bűdi T, Kiss Á, Déri M, Csukly G. Relevance of CYP2C9 Function in Valproate Therapy. Curr Neuropharmacol 2019; 17:99-106. [PMID: 29119932 PMCID: PMC6341495 DOI: 10.2174/1570159x15666171109143654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/09/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic polymorphisms of drug metabolizing enzymes can substantially modify the pharmacokinetics of a drug and eventually its efficacy or toxicity; however, inferring a patient's drug metabolizing capacity merely from his or her genotype can lead to false prediction. Non-genetic host factors (age, sex, disease states) and environmental factors (nutrition, comedication) can transiently alter the enzyme expression and activities resulting in genotypephenotype mismatch. Although valproic acid is a well-tolerated anticonvulsant, pediatric patients are particularly vulnerable to valproate injury that can be partly attributed to the age-related differences in metabolic pathways. METHODS CYP2C9 mediated oxidation of valproate, which is the minor metabolic pathway in adults, appears to become the principal route in children. Genetic and non-genetic variations in CYP2C9 activity can result in significant inter- and intra-individual differences in valproate pharmacokinetics and valproate induced adverse reactions. RESULTS The loss-of-function alleles, CYP2C9*2 or CYP2C9*3, display significant reduction in valproate metabolism in children; furthermore, low CYP2C9 expression in patients with CYP2C9*1/*1 genotype also leads to a decrease in valproate metabolizing capacity. Due to phenoconversion, the homozygous wild genotype, expected to be translated to CYP2C9 enzyme with normal activity, is transiently switched into poor (or extensive) metabolizer phenotype. CONCLUSION Novel strategy for valproate therapy adjusted to CYP2C9-status (CYP2C9 genotype and CYP2C9 expression) is strongly recommended in childhood. The early knowledge of pediatric patients' CYP2C9-status facilitates the optimization of valproate dosing which contributes to the avoidance of misdosing induced adverse reactions, such as abnormal blood levels of ammonia and alkaline phosphatase, and improves the safety of children's anticonvulsant therapy.
Collapse
Affiliation(s)
- Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Nagy
- Heim Pal Children's Hospital, Budapest, Hungary
| | - Katalin Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Bűdi
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ádám Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Máté Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Knudsen JG, Bertholdt L, Gudiksen A, Gerbal-Chaloin S, Rasmussen MK. Skeletal Muscle Interleukin-6 Regulates Hepatic Cytochrome P450 Expression: Effects of 16-Week High-Fat Diet and Exercise. Toxicol Sci 2019; 162:309-317. [PMID: 29177473 DOI: 10.1093/toxsci/kfx258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High-fat diet (HFD) induces several changes to the pathways regulating energy homeostasis and changes the expression of the hepatic cytochrome p450 (Cyp) enzyme-system. Despite these pervious findings, it is still unclear how the effects of HFD and especially HFD in combination with treadmill running affect hepatic Cyp expression. In this study, we investigated the mRNA and protein expression of selected Cyp's in mice subjected to 16 weeks of HFD and treadmill running. To understand the regulatory mechanisms behind the exercise-induced reversion of the HFD-induced changes in Cyp expression, we used a model in which the exercise-induced myokine and known regulator of hepatic Cyp's, interleukin-6 (IL-6), were knocked out specifically in skeletal muscle. We found that HFD increased the mRNA expression of Cyp1a1 and Cyp4a10, and decreased the expression of Cyp2a4, Cyp2b10, Cyp2e1, and Cyp3a11. HFD in combination with treadmill running reversed the HFD increase in Cyp4a10 mRNA expression. In addition, we observed increased Cyp1a and Cyp3a protein expression as an effect of exercise, whereas Cyp2b expression was lowered as an effect of HFD. IL-6 effected the response in Cyp3a11 and Cyp1a expression. We observed no changes in the content of the aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, or peroxisome proliferation activator receptor alpha. In conclusion, we show that both HFD and exercise in HFD-fed animals can regulate hepatic Cyp expression and that changes in Cyp3a in response to HFD and exercise are dependent on skeletal muscular IL-6.
Collapse
Affiliation(s)
- Jakob G Knudsen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Lærke Bertholdt
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Anders Gudiksen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Kovács T, Déri M, Fülöp A, Pálházy T, Háfra E, Sirok D, Kiss ÁF, Lotz G, Szijártó A, Monostory K. Isoform-Dependent Changes in Cytochrome P450-Mediated Drug Metabolism after Portal Vein Ligation in the Rat. Eur Surg Res 2018; 59:301-319. [PMID: 30419560 DOI: 10.1159/000493923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Surgical removal of complicated liver tumors may be realized in two stages via selective portal vein ligation, inducing the atrophy of portally ligated lobes and the compensatory hypertrophy of nonligated liver lobes. Unlike morphological changes, functional aspects such as hepatic cytochrome P450 (CYP)-mediated drug metabolism remain vaguely understood, despite its critical role in both drug biotransformation and hepatic functional analysis. Our goal was the multilevel characterization of hepatic CYP-mediated drug metabolism after portal vein ligation in the rat. METHODS Male Wistar rats (n = 24, 210-230 g) were analyzed either untreated (controls; n = 4) or 24/48/72/168/336 h (n = 4 each) following portal vein ligation affecting approximately 80% of the liver parenchyma. Besides the weights of ligated and nonligated lobes, pentobarbital (30 mg/kg)-induced sleeping time, CYP1A(2), CYP 2B(1/2), CYP2C(6/11/13), CYP3A(1) enzyme activities, and corresponding isoform mRNA expressions, as well as CYP3A1 protein expression were determined by in vivo sleeping test, CYP isoform-selective assays, polymerase chain reaction, and immunohistochemistry, respectively. RESULTS Portal vein ligation triggered atrophy in ligated lobes and hypertrophy nonligated lobes. Sleeping time was transiently elevated (p = 0.0451). After an initial rise, CYP1A, CYP2B, and CYP3A enzyme activities dropped until 72 h, followed by a potent increase only in the nonligated lobes, paralleled by an early (24-48 h) transcriptional activation only in nonligated lobes. CYP2C enzyme activities and mRNA levels were bilaterally rapidly decreased, showing a late reconvergence only in nonligated lobes. CYP3A1 immunohistochemistry indicated substantial differences in positivity in the early period. CONCLUSIONS Beyond the atrophy-hypertrophy complex, portal vein ligation generated a transient suppression of global and regional drug metabolism, re-established by an adaptive, CYP isoform-dependent transcriptional response of the nonligated lobes.
Collapse
Affiliation(s)
- Tibor Kovács
- Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Máté Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Fülöp
- Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Tímea Pálházy
- Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Edit Háfra
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Sirok
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Attila Szijártó
- Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary,
| |
Collapse
|
30
|
Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex Drug-Drug-Gene-Disease Interactions Involving Cytochromes P450: Systematic Review of Published Case Reports and Clinical Perspectives. Clin Pharmacokinet 2018; 57:1267-1293. [PMID: 29667038 DOI: 10.1007/s40262-018-0650-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug pharmacokinetics (PK) is influenced by multiple intrinsic and extrinsic factors, among which concomitant medications are responsible for drug-drug interactions (DDIs) that may have a clinical relevance, resulting in adverse drug reactions or reduced efficacy. The addition of intrinsic factors affecting cytochromes P450 (CYPs) activity and/or expression, such as genetic polymorphisms and diseases, may potentiate the impact and clinical relevance of DDIs. In addition, greater variability in drug levels and exposures has been observed when such intrinsic factors are present in addition to concomitant medications perpetrating DDIs. This variability results in poor predictability of DDIs and potentially dramatic clinical consequences. The present review illustrates the issue of complex DDIs using systematically searched published case reports of DDIs involving genetic polymorphisms, renal impairment, cirrhosis, and/or inflammation. Current knowledge on the impact of each of these factors on drug exposure and DDIs is summarized and future perspectives for the management of such complex DDIs in clinical practice are discussed, including the use of advanced Computerized Physician Order Entry (CPOE) systems, the development of model-based dose optimization strategies, and the education of healthcare professionals with respect to personalized medicine.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Luc Reny
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland.
| |
Collapse
|
31
|
Gabbia D, Pozzo L, Zigiotto G, Roverso M, Sacchi D, Dalla Pozza A, Carrara M, Bogialli S, Floreani A, Guido M, De Martin S. Dexamethasone counteracts hepatic inflammation and oxidative stress in cholestatic rats via CAR activation. PLoS One 2018; 13:e0204336. [PMID: 30252871 PMCID: PMC6155538 DOI: 10.1371/journal.pone.0204336] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids (GCs) are currently used for the therapeutic management of cholestatic diseases, but their use and molecular mechanism remain controversial. The aims of this study were 1) to assess the therapeutic effect of a 2-week treatment with the GC dexamethasone on hepatic damage in bile duct-ligated rats; 2) to investigate its effect on the activation of the nuclear receptors (NRs) pregnane X receptor (PXR), constitutive androstane receptor (CAR) and GC receptor (GR), and NF-kB, as well as on oxidative stress and bile acid (BA) hepatic composition. Cholestasis was induced by ligation of bile duct (BDL animals) in 16 male Wistar-Kyoto rats, and eight of them were daily treated by oral gavage with 0.125 mg/ml/kg DEX for 14 days. Eight Sham-operated rats were used as controls. Severity of cholestasis was assessed histologically and on plasma biochemical parameters. The nuclear expression of NF-kB (p65), GR, PXR and CAR was measured in hepatic tissue by Western Blot. Oxidative stress was evaluated by measuring malondialdehyde, carbonylated proteins, GHS and ROS content in rat livers. LC-MS was used to measure the plasma and liver concentration of 7 BAs. Histological findings and a significant drop in several markers of inflammation (p65 nuclear translocation, mRNA expressions of TNF-α, IL-1β, IL-6) showed that DEX treatment reversed cholestasis-induced inflammation, and similar results have been obtained with oxidative stress markers. The nuclear expression of p65 and CAR were inversely correlated, with the latter increasing significantly after DEX treatment (p<0.01 vs vehicle). Hepatic BA levels tended to drop in the untreated cholestatic rats, whereas they were similar to those of healthy rats in DEX-treated animals. Plasma BAs decreased significantly in DEX-treated animals with respect to untreated cholestatic rats. In conclusion, DEX reduces inflammation and oxidative stress in BDL rats, and probably CAR is responsible for this effect. Therefore, this NR represents a promising pharmacological target for managing cholestatic and inflammatory liver diseases.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - Giorgia Zigiotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Diana Sacchi
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Arianna Dalla Pozza
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
32
|
Study of melatonin-mediated effects on various hepatic inflammatory responses stimulated by IL-6 in a new HepG2-on-a-chip platform. Biomed Microdevices 2018; 20:54. [DOI: 10.1007/s10544-018-0300-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Effects of human interleukins in the transgenic gene reporter cell lines IZ-VDRE and IZ-CYP24 designed to assess the transcriptional activity of vitamin D receptor. PLoS One 2018; 13:e0193655. [PMID: 29489902 PMCID: PMC5831414 DOI: 10.1371/journal.pone.0193655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
The role of vitamin D receptor (VDR) in immune responses has been broadly studied and it has been shown that activated VDR alters the levels of some interleukins (ILs). In this study, we studied the opposite, i.e. whether 13 selected pro-inflammatory and anti-inflammatory ILs influence the transcriptional activity of human VDR. The experimental models of choice were two human stably transfected gene reporter cell lines IZ-VDRE and IZ-CYP24, which were designed to evaluate the transcriptional activity of VDR. The gene reporter assays revealed inhibition of calcitriol-induced luciferase activity by IL-4 and IL-13, when 1 ng/mL of these two compounds decreased the effect of calcitriol down to 60% of the control value. Consistently, calcitriol-induced expression of CYP24A1 mRNA was also significantly decreased by IL-4 and IL-13. The expression of VDR and CYP27B1 mRNAs was not influenced by any of the 13 tested ILs. These data suggest possible cross-talk between the VDR signalling pathway and IL-4- and IL-13-mediated cell signalling.
Collapse
|
34
|
Choi YJ, Zhou D, Barbosa ACS, Niu Y, Guan X, Xu M, Ren S, Nolin TD, Liu Y, Xie W. Activation of Constitutive Androstane Receptor Ameliorates Renal Ischemia-Reperfusion-Induced Kidney and Liver Injury. Mol Pharmacol 2018; 93:239-250. [PMID: 29351922 PMCID: PMC5801556 DOI: 10.1124/mol.117.111146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is associate with high mortality. Despite evidence of AKI-induced distant organ injury, a relationship between AKI and liver injury has not been clearly established. The goal of this study is to investigate whether renal ischemia-reperfusion (IR) can affect liver pathophysiology. We showed that renal IR in mice induced fatty liver and compromised liver function through the downregulation of constitutive androstane receptor (CAR; -90.4%) and inhibition of hepatic very-low-density lipoprotein triglyceride (VLDL-TG) secretion (-28.4%). Treatment of mice with the CAR agonist 1,4-bis[2-(3,5 dichloropyridyloxy)] benzene (TCPOBOP) prevented the development of AKI-induced fatty liver and liver injury, which was associated with the attenuation of AKI-induced inhibition of VLDL-TG secretion. The hepatoprotective effect of TCPOBOP was abolished in CAR-/- mice. Interestingly, alleviation of fatty liver by TCPOBOP also improved the kidney function, whereas CAR ablation sensitized mice to AKI-induced kidney injury and lethality. The serum concentrations of interleukin-6 (IL-6) were elevated by 27-fold after renal IR, but were normalized in TCPOBOP-treated AKI mice, suggesting that the increased release of IL-6 from the kidney may have mediated the AKI responsive liver injury. Taken together, our results revealed an interesting kidney-liver organ cross-talk in response to AKI. Given the importance of CAR in the pathogenesis of renal IR-induced fatty liver and impaired kidney function, fatty liver can be considered as an important risk factor for kidney injury, and a timely management of hepatic steatosis by CAR activation may help to restore kidney function in patients with AKI or kidney transplant.
Collapse
Affiliation(s)
- You-Jin Choi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Dong Zhou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Anne Caroline S Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Xiudong Guan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Thomas D Nolin
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Youhua Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| |
Collapse
|
35
|
Tanner N, Kubik L, Luckert C, Thomas M, Hofmann U, Zanger UM, Böhmert L, Lampen A, Braeuning A. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metab Dispos 2018; 46:326-335. [DOI: 10.1124/dmd.117.078675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
|
36
|
Rasmussen MK, Bertholdt L, Gudiksen A, Pilegaard H, Knudsen JG. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice. Toxicol Lett 2017; 282:93-99. [PMID: 29030272 DOI: 10.1016/j.toxlet.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 01/19/2023]
Abstract
The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification.
Collapse
Affiliation(s)
- Martin Krøyer Rasmussen
- Department of Food Science, Aarhus University, Blichers alle 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | | | | | | | | |
Collapse
|
37
|
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front Pharmacol 2016; 7:456. [PMID: 27932985 PMCID: PMC5122737 DOI: 10.3389/fphar.2016.00456] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology and Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
38
|
Kotiya D, Jaiswal B, Ghose S, Kaul R, Datta K, Tyagi RK. Role of PXR in Hepatic Cancer: Its Influences on Liver Detoxification Capacity and Cancer Progression. PLoS One 2016; 11:e0164087. [PMID: 27760163 PMCID: PMC5070842 DOI: 10.1371/journal.pone.0164087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The role of nuclear receptor PXR in detoxification and clearance of xenobiotics and endobiotics is well-established. However, its projected role in hepatic cancer is rather illusive where its expression is reported altered in different cancers depending on the tissue-type and microenvironment. The expression of PXR, its target genes and their biological or clinical significance have not been examined in hepatic cancer. In the present study, by generating DEN-induced hepatic cancer in mice, we report that the expression of PXR and its target genes CYP3A11 and GSTa2 are down-regulated implying impairment of hepatic detoxification capacity. A higher state of inflammation was observed in liver cancer tissues as evident from upregulation of inflammatory cytokines IL-6 and TNF-α along with NF-κB and STAT3. Our data in mouse model suggested a negative correlation between down-regulation of PXR and its target genes with that of higher expression of inflammatory proteins (like IL-6, TNF-α, NF-κB). In conjunction, our findings with relevant cell culture based assays showed that higher expression of PXR is involved in reduction of tumorigenic potential in hepatic cancer. Overall, the findings suggest that inflammation influences the expression of hepatic proteins important in drug metabolism while higher PXR level reduces tumorigenic potential in hepatic cancer.
Collapse
Affiliation(s)
- Deepak Kotiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Bharti Jaiswal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sampa Ghose
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rachna Kaul
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kasturi Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
39
|
Long TJ, Cosgrove PA, Dunn RT, Stolz DB, Hamadeh H, Afshari C, McBride H, Griffith LG. Modeling Therapeutic Antibody-Small Molecule Drug-Drug Interactions Using a Three-Dimensional Perfusable Human Liver Coculture Platform. Drug Metab Dispos 2016; 44:1940-1948. [PMID: 27621203 DOI: 10.1124/dmd.116.071456] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Traditional in vitro human liver cell culture models lose key hepatic functions such as metabolic activity during short-term culture. Advanced three-dimensional (3D) liver coculture platforms offer the potential for extended hepatocyte functionality and allow for the study of more complex biologic interactions, which can improve and refine human drug safety evaluations. Here, we use a perfusion flow 3D microreactor platform for the coculture of cryopreserved primary human hepatocytes and Kupffer cells to study the regulation of cytochrome P450 3A4 isoform (CYP3A4) activity by chronic interleukin 6 (IL-6)-mediated inflammation over 2 weeks. Hepatocyte cultures remained stable over 2 weeks, with consistent albumin production and basal IL-6 levels. Direct IL-6 stimulation that mimics an inflammatory state induced a dose-dependent suppression of CYP3A4 activity, an increase in C-reactive protein (CRP) secretion, and a decrease in shed soluble interleukin-6 receptor (IL-6R) levels, indicating expected hepatic IL-6 bioactivity. Tocilizumab, an anti-IL-6R monoclonal antibody used to treat rheumatoid arthritis, has been demonstrated clinically to impact small molecule drug pharmacokinetics by modulating cytochrome P450 enzyme activities, an effect not observed in traditional hepatic cultures. We have now recapitulated the clinical observation in a 3D bioreactor system. Tocilizumab was shown to desuppress CYP3A4 activity while reducing the CRP concentration after 72 hours in the continued presence of IL-6. This change in CYP3A4 activity decreased the half-life and area under the curve up to the last measurable concentration (AUClast) of the small molecule CYP3A4 substrate simvastatin hydroxy acid, measured before and after tocilizumab treatment. We conclude that next-generation in vitro liver culture platforms are well suited for these types of long-term treatment studies and show promise for improved drug safety assessment.
Collapse
Affiliation(s)
- Thomas J Long
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Patrick A Cosgrove
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Robert T Dunn
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Donna B Stolz
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Hisham Hamadeh
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Cynthia Afshari
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Helen McBride
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| | - Linda G Griffith
- Comparative Biology and Safety Science Laboratory, Amgen, Inc., Cambridge, Massachusetts (T.J.L.); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (T.J.L., L.G.G.); Comparative Biology and Safety Science Laboratory, Amgen, Inc., Thousand Oaks, California (P.A.C., R.T.D., H.H., H.M., C.A.); Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (L.G.G.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.); Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (D.B.S.)
| |
Collapse
|
40
|
Oladimeji P, Cui H, Zhang C, Chen T. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Expert Opin Drug Metab Toxicol 2016; 12:997-1010. [PMID: 27295009 DOI: 10.1080/17425255.2016.1201069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Protein-protein interaction and signaling crosstalk contribute to the regulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular function. AREA COVERED This review covers key historic discoveries and recent advances in our understanding of the broad function of PXR and CAR and their regulation by protein-protein interaction and signaling crosstalk. EXPERT OPINION PXR and CAR were first discovered as xenobiotic receptors; however, it is clear that PXR and CAR perform a much broader range of cellular functions through protein-protein interaction and signaling crosstalk, which typically mutually affect the function of all the partners involved. Future research on PXR and CAR should, therefore, look beyond their xenobiotic function.
Collapse
Affiliation(s)
- Peter Oladimeji
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Hongmei Cui
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Chen Zhang
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
41
|
Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A Activity and Expression in Nonalcoholic Fatty Liver Disease. Drug Metab Dispos 2015; 43:1484-90. [DOI: 10.1124/dmd.115.065979] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
|
42
|
Sarode GS, Sarode SC, Patil A, Anand R, Patil SG, Rao RS, Augustine D. Inflammation and Oral Cancer: An Update Review on Targeted Therapies. J Contemp Dent Pract 2015; 16:595-602. [PMID: 26329416 DOI: 10.5005/jp-journals-10024-1727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the recent past, numerous inflammation-mediated molecular pathways have been explored and studied as important events in carcinogenesis with respect to oral squamous cell carcinoma (OSCC). These pathways are engaged in numerous stages during tumorigenesis; which includes processes, like initiation, promotion, malignant conversion, invasion and metastasis. The inflammation-mediated/related carcinogenesis pathways reported in OSCC involves COX-2, epidermal growth factor receptor (EGFR), p38a MAP kinase, NF-kB, STAT, RhoC, PPARy, etc. Many researchers are trying to target these pathways to explore more effective therapeutic interventions in OSCC. The aim of the present paper is to briefly discuss these pathways, with special emphasis on the therapeutic utilities. The therapeutic targets for the aforementioned pathways were searched in databases pubmed and scopus with no restriction to date of publication. Articles published in English medical literature on OSCC were selected for discussion. The recent combinations, modifications in dosage and frequency, or the use of new anti-inflammatory compounds, may exemplify the next generation care for OSCC.
Collapse
Affiliation(s)
- Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth Pune, Maharashtra, India
| | - Sachin C Sarode
- Professor, Department of Oral Pathology and Microbiology, Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth Pune, Maharashtra, India, Phone: +919922491465, e-mail:
| | - Anuprita Patil
- EK 2 Emirates building, Muhaisnah 4, United Arab Emirates Dubai
| | - Rahul Anand
- Department of Oral Pathology and Microbiology, Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth Pune, Maharashtra, India
| | - Shankar Gouda Patil
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences Bengaluru, Karnataka, India
| | - Roopa S Rao
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Tóth K, Bűdi T, Kiss Á, Temesvári M, Háfra E, Nagy A, Szever Z, Monostory K. Phenoconversion of CYP2C9 in epilepsy limits the predictive value of CYP2C9 genotype in optimizing valproate therapy. Per Med 2015; 12:199-207. [DOI: 10.2217/pme.14.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: Since prominent role in valproate metabolism is assigned to CYP2C9 in pediatric patients, the association between children's CYP2C9-status and serum valproate concentrations or dose-requirements was evaluated. Materials & Methods: The contribution of CYP2C9 genotype and CYP2C9 expression in children (n = 50, Caucasian) with epilepsy to valproate pharmacokinetics was analyzed. Results: Valproate concentrations were significantly lower in normal expressers with CYP2C9*1/*1 than in low expressers or in patients carrying polymorphic CYP2C9 alleles. Consistently, the dose-requirement was substantially higher in normal expressers carrying CYP2C9*1/*1 (33.3 mg/kg vs 13.8–17.8 mg/kg, p < 0.0001). Low CYP2C9 expression significantly increased the ratio of poor metabolizers predictable from CYP2C9 genotype (by 46%). Conclusion: Due to the substantial downregulation of CYP2C9 expression in epilepsy, inferring patients’ valproate metabolizing phenotype merely from CYP2C9 genotype results in false prediction.
Collapse
Affiliation(s)
- Katalin Tóth
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary
| | - Tamás Bűdi
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó 7–9, H-1094 Budapest, Hungary
| | - Ádám Kiss
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary
| | - Manna Temesvári
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary
| | - Edit Háfra
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary
| | - Andrea Nagy
- Heim Pál Children's Hospital, Madarász 22–24, H-1131 Budapest, Hungary
| | - Zsuzsa Szever
- Heim Pál Children's Hospital, Madarász 22–24, H-1131 Budapest, Hungary
| | - Katalin Monostory
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary
| |
Collapse
|
44
|
Zhang C, Xu Y, Gao P, Lu J, Li X, Liu D. Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats. Int Immunopharmacol 2015; 24:153-158. [DOI: 10.1016/j.intimp.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/22/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
|
45
|
Impact of inflammation and concomitant glucocorticoid administration on plasma concentration of triazole antifungals in immunocompromised patients. Clin Chim Acta 2015; 441:127-32. [DOI: 10.1016/j.cca.2014.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
|
46
|
Banerjee M, Robbins D, Chen T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov Today 2014; 20:618-28. [PMID: 25463033 DOI: 10.1016/j.drudis.2014.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Nuclear receptors such as the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenobiotic receptors regulating not only drug metabolism and disposition but also various human diseases such as cancer, diabetes, inflammatory disease, metabolic disease and liver diseases, suggesting that PXR and CAR are promising targets for drug discovery. Consequently, there is an urgent need to discover and develop small molecules that target these PXR- and/or CAR-mediated human-disease-related pathways for relevant therapeutic applications. This review proposes approaches to target PXR and CAR, either individually or simultaneously, in the context of various human diseases, taking into consideration the structural differences between PXR and CAR.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Delira Robbins
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Abstract
Enzymatic oxidation of cholesterol generates numerous distinct bile acids which function both as detergents that facilitate the digestion and absorption of dietary lipids and as hormones that activate five distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility, bacterial growth, inflammation, and in the liver-gut axis. This review focuses on the present knowledge regarding the physiologic and pathologic role of bile acids and their immunomodulatory role, with particular attention to bacterial lipopolysaccharides (endotoxins) and bile acid and immunological disorders. The specific role that bile acids play in the regulation of innate immunity, various systemic inflammations, inflammatory bowel diseases, allergy, psoriasis, cholestasis, obesity, metabolic syndrome, alcoholic liver disease, and colon cancer will be reviewed.
Collapse
Affiliation(s)
- Sándor Sipka
- Division of Clinical Immunology, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
48
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
49
|
Glucose dominates the regulation of carboxylesterases induced by lipopolysaccharide or interleukin-6 in primary mouse hepatocytes. Life Sci 2014; 112:41-8. [DOI: 10.1016/j.lfs.2014.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
|
50
|
Kawase A, Norikane S, Okada A, Adachi M, Kato Y, Iwaki M. Distinct alterations in ATP-binding cassette transporter expression in liver, kidney, small intestine, and brain in adjuvant-induced arthritic rats. J Pharm Sci 2014; 103:2556-64. [PMID: 24912442 DOI: 10.1002/jps.24043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/12/2022]
Abstract
Pathophysiological changes of infection or inflammation are associated with alterations in the production of numerous absorption, distribution, metabolism and excretion-related proteins. However, little information is available on the effects of inflammation on the expression levels and activities of ATP-binding cassette (ABC) transporters. We examined the effect of acute (on day 7) and chronic (on day 21) inflammation on the expression of ABC transporters in some major tissues in rat. Adjuvant-induced arthritis (AA) in rats was used as an animal model for inflammation. The mRNA levels of mdr1a and mdr1b encoding P-glycoprotein (P-gp) decreased significantly in livers of AA rats on day 21. Hepatic protein levels of P-gp, Mrp2, and Bcrp decreased significantly in membranes but not homogenates of AA rats after 7 days and after 21 days of treatment with adjuvant. Contrary to liver, protein levels of P-gp and Mrp2, but not Bcrp in kidney, increased significantly in membranes. The biliary excretion of rhodamine 123 was decreased in rats with chronic inflammation owing to decreases in efflux activities of P-gp. Our results showed that the expression of transporters in response to inflammation was organ dependent. In particular, hepatic and renal P-gp and Mrp2 exhibited opposite changes in membrane protein levels.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka, 577-8502, Japan
| | | | | | | | | | | |
Collapse
|