1
|
Cui J, Ding Y, Chen S, Zhu X, Wu Y, Zhang M, Zhao Y, Li TRR, Sun LV, Zhao S, Zhuang Y, Jia W, Xue L, Han M, Xu T, Wu X. Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. J Clin Invest 2016; 126:3192-206. [PMID: 27500489 DOI: 10.1172/jci85676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 01/16/2023] Open
Abstract
A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.
Collapse
|
2
|
Lee CW, Rivera R, Dubin AE, Chun J. LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 2006; 282:4310-4317. [PMID: 17166850 DOI: 10.1074/jbc.m610826200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that signals through G protein-coupled receptors (GPCRs) to produce a range of biological responses. A recently reported fourth receptor, LPA(4)/GPR23, was notable for its low homology to the previously identified receptors LPA(1-3) and for its ability to increase intracellular concentrations of cAMP and calcium. However, the signaling pathways leading to LPA(4)-mediated induction of cAMP and calcium levels have not been reported. Using epitope-tagged LPA(4), pharmacological intervention, and G protein mini-genes, we provide independent confirmatory evidence that supports LPA(4) as a fourth LPA receptor, including LPA concentration-dependent responses and specific membrane binding. Importantly, we further demonstrate new LPA-dependent activities of LPA(4) that include the following: receptor internalization; G(12/13)- and Rho-mediated neurite retraction and stress fiber formation; G(q) protein and pertussis toxin-sensitive calcium mobilization and activation of a nonselective cation conductance; and cAMP increases mediated by G(s). The receptor is broadly expressed in embryonic tissues, including brain, as determined by Northern blot and reverse transcription-PCR analysis. Adult tissues have increased expression in skin, heart, and to a lesser extent, thymus. These data confirm the identification and extend the functionality of LPA(4) as an LPA receptor, bringing the number of independently verified LPA receptors to five, with both overlapping and distinct signaling properties and tissue expression.
Collapse
MESH Headings
- Adult
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line, Tumor
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian/metabolism
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation/physiology
- Humans
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Mice
- Neurites/metabolism
- Organ Specificity/physiology
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Stress Fibers/genetics
- Stress Fibers/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Chang-Wook Lee
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Richard Rivera
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Adrienne E Dubin
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Jerold Chun
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
3
|
Kostenis E. Novel clusters of receptors for sphingosine-1-phosphate, sphingosylphosphorylcholine, and (lyso)-phosphatidic acid: new receptors for "old" ligands. J Cell Biochem 2005; 92:923-36. [PMID: 15258916 DOI: 10.1002/jcb.20092] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| |
Collapse
|
4
|
Kostenis E. A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther 2004; 102:243-57. [PMID: 15246248 DOI: 10.1016/j.pharmthera.2004.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A plethora of lipid-like molecules known to act as intracellular second messengers are now recognized to signal cells through plasma membrane 7 transmembrane G-protein-coupled receptors (GPCRs). This has been the result of a decade-long genetic hunt for novel sequences encoding 7 transmembrane receptor proteins and the efforts to pair novel sequences with biologically active substances of (partly) unknown molecular mechanism of action. Identification of novel GPCR ligand pairs represents the first step to shed more light into the mode of action of novel cellular signaling molecules in human health and disease and might represent a fruitful source for the development of new drugs, judged on the successful history of GPCR as drug targets. Since 2000, more than 16 reports became available on lipid mediators--as diverse as lysophospholipids, arachidonic acid metabolites, short-, medium-, and long-chain fatty acids as well as steroid-like molecules--exerting their effects as extracellular mediators via rhodopsin-like family GPCRs. These reports have opened new avenues for research in human lipid receptor physiology and pharmacology. Here, the current knowledge on the recently deorphanized lipid receptors, including their isolation, expression pattern, function, and possible physiological or pathological roles will be reviewed.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| |
Collapse
|
5
|
Abstract
Successful sequencing of the human genome has opened a new era in the life sciences and has greatly accelerated biomedical research. Among various research endeavors benefiting from established genomic information, one of the most fruitful areas is the research on orphan G protein-coupled receptors (GPCRs). Many intercellular mediators, including peptides, lipids, and other small molecules, have found their GPCRs in the plasma membrane, e.g., relaxin and tyramine. In the past 14 months, more than one dozen papers have been published reporting the finding of intercellular lipid mediators acting on rhodopsin family GPCRs. This review focuses primarily on intercellular lipid mediators and their recently discovered GPCRs.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, San 30, Chang-Jun-dong, Keum-Jung-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
6
|
Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal 2003; 15:435-46. [PMID: 12618218 DOI: 10.1016/s0898-6568(02)00119-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Five high affinity G-protein-coupled receptors for sphingosine 1-phosphate (S1P) have been characterised so far (S1P(1,2,3,4,5) formerly referred to as edg1,5,3,6,8). In this study, we show that S1P, dihydro-sphingosine 1-phosphate (dihydro-S1P) and dioleoylphosphatidic acid (doPA) are agonists for the orphan receptor GPR63. All three phospholipids mobilise intracellular calcium in CHO cells transiently transfected with GPR63. Calcium signals required cotransfection of a chimeric Galpha(q/i) protein in a fluorometric imaging plate reader (FLIPR) assay but did not require overexpressed G proteins in an aequorin assay, using a green fluorescent protein (GFP)-aequorin fusion protein as a bioluminescent Ca(2+) reporter. GPR63 expression in CHO cells confers proliferative responses to S1P in a pertussis toxin (PTX)-insensitive manner. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) indicated highest expression in brain, especially in the thalamus and the nucleus caudatus. In peripheral tissues, highest expression was observed in thymus, stomach and small intestine; lower abundance of transcripts was detected in kidney, spleen, pancreas and heart. The discovery that S1P, dihydro-S1P and dioleoylphosphatidic acid activate GPR63 will facilitate the identification of agonists and antagonists, and help to unravel the biological function of this receptor.
Collapse
Affiliation(s)
- Anke Niedernberg
- Disease Group Cardiovascular, Aventis Pharma Germany, Rooms 354, 358 and 360, 3rd Floor, Bldg H825, 65926 Frunkfurt, Germany
| | | | | | | | | |
Collapse
|
7
|
Abstract
Lysophosphatidic acid (LPA), a growth factor-like lysophospholipid, induces diverse cellular responses. The identification of the first LPA receptor gene, through studies of neuroproliferative regions within the embryonic cerebral cortex, has led to the classification of a family of at least eight lysophospholipid receptors with diverse roles in organismal development and function. A growing body of literature has identified roles for LPA signaling under physiological and pathological conditions, particularly within the developing nervous system. Here the authors review features of the LPA receptor family and cellular responses of nervous system-derived cells, and discuss developmental and pathological roles for LPA signaling in the nervous system.
Collapse
Affiliation(s)
- Nobuyuki Fukushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
8
|
Ogasawara H, Ishii S, Yokomizo T, Kakinuma T, Komine M, Tamaki K, Shimizu T, Izumi T. Characterization of mouse cysteinyl leukotriene receptors mCysLT1 and mCysLT2: differential pharmacological properties and tissue distribution. J Biol Chem 2002; 277:18763-8. [PMID: 11854273 DOI: 10.1074/jbc.m109447200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteinyl leukotrienes (LTs) are important proinflammatory mediators. Their precise roles in mice need to be elucidated to interpret mouse models of inflammatory diseases. For this purpose, we cloned and characterized mouse receptors for cysteinyl LTs, mCysLT(1) and mCysLT(2). mCysLT(1) and mCysLT(2) were composed of 339 amino acids with 87.3% identity and 309 amino acids with 73.4% identity to human orthologues, respectively. A pharmacological difference was noted between mouse and human CysLT(2). Pranlukast, a specific inhibitor for human CysLT(1), antagonized mCysLT(2) responses as determined by Ca(2+) elevation and receptor-induced promoter activation. The mRNA expressions of both mCysLTs were higher in C57BL/6 mice than in 129 mice. mCysLT(1) mRNA was expressed mainly in skin, lung, and small intestine. mCysLT(2) was seen more ubiquitously with high expressions in spleen, lung, and small intestine. By in situ hybridization we demonstrated for the first time that mCysLT(1) and mCysLT(2) were expressed in subcutaneous fibroblasts. The different pharmacological characteristics of CysLT(2) between human and mouse and the different distributions of CysLTs between mouse strains suggest that careful choice and interpretation are necessary for a study of CysLTs using animal models.
Collapse
Affiliation(s)
- Hideaki Ogasawara
- Department of Biochemistry, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fang X, Yu S, Tanyi JL, Lu Y, Woodgett JR, Mills GB. Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway. Mol Cell Biol 2002; 22:2099-110. [PMID: 11884598 PMCID: PMC133668 DOI: 10.1128/mcb.22.7.2099-2110.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a natural phospholipid with multiple biological functions. We show here that LPA induces phosphorylation and inactivation of glycogen synthase kinase 3 (GSK-3), a multifunctional serine/threonine kinase. The effect of LPA can be reconstituted by expression of Edg-4 or Edg-7 in cells lacking LPA responses. Compared to insulin, LPA stimulates only modest phosphatidylinositol 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt) that does not correlate with the magnitude of GSK-3 phosphorylation induced by LPA. PI3K inhibitors block insulin- but not LPA-induced GSK-3 phosphorylation. In contrast, the effect of LPA, but not that of insulin or platelet-derived growth factor (PDGF), is sensitive to protein kinase C (PKC) inhibitors. Downregulation of endogenous PKC activity selectively reduces LPA-mediated GSK-3 phosphorylation. Furthermore, several PKC isotypes phosphorylate GSK-3 in vitro and in vivo. To confirm a specific role for PKC in regulation of GSK-3, we further studied signaling properties of PDGF receptor beta subunit (PDGFRbeta) in HEK293 cells lacking endogenous PDGF receptors. In clones expressing a PDGFRbeta mutant wherein the residues that couple to PI3K and other signaling functions are mutated with the link to phospholipase Cgamma (PLCgamma) left intact, PDGF is fully capable of stimulating GSK-3 phosphorylation. The process is sensitive to PKC inhibitors in contrast to the response through the wild-type PDGFRbeta. Therefore, growth factors, such as PDGF, which control GSK-3 mainly through the PI3K-PKB/Akt module, possess the ability to regulate GSK-3 through an alternative, redundant PLCgamma-PKC pathway. LPA and potentially other natural ligands primarily utilize a PKC-dependent pathway to modulate GSK-3.
Collapse
Affiliation(s)
- Xianjun Fang
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Alderton F, Sambi B, Tate R, Pyne NJ, Pyne S. Assessment of agonism at G-protein coupled receptors by phosphatidic acid and lysophosphatidic acid in human embryonic kidney 293 cells. Br J Pharmacol 2001; 134:6-9. [PMID: 11522591 PMCID: PMC1572939 DOI: 10.1038/sj.bjp.0704278] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Revised: 06/21/2001] [Accepted: 07/07/2001] [Indexed: 01/26/2023] Open
Abstract
Several different molecular species of phosphatidic acid (PA) bind to a G-protein coupled receptor (GPCR) to induce activation of the p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) pathway in HEK 293 cells. PA is active at low nanomolar concentrations and the response is sensitive to pertussis toxin (which uncouples GPCRs from G(i/o)). The de-acylated product of PA, lysophosphatidic acid (LPA), which binds to members of the endothelial differentiation gene (EDG) family of receptors also stimulated p42/p44 MAPK in a pertussis toxin sensitive manner, but with an approximately 100 - 1000 fold lower potency compared with the different molecular species of PA. RT - PCR using gene-specific primers showed that HEK 293 cells express EDG2 and PSP24, the latter being a lipid binding GPCR out with the EDG cluster. We conclude that PA is a novel high potency GPCR agonist.
Collapse
Affiliation(s)
- Forbes Alderton
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR
| | - Balwinder Sambi
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR
| | - Rothwelle Tate
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR
| | - Nigel J Pyne
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR
| | - Susan Pyne
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR
| |
Collapse
|
11
|
Abstract
Lysophospholipids (LPs), including lysophosphatidic acid and sphingosine 1-phosphate, produce many cellular effects. However, the prolonged absence of any cloned and identified LP receptor has left open the question of how these lipids actually bring about these effects. The cloning and functional identification of the first LP receptor, lp(A1)/vzg-1, has led rapidly to the identification and classification of multiple orphan receptors/expression sequence tags known by many names (e.g. edg, mrec1.3, gpcr26, H218, AGR16, nrg-1) as members of a common cognate G protein-coupled receptor family. We review features of the LP receptor family, including molecular characteristics, genomics, signaling properties, and gene expression. A major question for which only partial answers are available concerns the biological significance of receptor-mediated LP signaling. Recent studies that demonstrate the role of receptor-mediated LP signaling in the nervous system, cardiovascular system, and other organ systems indicate the importance of this signaling in development, function, and pathophysiology and portend an exciting time ahead for this growing field.
Collapse
Affiliation(s)
- N Fukushima
- Neuroscience Program, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA.
| | | | | | | | | |
Collapse
|
12
|
Kimura Y, Schmitt A, Fukushima N, Ishii I, Kimura H, Nebreda AR, Chun J. Two novel Xenopus homologs of mammalian LP(A1)/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells. J Biol Chem 2001; 276:15208-15. [PMID: 11278944 DOI: 10.1074/jbc.m011588200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid (LPA) induces diverse biological responses in many types of cells and tissues by activating its specific G protein-coupled receptors (GPCRs). Previously, three cognate LPA GPCRs (LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7) were identified in mammals. By contrast, an unrelated GPCR, PSP24, was reported to be a high affinity LPA receptor in Xenopus laevis oocytes, raising the possibility that Xenopus uses a very different form of LPA signaling. Toward addressing this issue, we report two novel Xenopus genes, xlp(A1)-1 and xlp(A1)-2, encoding LP(A1) homologs (approximately 90% amino acid sequence identity with mammalian LP(A1)). Both xlp(A1)-1 and xlp(A1)-2 are expressed in oocytes and the nervous system. Overexpression of either gene in oocytes potentiated LPA-induced oscillatory chloride ion currents through a pertussis toxin-insensitive pathway. Injection of antisense oligonucleotides designed to inhibit xlp(A1)-1 and xlp(A1)-2 expression in oocytes eliminated their endogenous response to LPA. Furthermore, retrovirus-mediated heterologous expression of xlp(A1)-1 or xlp(A1)-2 in B103 rat neuroblastoma cells that are unresponsive to LPA conferred LPA-induced cell rounding and adenylyl cyclase inhibition. These results indicate that XLP(A1)-1 and XLP(A1)-2 are functional Xenopus LPA receptors and demonstrate the evolutionary conservation of LPA signaling over a range of vertebrate phylogeny.
Collapse
Affiliation(s)
- Y Kimura
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kawasawa Y, Kume K, Nakade S, Haga H, Izumi T, Shimizu T. Brain-specific expression of novel G-protein-coupled receptors, with homologies to Xenopus PSP24 and human GPR45. Biochem Biophys Res Commun 2000; 276:952-6. [PMID: 11027574 DOI: 10.1006/bbrc.2000.3569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From mouse genomic libraries and human brain cDNA, we cloned three novel G-protein-coupled receptors (GPCRs), which have about 55-70% homologies with Xenopus PSP24 (xPSP24). Together with another human cDNA (GPR45) cloned by Marchese et al. (Genomics 56, 12-21, 1999). they comprise a family of mammalian PSP24s. Therefore, we termed these clones mouse PSP24alpha, beta, and human PSP24alpha, beta. The homologies between alpha and beta isoforms were 54% for human and 51% for mouse clones. None of these clones shares sequence similarities with any known mammalian GPCRs, thus forming a unique gene family. Northern blot demonstrated that both of the mouse transcripts were predominantly expressed in the brain. In situ hybridization of brain sections showed that the expression was observed in neuronal cells, such as olfactory mitral cells, cortical neurons, hippocampal pyramidal cells, and Purkinje cells in the cerebellum. We suggest that mammalian PSP24 is a distinct GPCR family and plays a role in the brain function.
Collapse
Affiliation(s)
- Y Kawasawa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|