1
|
Bertani-Torres W, Lezirovitz K, Alencar-Coutinho D, Pardono E, da Costa SS, Antunes LDN, de Oliveira J, Otto PA, Pingault V, Mingroni-Netto RC. Waardenburg Syndrome: The Contribution of Next-Generation Sequencing to the Identification of Novel Causative Variants. Audiol Res 2023; 14:9-25. [PMID: 38391765 PMCID: PMC10886116 DOI: 10.3390/audiolres14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Waardenburg syndrome (WS) is characterized by hearing loss and pigmentary abnormalities of the eyes, hair, and skin. The condition is genetically heterogeneous, and is classified into four clinical types differentiated by the presence of dystopia canthorum in type 1 and its absence in type 2. Additionally, limb musculoskeletal abnormalities and Hirschsprung disease differentiate types 3 and 4, respectively. Genes PAX3, MITF, SOX10, KITLG, EDNRB, and EDN3 are already known to be associated with WS. In WS, a certain degree of molecularly undetected patients remains, especially in type 2. This study aims to pinpoint causative variants using different NGS approaches in a cohort of 26 Brazilian probands with possible/probable diagnosis of WS1 (8) or WS2 (18). DNA from the patients was first analyzed by exome sequencing. Seven of these families were submitted to trio analysis. For inconclusive cases, we applied a targeted NGS panel targeting WS/neurocristopathies genes. Causative variants were detected in 20 of the 26 probands analyzed, these being five in PAX3, eight in MITF, two in SOX10, four in EDNRB, and one in ACTG1 (type 2 Baraitser-Winter syndrome, BWS2). In conclusion, in our cohort of patients, the detection rate of the causative variant was 77%, confirming the superior detection power of NGS in genetically heterogeneous diseases.
Collapse
Affiliation(s)
- William Bertani-Torres
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Department of Embryology and Genetics of Malformations, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR (Unité Mixte de Recherche) 1163, Université Paris-Cité and Institut Imagine, 75015 Paris, France
| | - Karina Lezirovitz
- Otorhinolaryngology Lab-LIM 32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Danillo Alencar-Coutinho
- Otorhinolaryngology Lab-LIM 32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Eliete Pardono
- Instituto de Ciências da Saúde, Universidade Paulista UNIP, São Paulo 04026-002, Brazil
- Colégio Miguel de Cervantes, São Paulo 05618-001, Brazil
| | - Silvia Souza da Costa
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Larissa do Nascimento Antunes
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Judite de Oliveira
- Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Paulo Alberto Otto
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Véronique Pingault
- Department of Embryology and Genetics of Malformations, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR (Unité Mixte de Recherche) 1163, Université Paris-Cité and Institut Imagine, 75015 Paris, France
- Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Regina Célia Mingroni-Netto
- Centro de Estudos sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
2
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
3
|
Morimoto N, Mutai H, Namba K, Kaneko H, Kosaki R, Matsunaga T. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1. Auris Nasus Larynx 2017; 45:222-226. [PMID: 28502583 DOI: 10.1016/j.anl.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). METHODS Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. RESULTS The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. CONCLUSIONS Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification.
Collapse
Affiliation(s)
- Noriko Morimoto
- Division of Otolaryngology, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya, Tokyo 157-8535, Japan
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organ, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Kazunori Namba
- Division of Hearing and Balance Research, National Institute of Sensory Organ, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Hiroki Kaneko
- The Institute of Natural Sciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Segataya, Tokyo 156-8550, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya, Tokyo 157-8535, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organ, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan; Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| |
Collapse
|
4
|
Issa S, Bondurand N, Faubert E, Poisson S, Lecerf L, Nitschke P, Deggouj N, Loundon N, Jonard L, David A, Sznajer Y, Blanchet P, Marlin S, Pingault V. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state. Hum Mutat 2017; 38:581-593. [PMID: 28236341 DOI: 10.1002/humu.23206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 01/21/2023]
Abstract
Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2.
Collapse
Affiliation(s)
- Sarah Issa
- INSERM U955, IMRB, Equipe 6, Créteil, France.,Université Paris 12, Faculté de Médecine, Créteil, France.,INSERM U1163, Institut IMAGINE, Equipe Embryologie et Génétique des Malformations Humaines, Paris, France
| | - Nadege Bondurand
- INSERM U955, IMRB, Equipe 6, Créteil, France.,Université Paris 12, Faculté de Médecine, Créteil, France.,INSERM U1163, Institut IMAGINE, Equipe Embryologie et Génétique des Malformations Humaines, Paris, France
| | - Emmanuelle Faubert
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Département de Génétique, Créteil, France
| | - Sylvain Poisson
- AP-HP, Hôpital Necker, Laboratoire de Génétique Moléculaire, Paris, France
| | - Laure Lecerf
- INSERM U955, IMRB, Equipe 6, Créteil, France.,Université Paris 12, Faculté de Médecine, Créteil, France
| | | | - Naima Deggouj
- ENT Department and Audio-Phonological Center, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium
| | | | - Laurence Jonard
- AP-HP, Hôpital Necker, Laboratoire de Génétique Moléculaire, Paris, France.,AP-HP, Centre de référence «Surdités génétiques», Hôpital Necker, Paris, France
| | - Albert David
- Centre hospitalier universitaire de Nantes, Service de Génétique Médicale, Nantes, France
| | - Yves Sznajer
- Centre de génétique humaine, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Patricia Blanchet
- Centre Hospitalier Universitaire de Montpellier, Département de Génétique Médicale, Montpellier, France
| | - Sandrine Marlin
- INSERM U1163, Institut IMAGINE, Equipe Embryologie et Génétique des Malformations Humaines, Paris, France.,AP-HP, Centre de référence «Surdités génétiques», Hôpital Necker, Paris, France
| | - Veronique Pingault
- INSERM U955, IMRB, Equipe 6, Créteil, France.,INSERM U1163, Institut IMAGINE, Equipe Embryologie et Génétique des Malformations Humaines, Paris, France.,AP-HP, Groupe Henri Mondor-Albert Chenevier, Département de Génétique, Créteil, France.,AP-HP, Hôpital Necker, Laboratoire de Génétique Moléculaire, Paris, France.,Université Paris-Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|
5
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31:391-406. [DOI: 10.1002/humu.21211] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells in the lower digestive tract. Aganglionosis is attributed to a disorder of the enteric nervous system (ENS) whereby ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. HSCR is a complex disease that results from the interaction of several genes and manifests with low, sex-dependent penetrance and variability in the length of the aganglionic segment. The genetic complexity observed in HSCR can be conceptually understood in light of the molecular and cellular events that take place during the ENS development. DNA alterations in any of the genes involved in the ENS development may interfere with the colonization process, and represent a primary etiology for HSCR. This review will focus on the genes known to be involved in HSCR pathology, how they interact, and on how technology advances are being employed to uncover the pathological processes underlying this disease.
Collapse
|
8
|
Lättig J, Oksche A, Beyermann M, Rosenthal W, Krause G. Structural determinants for selective recognition of peptide ligands for endothelin receptor subtypes ETA
and ETB. J Pept Sci 2009; 15:479-91. [DOI: 10.1002/psc.1146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Abstract
BACKGROUND Endothelin-B receptor (EDNRB) signaling pathway is associated for Hirschsprung disease (HSCR). The aim of this study was to investigate the EDNRB gene mutation in patients with HSCR in Taiwan and correlate the genotype and phenotype. PATIENTS AND METHODS Using polymerase chain reaction amplification and direct sequencing, we screened for mutations in the coding regions and intron/exon boundaries of the EDNRB gene in 39 isolated HSCR cases and compared them with those in 400 control chromosomes. RESULTS In 3 cases, heterozygous variations in exon 1 and 2 of the EDNRB gene predicted missense mutations of the first cytosolic (M132I), second transmembrane (I157V), second exoplasmic (M173T), and third transmembrane (V185M) domains of the EDNRB protein. Three of the 4 mutations in our study have not been reported previously. For total 39 unrelated cases, the mutation rates were estimated to be 10% (3 of 30) for short-segment HSCR and 7.7% (3 of 39) for all HSCR cases. CONCLUSIONS We did not detect a significant genotype-phenotype correlation. In conclusion, this study identified 4 mutations within the EDNRB gene associated with HSCR. Because HSCR is a multifactorial and multigene disorder, the higher mutation rate of 10% for short-segment HSCR suggests the important role that the EDNRB gene plays in the pathogenesis of short-segment HSCR in Taiwan.
Collapse
|
10
|
Tao YX. Inactivating mutations of G protein-coupled receptors and diseases: Structure-function insights and therapeutic implications. Pharmacol Ther 2006; 111:949-73. [PMID: 16616374 DOI: 10.1016/j.pharmthera.2006.02.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/21/2006] [Indexed: 12/20/2022]
Abstract
Since the discovery of the first rhodopsin mutation that causes retinitis pigmentosa in 1990, significant progresses have been made in elucidating the pathophysiology of diseases caused by inactivating mutations of G protein-coupled receptors (GPCRs). This review aims to compile the compelling evidence accumulated during the past 15 years demonstrating the etiologies of more than a dozen diseases caused by inactivating GPCR mutations. A generalized classification scheme, based on the life cycle of GPCRs, is proposed. Insights gained through detailed studies of these naturally occurring mutations into the structure-function relationship of these receptors are reviewed. Therapeutic approaches directed against the different classes of mutants are being developed. Since intracellular retention emerges as the most common defect, recent progresses aimed at correcting this defect through membrane permeable pharmacological chaperones are highlighted.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/etiology
- Dwarfism/etiology
- Humans
- Hypogonadism/etiology
- Mutation
- Obesity/etiology
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptors, CCR5/genetics
- Receptors, Calcium-Sensing/genetics
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, LHRH/genetics
- Receptors, Vasopressin/genetics
- Retinitis Pigmentosa/etiology
- Rhodopsin/genetics
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 213 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Soufir N, Meziani R, Lacapère JJ, Bertrand G, Fumeron F, Bourillon A, Gérard B, Descamps V, Crickx B, Ollivaud L, Archimbaud A, Lebbe C, Basset-Seguin N, Saiag P, Grandchamp B. Association Between Endothelin Receptor B Nonsynonymous Variants and Melanoma Risk. ACTA ACUST UNITED AC 2005; 97:1297-301. [PMID: 16145050 DOI: 10.1093/jnci/dji253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelin signaling pathway plays a crucial role in melanocyte differentiation and migration. In this study, we investigated whether germline mutations of endothelin receptor B (EDNRB), a gene involved in Hirschsprung disease (HSCR), could also predispose for malignant melanoma (MM). The coding region of EDNRB was sequenced in 137 MM patients and in 130 ethnically matched Caucasian control subjects. Six nonsynonymous EDNRB variants were found in 15 patients (11%), but only two were found in four control subjects (3%, odds ratio [OR] = 3.87, 95% confidence interval [CI] = 1.25 to 12; P = .012). Overall, 14 out of 15 MM patients carried EDNRB mutations reported in HSCR, some of which had previously been shown to lead to loss of function. In multivariable logistic regression analysis including skin type, eye and hair color, number of nevi, and dorsal lentigines (freckles), the association between EDNRB mutations and MM risk remained statistically significant (OR = 19.9, 95% CI = 1.34 to 296.2; P = .03). Our data strongly suggest that EDNRB is involved in predisposition for two different multigenic disorders, HSCR and melanoma.
Collapse
Affiliation(s)
- Nadem Soufir
- Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat-Claude Bernard, AP-HP, Faculté de Médecine, Paris VII, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Paul K H Tam
- Department of Surgery and Genome Research Centre, The University of Hong Kong, Queen Mary Hospital K15, Pokfulam, Hong Kong, P.R. China.
| | | |
Collapse
|
13
|
Garcia-Barceló M, Sham MH, Lee WS, Lui VCH, Chen BLS, Wong KKY, Wong JSW, Tam PKH. Highly recurrent RET mutations and novel mutations in genes of the receptor tyrosine kinase and endothelin receptor B pathways in Chinese patients with sporadic Hirschsprung disease. Clin Chem 2003; 50:93-100. [PMID: 14633923 DOI: 10.1373/clinchem.2003.022061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital disorder characterized by an absence of ganglion cells in the nerve plexuses of the lower digestive tract. HSCR has a complex pattern of inheritance and is sometimes associated with mutations in genes of the receptor tyrosine kinase (RET) and endothelin receptor B (EDNRB) signaling pathways, which are crucial for development of the enteric nervous system. METHODS Using PCR amplification and direct sequencing, we screened for mutations and polymorphisms in the coding regions and intron/exon boundaries of the RET, GDNF, EDNRB, and EDN3 genes of 84 HSCR patients and 96 ethnically matched controls. RESULTS We identified 10 novel and 2 previously described mutations in RET, and 4 and 2 novel mutations in EDNRB and in EDN3, respectively. Potential disease-causing mutations were detected in 24% of the patients. The overall mutation rate was 41% in females and 19% in males (P = 0.06). RET mutations occurred in 19% of the patients. R114H in RET was the most prevalent mutation, representing 7% of the patients or 37% of the patients with RET mutations. To date, such a high frequency of a single mutation has never been reported in unrelated HSCR patients. Mutations in EDNRB, EDN3, and GDNF were found in four, two, and none of the patients, respectively. Two patients with mutations in genes of the EDNRB pathway also harbored a mutation in RET. Three novel and three reported polymorphisms were found in EDNRB, EDN3, and GDNF. CONCLUSION This study identifies additional HSCR disease-causing mutations, some peculiar to the Chinese population, and represents the first comprehensive genetic analysis of sporadic HSCR disease in Chinese.
Collapse
Affiliation(s)
- Mercè Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, University of Hong Kong Medical Center, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Simonds WF. G Protein-Regulated Signaling Dysfunction in Human Disease. J Investig Med 2003. [DOI: 10.1177/108155890305100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland
| |
Collapse
|
15
|
Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 2002; 37:551-567. [PMID: 11912511 DOI: 10.1053/jpsu.2002.31610] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Udo Rolle
- Children's Research Centre, Our Lady's Hospital for Sick Children, Dublin, Ireland
| | | | | |
Collapse
|
16
|
Abstract
Hirschsprung disease is the most common congenital malformation of the enteric nervous system. Phenotypic expression is variable because of incomplete penetrance, and the pathogenesis is multifactorial. Although mutations of the RET tyrosine kinase gene remain the most commonly identified cause, there are now eight separate human gene loci identified whose mutations result in this disease. Analysis of these gene products in experimental animal models and cell systems has led to an increasing elucidation of the signaling pathways that are in operation during specific embryonic time stages and that direct the spatial arrangements and differentiation of enteric neuroblasts. Mutation analysis through in vitro cell expression studies has led to detailed descriptions of the affected microdomains of signal pathway receptors and the cellular pathogenesis of abnormal signaling that leads to apoptosis of developing neurons before the completion of enteric nervous system development. The full description of the pathogenesis of this disorder awaits the definition of new genetic loci, multiple gene interactions, and the acknowledgment of random events that may lead to aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- William M Belknap
- Section of Pediatric Gastroenterology, Department of Pediatrics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| |
Collapse
|