1
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Zhang SY, Shao D, Liu H, Feng J, Feng B, Song X, Zhao Q, Chu M, Jiang C, Huang W, Wang X. Metabolomics analysis reveals that benzo[a]pyrene, a component of PM 2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol 2017; 13:459-469. [PMID: 28715731 PMCID: PMC5512213 DOI: 10.1016/j.redox.2017.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
Particulate matter with an aerodynamic diameter less than 2.5μM (PM2.5) is one of the major environmental pollutants in China. In this study, we carried out a metabolomics profile study on PM2.5-induced inflammation. PM2.5 from Beijing, China, was collected and given to rats through intra-tracheal instillation in vivo. Acute pulmonary injury were observed by pulmonary function assessment and H.E. staining. The lipid metabolic profile was also altered with increased phospholipid and sphingolipid metabolites in broncho-alveolar lavage fluid (BALF) after PM2.5 instillation. Organic component analysis revealed that benzo[a]pyrene (BaP) is one of the most abundant and toxic components in the PM2.5 collected on the fiber filter. In vitro, BaP was used to treat A549 cells, an alveolar type II cell line. BaP (4μM, 24h) induced inflammation in the cells. Metabolomics analysis revealed that BaP (4μM, 6h) treatment altered the cellular lipid metabolic profile with increased phospholipid metabolites and reduced sphingolipid metabolites and free fatty acids (FFAs). The proportion of ω-3 polyunsaturated fatty acid (PUFA) was also decreased. Mechanically, BaP (4μM) increased the phospholipase A2 (PLA2) activity at 4h as well as the mRNA level of Pla2g2a at 12h. The pro-inflammatory effect of BaP was reversed by the cytosolic PLA2 (cPLA2) inhibitor and chelator of intracellular Ca2+. This study revealed that BaP, as a component of PM2.5, induces pulmonary injury by activating PLA2 and elevating lysophosphatidylcholine (LPC) in a Ca2+-dependent manner in the alveolar type II cells.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Danqing Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Baihuan Feng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Xiaoming Song
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Qian Zhao
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Wei Huang
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China.
| |
Collapse
|
3
|
Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2015; 61:51-62. [PMID: 26703189 DOI: 10.1016/j.plipres.2015.09.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.
Collapse
Affiliation(s)
- Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Ana Gomez-Larrauri
- Department of Pneumology, University Hospital of Alava (Osakidetza), Vitoria-Gasteiz, Spain.
| | - Io-Guané Rivera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Marta Ordoñez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
4
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
5
|
Oh E, Yun M, Kim SK, Seo G, Bae JS, Joo K, Chae GT, Lee SB. Palmitate induces COX-2 expression via the sphingolipid pathway-mediated activation of NF-κB, p38, and ERK in human dermal fibroblasts. Arch Dermatol Res 2013; 306:339-45. [DOI: 10.1007/s00403-013-1434-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/12/2022]
|
6
|
Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
|
7
|
Su HC, Ma CT, Lin CF, Wu HT, Chuang YH, Chen LJ, Tsao CW. The acid sphingomyelinase inhibitors block interferon-α-induced serotonin uptake via a COX-2/Akt/ERK/STAT-dependent pathway in T cells. Int Immunopharmacol 2011; 11:1823-31. [DOI: 10.1016/j.intimp.2011.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
8
|
Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D. Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-κB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J 2011; 25:2782-91. [PMID: 21551240 DOI: 10.1096/fj.10-178095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammatory pain represents an important unmet clinical need with important socioeconomic implications. Ceramide, a potent proinflammatory sphingolipid, has been shown to elicit mechanical hyperalgesia, but the mechanisms remain largely unknown. We now demonstrate that, in addition to mechanical hyperalgesia, intraplantar injection of ceramide (10 μg) led to the development of thermal hyperalgesia that was dependent on induction of the inducible cyclooxygenase (COX-2) and subsequent increase of prostaglandin E(2) (PGE(2)). The development of mechanical and thermal hyperalgesia and increased production of PGE(2) was blocked by NS-398 (15-150 ng), a selective COX-2 inhibitor. The importance of the COX-2 to PGE(2) pathway in ceramide signaling was underscored by the findings that intraplantar injection of a monoclonal PGE(2) antibody (4 μg) blocked the development of hyperalgesia. Our results further revealed that COX-2 induction is regulated by NF-κB and p38 kinase activation, since intraplantar injection of SC-514 (0.1-1 μg) or SB 203580 (1-10 μg), well-characterized inhibitors of NF-κB and p38 kinase activation, respectively, blocked COX-2 induction and increased formation of PGE(2) and thermal hyperalgesia in a dose-dependent manner. Moreover, activation of NF-κB was dependent on upstream activation of p38 MAPK, since SB 203580 (10 μg) blocked p65 phosphorylation, whereas p38 kinase phosphorylation was unaffected by NF-κB inhibition by SC-514 (1 μg). Our findings not only provide mechanistic insight into the signaling pathways engaged by ceramide in the development of hyperalgesia, but also provide a potential pharmacological basis for developing inhibitors targeting the ceramide metabolic-to-COX-2 pathway as novel analgesics.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
9
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010; 9:15. [PMID: 20137073 PMCID: PMC2828451 DOI: 10.1186/1476-511x-9-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
11
|
Gómez-Muñoz A, Gangoiti P, Granado MH, Arana L, Ouro A. Ceramide-1-Phosphate in Cell Survival and Inflammatory Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:118-30. [DOI: 10.1007/978-1-4419-6741-1_8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158:982-93. [PMID: 19563535 DOI: 10.1111/j.1476-5381.2009.00281.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sphingolipids are formed via the metabolism of sphingomyelin, a constituent of the plasma membrane, or by de novo synthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in inflammation. This can involve, for example, activation of pro-inflammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-inflammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-affinity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on inflammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in inflammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and inflammatory bowel disease, which involve important inflammatory components. A significant body of research now indicates that sphingolipids are intimately involved in the inflammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological inflammation.
Collapse
Affiliation(s)
- Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
13
|
Prasad VVTS, Nithipatikom K, Harder DR. Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int 2008; 53:220-9. [PMID: 18680775 DOI: 10.1016/j.neuint.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/01/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
We report, exogenous addition of ceramide significantly increases 12-hydroxyeicosatetraenoic acid [12-(S)-HETE] levels, in a dose-dependent manner. 12-(S)-HETE levels, in 20, 30 and 40microM ceramide exposed rat primary hippocampal cell cultures containing predominantly astrocytes and few neurons and other glial cells (the cultured hippocampal cells were predominantly astrocytes amounting to over 99% of total cells with few neurons and other glial cells) amounted to 207, 260 and 408% of the controls, respectively. However, dihydroceramide, an inactive analog of ceramide did not alter the levels of 12-(S)-HETE. Ceramide also increased the mRNA and protein expression, and activity of 12-lipoxygease (12-LOX) needed for the synthesis of 12(S)-HETE. These results indicate a possible link between ceramide and 12-LOX pathway. However, ceramide did not alter expression of 5-lipoxygenase (5-LOX), another member of the lipoxygenase family. However, ceramide upregulated expression of cytosolic phospholipase-A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2). Further, ceramide caused a significant increase in the levels of reactive oxygen species (ROS). Ceramide-mediated generation of ROS was inhibited by baicalien but not by indomethacin. In addition, ceramide treated cells exhibited increased mRNA expression of DNA damage induced transcript3 (Ddit3). This report which demonstrate induction of pro-carcinogenic 12-LOX pathway by an anticancer ceramide, may be relevant to cancer biologists studying drug resistant tumors and devising potent anticancer therapeutic strategies to treat drug resistant tumors. These results indicate possibility of 12-LOX involvement in ceramide-mediated generation of ROS and cellular oxidative stress. Induction of 12-LOX pathway by ceramide may have implications in understanding pathophysiology of neurodegenerative diseases involving ROS generation and inflammation.
Collapse
|
14
|
von Bismarck P, García Wistädt CF, Klemm K, Winoto-Morbach S, Uhlig U, Schütze S, Adam D, Lachmann B, Uhlig S, Krause MF. Improved Pulmonary Function by Acid Sphingomyelinase Inhibition in a Newborn Piglet Lavage Model. Am J Respir Crit Care Med 2008; 177:1233-41. [DOI: 10.1164/rccm.200705-752oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Masini E, Giannini L, Nistri S, Cinci L, Mastroianni R, Xu W, Comhair SAA, Li D, Cuzzocrea S, Matuschak GM, Salvemini D. Ceramide: a key signaling molecule in a Guinea pig model of allergic asthmatic response and airway inflammation. J Pharmacol Exp Ther 2008; 324:548-57. [PMID: 18042827 DOI: 10.1124/jpet.107.131565] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although mechanisms involved in the pathogenesis of asthma remain unclear, roles for oxidative/nitrosative stress, epithelial cell apoptosis, and airway inflammation have been documented. Ceramide is a sphingolipid with potent proinflammatory and proapoptotic properties. This study aimed at determining whether increased formation of ceramide contributes to the development of airway inflammation and hyper-responsiveness, using a well characterized in vivo model of allergic asthmatic response and airway inflammation in ovalbumin-sensitized guinea pigs. Aerosol administration of ovalbumin increased ceramide levels and ceramide synthase activity in the airway epithelium associated with respiratory abnormalities, such as cough, dyspnea, and severe bronchoconstriction. These abnormalities correlated with nitrotyrosine formation in the airway epithelium and oxidative/nitrosative stress, epithelial cell apoptosis, and airway inflammation evident by the infiltration of neutrophils and eosinophils in lung tissues, mast cell degranulation, and release of prostaglandin D(2) and proinflammatory cytokines. Inhibition of de novo ceramide synthesis with the competitive and reversible inhibitor of ceramide synthase fumonisin B1 (0.25, 0.5 and 1 mg/kg b.wt.), given i.p. daily for 4 days before allergen challenge, attenuated nitrotyrosine formation and oxidative/nitrosative stress, epithelial cell apoptosis, and airway inflammation while improving the respiratory and histopathological abnormalities. These results implicate ceramide in the development of allergic asthmatic response and airway inflammation. Strategies aimed at reducing the levels of ceramide and downstream events should yield promising novel anti-asthmatic agents.
Collapse
Affiliation(s)
- Emanuela Masini
- Dept. Preclinical and Clinical Pharmacology, University of Florence. Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
von Bismarck P, Klemm K, Wistädt CFG, Winoto-Morbach S, Uhlig U, Schütze S, Uhlig S, Lachmann B, Krause MF. Surfactant “fortification” by topical inhibition of nuclear factor-κB activity in a newborn piglet lavage model*. Crit Care Med 2007; 35:2309-18. [DOI: 10.1097/01.ccm.0000281472.47067.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Lim W, Jung J, Surh Y, Inoue H, Lee Y. Hypertonic sodium choloride and mannitol induces COX-2 via different signaling pathways in mouse cortical collecting duct M-1 cells. Life Sci 2007; 80:2085-92. [PMID: 17477937 DOI: 10.1016/j.lfs.2007.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/10/2007] [Accepted: 03/22/2007] [Indexed: 11/29/2022]
Abstract
The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappaB activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappaB, we made point mutations in the NF-kappaB binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappaB binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappaB, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappaB. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells.
Collapse
Affiliation(s)
- WonChung Lim
- College of Engineering, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
18
|
Zhang TH, Liu JF, Zhang Y, Li YL, Lu HT, Murata NM, Yamakawa T. Ceramide induces apoptosis in human lung adenocarcinoma A549 cells through mitogen-activated protein kinases. Acta Pharmacol Sin 2007; 28:439-45. [PMID: 17303009 DOI: 10.1111/j.1745-7254.2007.00505.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To provide experimental data for further research on the signal transduction of apoptosis in lung adenocarcinoma cells, we examined the effects of exogenous C2-ceramide administration on several members of the mitogen-activated protein kinase (MAPK) superfamily and caspase-3 in A549 cells. METHODS Cell viability and apoptosis were analyzed by cell counting kit-8 assay and flow cytometry. Various MAPK and caspase-3 proteins were detected by Western blotting. RESULTS C2-ceramide selectively altered the phosphorylation state of members of the MAPK superfamily, causing hyperphosphorylation of mitogen-activated protein kinase kinase (MEK)1/2 and the p38 MAPK, but not affecting the phosphorylation of extracellular signal-regulated kinase 1/2 and the c-Jun N-terminal kinase. SB-203580 (a p38 MAPK inhibitor) and p38 siRNA, but not U0126 (a MEK inhibitor), partially rescued cell death induced by C2-ceramide. C2-ceramide promoted the activation of caspase-3. CONCLUSION Exogenous C2-ceramide induced apoptosis in human lung adenocarcinoma A549 cells. The activation of MAPK and caspase-3 were involved in the mechanisms of C2-ceramide-induced apoptosis in A549 cells.
Collapse
Affiliation(s)
- Tian-Hua Zhang
- Department of Surgery, Mini-invasive surgery Center, Teikyo University Mizonokuchi Hospital, Kawasaki 213-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Maines LW, French KJ, Wolpert EB, Antonetti DA, Smith CD. Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: implications for angiogenic ocular diseases. Invest Ophthalmol Vis Sci 2006; 47:5022-31. [PMID: 17065523 PMCID: PMC2660407 DOI: 10.1167/iovs.05-1236] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The increased vascular permeability and pathogenic angiogenesis observed in diabetic retinopathy are induced, at least in part, by local inflammation and vascular endothelial growth factor (VEGF). Therefore, inhibition of signaling from VEGF and tumor necrosis factor-alpha (TNFalpha) is a promising approach to the treatment of this disease, as well as ocular diseases with similar etiologies, including age-related macular degeneration. A growing body of evidence demonstrates that sphingosine kinase (SK) plays an important role in cellular proliferation and angiogenesis. This study was undertaken to examine the effects of SK inhibitors on the responses of retinal endothelial cells (RECs) to VEGF and TNFalpha and their therapeutic efficacy in a diabetic retinopathy model. METHODS The expression and function of SK in bovine and human RECs were examined by immunoblot analysis. The involvement of SK in mediating responses to VEGF and TNFalpha was examined by using pharmacologic inhibitors of SK in cellular and in vivo assays, including a 3-month streptozotocin-induced diabetic retinopathy model in rats. RESULTS SK was present and active in human and bovine RECs, and SK activity in these cells was stimulated by VEGF. Inhibitors of SK blocked VEGF-induced production of sphingosine 1-phosphate and markedly attenuated VEGF-induced proliferation and migration of RECs. In addition, SK inhibitors were shown to block TNFalpha-induced expression of adhesion proteins, suppress VEGF-induced vascular leakage in an in vivo mouse model, and reduce retinal vascular leakage in the rat diabetic retinopathy model. CONCLUSIONS Overall, these studies demonstrate that inhibitors of SK attenuate the effects of proliferative and inflammatory stimuli on RECs both in vitro and in vivo, and so could be significant therapeutics in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Lynn W. Maines
- Apogee Biotechnology Corporation, PO Box 916, Hershey, PA 17033
| | - Kevin J. French
- Apogee Biotechnology Corporation, PO Box 916, Hershey, PA 17033
| | - Ellen B. Wolpert
- Departments of Cellular and Molecular Physiology and Ophthalmology, Penn State College of Medicine, Hershey, PA 17033
| | - David A. Antonetti
- Departments of Cellular and Molecular Physiology and Ophthalmology, Penn State College of Medicine, Hershey, PA 17033
| | - Charles D. Smith
- Apogee Biotechnology Corporation, PO Box 916, Hershey, PA 17033
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
20
|
Lecour S, Van der Merwe E, Opie LH, Sack MN. Ceramide attenuates hypoxic cell death via reactive oxygen species signaling. J Cardiovasc Pharmacol 2006; 47:158-63. [PMID: 16424801 DOI: 10.1097/01.fjc.0000198520.28674.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously demonstrated that tumor necrosis factor alpha (TNFalpha), a cytokine known to be induced by ischemia, independently promotes preconditioning in part via ceramide generation. As reactive oxygen species (ROS) signaling is evoked by ischemic preconditioning, by TNFalpha and by ceramide we reasoned that ceramide-induced preconditioning is ROS-mediated. Fibroblastic L-cells were subjected to 8 hours simulated ischemia and were preconditioned by pretreatment with cell permeable c2 ceramide (1 microM) with or without the antioxidant N-mercaptopropionyl glycine (MPG; 1 mM). Pretreatment with ceramide reduced lactate dehydrogenase release at the end of the simulated ischemia but this cytoprotective effect was lost in the presence of MPG. Concurrent temporal ROS generation was measured using confocal microscopy on cells stained with dichlorofluorescein diacetate (DCF-DA). Ceramide increased ROS production after 30 minutes and this induction was decreased by MPG. Incubation of ceramide with cyclooxygenase-2 inhibitor, NS 398 (10 microM), or with a mitochondrial respiratory chain inhibitor, rotenone (10 microM) reduced the cytoprotective effect of ceramide in parallel with a partial diminution in ROS generation. In contrast, inhibition of other ROS-producing systems including nitric oxide synthase, xanthine oxidase, or NADPH oxidase failed to modulate ceramide-induced cytoprotection. Collectively, these data demonstrate that ceramide induces a cell survival program through ROS signaling activated, in part, via cyclooxygenase and the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Sandrine Lecour
- Hatter Institute for Cardiology Research, University of Cape Town, South Africa.
| | | | | | | |
Collapse
|
21
|
Sparkman L, Chandru H, Boggaram V. Ceramide decreases surfactant protein B gene expression via downregulation of TTF-1 DNA binding activity. Am J Physiol Lung Cell Mol Physiol 2005; 290:L351-8. [PMID: 16183668 DOI: 10.1152/ajplung.00275.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ceramide, a sphingolipid, is an important signaling molecule in the inflammatory response. Mediators of acute lung injury such as TNF-alpha, platelet-activating factor, and Fas/Apo ligand stimulate sphingomyelin hydrolysis to increase intracellular ceramide levels. Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for surfactant function and lung stability. In this study we investigated the effects of ceramide on SP-B gene expression in H441 lung epithelial cells. Ceramide decreased SP-B mRNA levels in control and dexamethasone-treated cells after 24-h incubation and inhibition of SP-B mRNA was associated with inhibition of immunoreactive SP-B. In transient transfections assays, ceramide inhibited SP-B promoter activity, indicating that the inhibitory effects are exerted at the transcriptional level. Deletion mapping experiments showed that the ceramide-responsive region is located within the -233/-80-bp region of human SP-B promoter. Electrophoretic mobility shift and reporter assays showed that ceramide reduced the DNA binding activity and transactivation capability of thyroid transcription factor 1 (TTF-1/Nkx2.1), a key factor for SP-B promoter activity. Collectively these data showed that ceramide inhibits SP-B gene expression by reducing the DNA biding activity of TTF-1/Nkx2.1 transcription factor. Protein kinase C inhibitor bisindolylmaleimide and the protein tyrosine kinase inhibitor genistein partially reversed ceramide inhibition, indicating that protein kinases play important roles in the ceramide inhibition of SP-B gene expression. Chemical inhibitors of de novo ceramide synthesis and sphingomyelin hydrolysis had no effect on TNF-alpha inhibition of SP-B promoter activity and mRNA levels, suggesting that ceramide does not play a role in the inhibition.
Collapse
Affiliation(s)
- Loretta Sparkman
- Dept. of Molecular Biology, University of Texas Health Center at Tyler, TX 75708-3154, USA
| | | | | |
Collapse
|
22
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a major and increasing global health problem that is now a leading cause of death. COPD is associated with a chronic inflammatory response, predominantly in small airways and lung parenchyma, which is characterized by increased numbers of macrophages, neutrophils, and T lymphocytes. The inflammatory mediators involved in COPD have not been clearly defined, in contrast to asthma, but it is now apparent that many lipid mediators, inflammatory peptides, reactive oxygen and nitrogen species, chemokines, cytokines, and growth factors are involved in orchestrating the complex inflammatory process that results in small airway fibrosis and alveolar destruction. Many proteases are also involved in the inflammatory process and are responsible for the destruction of elastin fibers in the lung parenchyma, which is the hallmark of emphysema. The identification of inflammatory mediators and understanding their interactions is important for the development of anti-inflammatory treatments for this important disease.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY, United Kingdom.
| |
Collapse
|
23
|
Tominaga K, Higuchi K, Sasaki E, Suto R, Watanabe T, Fujiwara Y, Oshitani N, Matsumoto T, Kim S, Iwao H, Arakawa T. Correlation of MAP kinases with COX-2 induction differs between MKN45 and HT29 cells. Aliment Pharmacol Ther 2004; 20 Suppl 1:143-50. [PMID: 15298620 DOI: 10.1111/j.1365-2036.2004.01986.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitogen-activated protein (MAP) kinases, including extracellular signal-regulated kinases (ERK),c-Jun NH2-terminal kinases (JNK) and p38 MAP kinase (p38 MAPK) are important intermediates of the signal-transduction pathway from the cell surface to the nucleus. Expression of cyclooxygenase (COX)-2, associated with proliferation, apoptosis or both of gastrointestinal cancer cells, is mediated through MAP kinase families. However, the correlation between respective MAP kinase signals and COX-2 in the proliferation of gastric and colon cancer cells has not been well elucidated. AIM We examined the effect of selective inhibitors of MAP kinases and COX-2 on serum-induced proliferation of gastric (MKN45) and colon (HT29) cancer cells. METHODS After 24-h serum starvation, cancer cells were stimulated with 2% serum and COX-2 inhibitors (NS398 10 micromol/L, or etodolac 100 micromol/L) or 1 h after preincubation with inhibitors for ERK (PD98059 20 micromol/L) or p38 MAPK (SB203580 10 micromol/L). Phosphorylated MAP kinases and COX-2 protein were evaluated by Western blotting, and the proliferation of cancer cells was estimated by 3H-thymidine incorporation. Transcription factors nuclear factor-kappaB and CREB were assayed by an electorophoretic mobility shift assay. RESULTS Serum increased the proliferation of MKN45 and HT29 cells by 280% and 200%, respectively, compared with the control levels (100%). In both cancer cells, phosphorylated MAP kinases were increased within 30 min after stimulation. PD98059 and SB203580 inhibited the serum-induced proliferation of MKN45 by 21% and 51% and of HT29 by 81% and 69%, respectively. NS398 and etodolac inhibited the proliferation of HT29 by 21% and 41%, respectively, but not that of MKN45. PD98059 and SB203580 also suppressed serum-induced expression of COX-2 protein in HT29 cells. In addition to the activation of MAP kinases and COX-2, activities of nuclear factor-kappaB and CREB were also increased during HT29 cell proliferation. CONCLUSIONS These results suggest that the correlation of MAP kinases with COX-2 induction for cell proliferation differs between MKN45 and HT29 cells.
Collapse
Affiliation(s)
- K Tominaga
- Department of Gastroenterology, Osaka City University, Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Catley MC, Cambridge LM, Nasuhara Y, Ito K, Chivers JE, Beaton A, Holden NS, Bergmann MW, Barnes PJ, Newton R. Inhibitors of protein kinase C (PKC) prevent activated transcription: role of events downstream of NF-kappaB DNA binding. J Biol Chem 2004; 279:18457-66. [PMID: 14976190 DOI: 10.1074/jbc.m400765200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In pulmonary A549 cells, the protein kinase C (PKC) inhibitor, Ro 31-8220, and the phosphotidylcholine-specific phospholipase C inhibitor, D609, prevent NF-kappaB-dependent transcription, yet NF-kappaB DNA binding is unaffected (Bergmann, M., Hart, L., Lindsay, M., Barnes, P. J., and Newton, R. (1998) J. Biol. Chem. 273, 6607-6610). We now show that this effect also occurs in BEAS-2B bronchial epithelial cells as well as with other PKC inhibitors (Gö 6976, GF109203X, and calphostin C) in A549 cells. Similarly, phorbol ester, a diacylglycerol mimetic, activates NF-kappaB-dependent transcription and potentiates tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB-dependent transcription, yet unlike TNFalpha, poorly activates IkappaB kinase (IKK) activity, IkappaBalpha degradation, or NF-kappaB DNA binding in both A549 and BEAS-2B cells. As phorbol ester-induced NF-kappaB-dependent transcription was relatively insensitive to the proteasome inhibitor, MG-132, PKC may affect NF-kappaB-dependent transcription via mechanisms other than the core IKK-IkappaB pathway. This is supported by Gal4 one hybrid analysis of p65/RelA transactivation, which was potentiated by TNFalpha and phorbol ester and was inhibited by Ro 31-8220 and D609. Additionally, a number of PKC isoforms, particularly the novel isoform PKCepsilon, induced p65/RelA transactivation. Phosphorylation of p65/RelA and cAMP-responsive element-binding protein (CREB)-binding protein (CBP) was increased by TNFalpha treatment and, in the case of CBP, was prevented by Ro 31-8220 or D609. However, p65/RelA-CBP interactions were unaffected by either compound. As this effect was not limited to NF-kappaB, but was a more general feature of inducible gene transcription, we suggest PKC isoforms may provide a point of intervention in diseases such as inflammation, or cancer, where activated gene expression is prominent.
Collapse
Affiliation(s)
- Matthew C Catley
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pascual M, Valles SL, Renau-Piqueras J, Guerri C. Ceramide pathways modulate ethanol-induced cell death in astrocytes. J Neurochem 2003; 87:1535-45. [PMID: 14713309 DOI: 10.1046/j.1471-4159.2003.02130.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We showed previously that alcohol exposure during in vivo brain development induced astroglial damage and caused cell death. Because ceramide modulates a number of biochemical and cellular responses to stress, including apoptosis, we now investigate whether ethanol-induced cell death in astrocytes is mediated by ceramide signalling pathways triggering apoptosis. Here we show that both ethanol and ceramide are able to induce apoptotic death in cultured astrocytes, in a dose-dependent manner, and that C2-ceramide addition potentiates the apoptotic effects of ethanol. Cell death induced by ethanol is associated with stimulation of neutral and acidic sphingomyelinase (SMase) and ceramide generation, as well as with activation of stress-related kinases, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK) pathways. We also provide evidence for the participation of JNK and p38 in ethanol-induced cell death, because pharmacological inhibitors of these kinases largely prevent the apoptosis induced by ethanol or by ethanol and C2-ceramide. Furthermore, we show that ethanol-induced ERK activation triggers the stimulation of cyclo-oxygenase-2 (COX-2) and the release of prostaglandin E2, and that blockade of the mitogen-activated protein kinase kinase (MEK)/ERK pathway by PD98059 abolishes the up-regulation of COX-2 induced by ethanol plus ceramide, and decreases the ethanol-induced apoptosis. These results strongly suggest that ethanol is able to stimulate the SMase-ceramide pathway, leading to the activation of signalling pathways implicated in cell death. These findings provide an insight into the mechanisms involved in ethanol-induced astroglial cell death during brain development.
Collapse
Affiliation(s)
- María Pascual
- Instituto de Investigaciones Citológicas Centro Investigación Hospital 'La Fe', Valencia, Spain
| | | | | | | |
Collapse
|
26
|
Singer CA, Baker KJ, McCaffrey A, AuCoin DP, Dechert MA, Gerthoffer WT. p38 MAPK and NF-kappaB mediate COX-2 expression in human airway myocytes. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1087-98. [PMID: 12871860 DOI: 10.1152/ajplung.00409.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-kappaB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and interferon (IFN)-gamma. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 microM) or the proteosome inhibitor MG-132 (1 microM). SB-203580 did not affect cytokine-stimulated IkappaBalpha degradation, NF-kappaB nuclear binding activity, or NF-kappaB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-kappaB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-kappaB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-kappaB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.
Collapse
Affiliation(s)
- Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Ramer R, Weinzierl U, Schwind B, Brune K, Hinz B. Ceramide is involved in r(+)-methanandamide-induced cyclooxygenase-2 expression in human neuroglioma cells. Mol Pharmacol 2003; 64:1189-98. [PMID: 14573769 DOI: 10.1124/mol.64.5.1189] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cannabinoids have recently been shown to induce the expression of the cyclooxygenase-2 (COX-2) isoenzyme in H4 human neuroglioma cells. Using this cell line, the present study investigates the contribution of the second messenger ceramide to this signaling pathway. Incubation of cells with the endocannabinoid analog R(+)-methanandamide (R(+)-MA) was associated with an increase of intracellular ceramide levels. Enhancement of ceramide formation by R(+)-MA was abolished by fumonisin B1, a ceramide synthase inhibitor, whereas inhibitors of neutral sphingomyelinase (spiroepoxide, glutathione) and serine palmitoyltransferase (l-cycloserine, ISP-1) were inactive in this respect. R(+)-MA caused a biphasic activation of the p38 and p42/44 mitogen-activated protein kinases (MAPKs), with phosphorylation peaks occurring after 15-min and 4- to 8-h treatments, respectively. Inhibition of ceramide synthesis with fumonisin B1 was associated with a suppression of R(+)-MA-induced delayed phosphorylations of p38 and p42/44 MAPKs and subsequent COX-2 expression. The involvement of ceramide in COX-2 expression was corroborated by findings showing that C2-ceramide and neutral sphingomyelinase from Bacillus cereus caused concentration-dependent increases of COX-2 expression that were suppressed in the presence of 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)imidazol (SB203580, a p38 MAPK inhibitor) or 2'-amino-3'-methoxyflavone (PD98059, a p42/44 MAPK activation inhibitor). In contrast, dihydro-C2-ceramide being used as a negative control did not induce MAPK phosphorylation and COX-2 expression. Collectively, our results demonstrate that R(+)-MA induces COX-2 expression in human neuroglioma cells via synthesis of ceramide and subsequent activation of p38 and p42/44 MAPK pathways. Induction of COX-2 expression via ceramide represents a hitherto unknown mechanism by which cannabinoids mediate biological effects within the central nervous system.
Collapse
Affiliation(s)
- Robert Ramer
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
28
|
Chen NX, Geist DJ, Genetos DC, Pavalko FM, Duncan RL. Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 2003; 33:399-410. [PMID: 13678782 DOI: 10.1016/s8756-3282(03)00159-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bone formation in response to exogenous mechanical loading is dependent on prostaglandin synthesis by the inducible isoform of cyclooxygenase, COX-2. While several transcription factors target the COX-2 gene, we examined the role of nuclear factor kappa B (NFkappaB) on COX-2 upregulation in osteoblasts in response to fluid shear due to its involvement in immune and inflammatory responses in other cell types. Application of 12 dyn/cm2 laminar flow to MC3T3-E1 osteoblast-like cells resulted in translocation of NFkappaB to the nucleus within 1 h of the onset of shear, with NFkappaB returning to the cytoplasm after 2 h of continuous flow. NFkappaB translocation in response to shear was inhibited by the protease inhibitor, Nalpha-p-tosyl-L-lysine chloromethylketone hydrochloride (TLCK), or a cell-permeant peptide that blocks the nuclear localization sequence (NLS) on NFkappaB. Block of NFkappaB translocation with these inhibitors blocked the shear-induced upregulation of COX-2. We found that disruption of the actin cytoskeleton with cytochalasin D or microtubules with nocodozol did not alter NFkappaB translocation in response to shear. However, addition of the intracellular Ca2+ chelator BAPTA completely blocked NFkappaB translocation. While block of Ca2+ entry with channel blockers failed to inhibit NFkappaB translocation, inhibition of phospholipase C (PLC)-induced intracellular Ca2+ release with the PLC inhibitor U73122 completely abrogated the NFkappaB response to shear. These data indicate that NFkappaB translocation to the nucleus is essential for the fluid shear-induced increase in COX-2. Further, these studies suggest that intracellular Ca2+ release, but not the cytoskeletal architecture, is important to NFkappaB translocation.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
29
|
Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 2003; 17:1411-21. [PMID: 12890694 DOI: 10.1096/fj.02-1038com] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we addressed the role of sphingolipid metabolism in the inflammatory response. In a L929 fibroblast model, tumor necrosis factor-alpha (TNF) induced prostaglandin E2 (PGE2) production by 4 h and cyclooxygenase-2 (COX-2) induction as early as 2 h. This TNF-induced PGE2 production was inhibited by NS398, a COX-2 selective inhibitor. GC-MS analysis revealed that only COX-2-generated prostanoids were produced in response to TNF, thus providing further evidence of COX-2 selectivity. As sphingolipids have been implicated in mediating several actions of TNF, their role in COX-2 induction and PGE2 production was evaluated. Sphingosine-1-phosphate (S1P) induced both COX-2 and PGE2 in a dose-responsive manner with an apparent ED50 of 100-300 nM. The related sphingolipid sphingosine also induced PGE2, though with much less efficacy. TNF induced a 3.5-fold increase in sphingosine-1-phosphate levels at 10 min that rapidly returned to baseline by 40 min. Small interfering RNAs (siRNAs) directed against mouse SK1 decreased (typically by 80%) SK1 protein and inhibited TNF-induced SK activity. Treatment of cells with RNAi to SK1 but not SK2 almost completely abolished the ability of TNF to induce COX-2 or generate PGE2. By contrast, cells treated with RNAi to S1P lyase or S1P phosphatase enhanced COX-2 induction leading to enhanced generation of PGE2. Treatment with SK1 RNAi also abolished the effects of exogenous sphingosine and ceramide on PGE2, revealing that the action of sphingosine and ceramide are due to intracellular metabolism into S1P. Collectively, these results provide novel evidence that SK1 and S1P are necessary for TNF to induce COX-2 and PGE2 production. Based on these findings, this study indicates that SK1 and S1P could be implicated in pathological inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Benjamin J Pettus
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vignola AM, Bellia V. Transcriptional regulation of COX-2: a key mechanism in the pathogenesis of nasal polyposis in aspirin-sensitive asthmatics? Allergy 2003; 58:95-7. [PMID: 12622739 DOI: 10.1034/j.1398-9995.2003.00103.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Claycombe KJ, Wu D, Nikolova-Karakashian M, Palmer H, Beharka A, Paulson KE, Meydani SN. Ceramide mediates age-associated increase in macrophage cyclooxygenase-2 expression. J Biol Chem 2002; 277:30784-91. [PMID: 12072440 DOI: 10.1074/jbc.m204463200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previously, we showed that macrophages (MØ) from old mice have significantly higher levels of lipopolysaccharide (LPS)-induced prostaglandin E(2) (PGE(2)) production than young mice, due to increased cyclooxygenase-2 (COX-2) mRNA levels. The aim of the current study was to determine the underlying mechanisms of age-associated increase in COX-2 gene expression. The results demonstrate that increased COX-2 mRNA expression in the old mice is due to a higher rate of transcription rather than increased stability of COX-2 mRNA. Furthermore, the results show that LPS-induced ceramide levels from the old mice are significantly higher than those of young mice, whereas there is no age-related difference in concentration of its down stream metabolite, sphingosine. The addition of ceramide in the presence or absence of LPS resulted in a significant increase in PGE(2) production in a dose- and time-dependent manner. Inhibition of ceramide conversion to sphingosine had no effect on this ceramide-induced effect. The ceramide-induced up-regulation in PGE(2) production was mediated through increase in COX activity and transcriptional up-regulation of COX-2 mRNA. Collectively, these data suggest that the age-associated increase in MØ COX-2 mRNA is due to transcriptional up-regulation. Furthermore, this increase in transcription is mediated by higher cellular ceramide concentration in old MØ compared with that of young MØ.
Collapse
Affiliation(s)
- Kate J Claycombe
- Nutritional Immunology Laboratory, Jean Mayer United States Department of Agriculture/Human Nutrition Research Center at Tufts University, 711 Washington Street, Boston, MA 02111
| | | | | | | | | | | | | |
Collapse
|