1
|
Siraki AG. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol 2021; 46:102109. [PMID: 34455146 PMCID: PMC8403760 DOI: 10.1016/j.redox.2021.102109] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
This review provides a practical guide to myeloperoxidase (MPO) and presents to the reader the diversity of its presence in biology. The review provides a historical background, from peroxidase activity to the discovery of MPO, to its role in disease and drug development. MPO is discussed in terms of its necessity, as specific individuals lack MPO expression. An underlying theme presented throughout brings up the question of the benefit and burden of MPO activity. Enzyme structure is discussed, including accurate masses and glycosylation sites. The catalytic cycle of MPO and its corresponding pathways are presented, with a discussion of the importance of the redox couples of the different states of MPO. Cell lines expressing MPO are discussed and practically summarized for the reader, and locations of MPO (primary and secondary) are provided. Useful methods of MPO detection are discussed, and how these can be used for studying disease processes are implied through the presentation of MPO as a biomarker. The presence of MPO in neutrophil extracellular traps is presented, and the activators of the former are provided. Lastly, the transition from drug metabolism to a target for drug development is where the review concludes.
Collapse
Affiliation(s)
- Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Tomášková N, Novák P, Kožár T, Petrenčáková M, Jancura D, Yassaghi G, Man P, Sedlák E. Early modification of cytochrome c by hydrogen peroxide triggers its fast degradation. Int J Biol Macromol 2021; 174:413-423. [PMID: 33529629 DOI: 10.1016/j.ijbiomac.2021.01.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Cytochrome c (cyt c), in addition to its function as an electron shuttle in respiratory chain, is able to perform as a pseudo-peroxidase with a critical role during apoptosis. Incubation of cyt c with an excess of hydrogen peroxide leads to a suicide inactivation of the protein, which is accompanied by heme destruction and covalent modification of numerous amino acid residues. Although steady-state reactions of cyt c with an excess of hydrogen peroxide represent non-physiological conditions, they might be used for analysis of the first-modified amino acid in in vivo. Here, we observed oxidation of tyrosine residues 67 and 74 and heme as the first modifications found upon incubation with hydrogen peroxide. The positions of the oxidized tyrosines suggest a possible migration pathway of hydrogen peroxide-induced radicals from the site of heme localization to the protein surface. Analysis of a size of folded fraction of cyt c upon limited incubation with hydrogen peroxide indicates that the early oxidation of amino acids triggers an accelerated destruction of cyt c. Position of channels from molecular dynamics simulation structures of cyt c points to a location of amino acid residues exposed to reactive oxidants that are thus more prone to covalent modification.
Collapse
Affiliation(s)
- Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
| | - Petr Novák
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Martina Petrenčáková
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Ghazaleh Yassaghi
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Man
- Institute of Microbiology - BioCeV, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
3
|
Martínez-Marcos P, Carvajal-Serna M, Lázaro-Gaspar S, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA, Casao A. Presence of melatonin-catabolizing non-specific enzymes myeloperoxidase and indoleamine 2,3-dioxygenase in the ram reproductive tract. Reprod Domest Anim 2019; 54:1643-1650. [PMID: 31587393 DOI: 10.1111/rda.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/30/2019] [Indexed: 11/27/2022]
Abstract
The melatonin catabolism is very complex and not completely understood. Melatonin can be metabolized by free radical interaction, but also pseudo-enzymatically or by enzymatic pathways. We have previously detected the existence of melatonin-synthesizing enzymes and melatonin receptors MT1 and MT2 in the ram reproductive tract; thus, in order to start to elucidate melatonin catabolism in these organs, we have investigated the presence of the melatonin-catabolizing enzymes indoleamine 2,3-dioxygenase (IDO, both IDO1 and IDO2 isoforms) and myeloperoxidase (MPO) in testis, epididymis and accessory glands. Gene expression analyses by real-time PCR showed the presence of MPO, IDO1 and IDO2 in all the organs of the ram reproductive tract and revealed that MPO is the main melatonin-catabolizing enzyme, which is mainly expressed in the testis and the bulbourethral glands (p < .05). These results were further corroborated by immunohistochemical staining, and by Western blot. Likewise, MPO was also evidenced in epididymal and ejaculated spermatozoa by indirect immunofluorescence and Western blot. In conclusion, melatonin-catabolizing enzymes MPO, IDO1 and IDO2 are expressed in the ram reproductive tract, and MPO is the most expressed one, mainly in the testis and the bulbourethral glands. The presented results warrant further studies on the function of these enzymes and their melatonin-metabolizing activity.
Collapse
Affiliation(s)
- Paula Martínez-Marcos
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Melissa Carvajal-Serna
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Producción Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sofía Lázaro-Gaspar
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Rosaura Pérez-Pé
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Muiño-Blanco
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - José A Cebrián-Pérez
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Adriana Casao
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Jou MJ, Peng TI, Reiter RJ. Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca 2+ stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res 2019; 66:e12538. [PMID: 30415481 DOI: 10.1111/jpi.12538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Cyclic 3-hydroxymelatonin (C3-OHM) and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) are two major cascade metabolites of melatonin. We previously showed melatonin provides multiple levels of mitochondria-targeted protection beyond as a mitochondrial antioxidant during ionomycin-induced mitochondrial Ca2+ (mCa2+ ) stress in RBA1 astrocytes. Using noninvasive laser scanning fluorescence coupled time-lapse digital imaging microscopy, this study investigated whether C3-OHM and AFMK also provide mitochondrial levels of protection during ionomycin-induced mCa2+ stress in RBA1 astrocytes. Interestingly, precise temporal and spatial dynamic live mitochondrial images revealed that C3-OHM and AFMK prevented specifically mCa2+ -mediated mitochondrial reactive oxygen species (mROS) formation and hence mROS-mediated depolarization of mitochondrial membrane potential (△Ψm ) and permanent lethal opening of the MPT (p-MPT). The antioxidative effects of AFMK, however, were less potent than that of C3-OHM. Whether C3-OHM and AFMK targeted directly the MPT was investigated under a condition of "oxidation free-Ca2+ stress" using a classic antioxidant vitamin E to remove mCa2+ -mediated mROS stress and the potential antioxidative effects of C3-OHM and AFMK. Intriguingly, two compounds still effectively postponed "oxidation free-Ca2+ stress"-mediated depolarization of △Ψm and p-MPT. Measurements using a MPT pore-specific indicator Calcein further identified that C3-OHM and AFMK, rather than inhibiting, stabilized the MPT in its transient protective opening mode (t-MPT), a critical mechanism to reduce overloaded mROS and mCa2+ . These multiple layers of mitochondrial protection provided by C3-OHM and AFMK thus crucially allow melatonin to extend its metabolic cascades of mitochondrial protection during mROS- and mCa2+ -mediated MPT-associated apoptotic stresses and may provide therapeutic benefits against astrocyte-mediated neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Mei-Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
5
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Abaffy T, Bain JR, Muehlbauer MJ, Spasojevic I, Lodha S, Bruguera E, O'Neal SK, Kim SY, Matsunami H. A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor. Front Oncol 2018; 8:162. [PMID: 29892571 PMCID: PMC5985834 DOI: 10.3389/fonc.2018.00162] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptor OR51E2, also known as a Prostate Specific G-Protein Receptor, is highly expressed in prostate cancer but its function is not well understood. Through in silico and in vitro analyses, we identified 24 agonists and 1 antagonist for this receptor. We detected that agonist 19-hydroxyandrostenedione, a product of the aromatase reaction, is endogenously produced upon receptor activation. We characterized the effects of receptor activation on metabolism using a prostate cancer cell line and demonstrated decreased intracellular anabolic signals and cell viability, induction of cell cycle arrest, and increased expression of neuronal markers. Furthermore, upregulation of neuron-specific enolase by agonist treatment was abolished in OR51E2-KO cells. The results of our study suggest that OR51E2 activation results in neuroendocrine trans-differentiation. These findings reveal a new role for OR51E2 and establish this G-protein coupled receptor as a novel therapeutic target in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Shweta Lodha
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Elisa Bruguera
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Sara K O'Neal
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Functional Genomics Shared Resource, Duke University School of Medicine, Durham, NC, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Sato S, Nakamura K, Nakamura H. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction. Chembiochem 2017; 18:475-478. [DOI: 10.1002/cbic.201600649] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; Yokohama 226-8503 Japan
| | - Kosuke Nakamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; Yokohama 226-8503 Japan
| |
Collapse
|
8
|
Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders. Rejuvenation Res 2015; 19:21-40. [PMID: 26087000 DOI: 10.1089/rej.2015.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Tanveer Ali Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Aashiq Hussain Bhat
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Khalid B Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Suhail Anees
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | | | - Akbar Masood
- 2 Department of Biochemistry, University of Kashmir Srinagar , India
| |
Collapse
|
9
|
Gomes MM, Coimbra JB, Clara RO, Dörr FA, Moreno ACR, Chagas JR, Tufik S, Pinto E, Catalani LH, Campa A. Biosynthesis of N,N-dimethyltryptamine (DMT) in a melanoma cell line and its metabolization by peroxidases. Biochem Pharmacol 2014; 88:393-401. [PMID: 24508833 DOI: 10.1016/j.bcp.2014.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/19/2023]
Abstract
Tryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines. In a previous study, we showed a metabolic interrelationship for TRP in melanoma cell lines. Here, we identified DMT and N,N-dimethyl-N-formyl-kynuramine (DMFK) in the supernatant of cultured SK-Mel-147 cells. Furthermore, when we added DMT to the cell culture, we found hydroxy-DMT (OH-DMT) and indole acetic acid (IAA) in the cell supernatant at 24 h. We found that SK-Mel-147 cells expressed mRNA for myeloperoxidase (MPO) and also had peroxidase activity. We further found that DMT oxidation was catalyzed by peroxidases. DMT oxidation by horseradish peroxidase, H2O2 and MPO from PMA-activated neutrophils produced DMFK, N,N-dimethyl-kynuramine (DMK) and OH-DMT. Oxidation of DMT by peroxidases apparently uses the common peroxidase cycle involving the native enzyme, compound I and compound II. In conclusion, this study describes a possible alternative metabolic pathway for DMT involving peroxidases that has not previously been described in humans and identifies DMT and metabolites in a melanoma cell line. The extension of these findings to other cell types and the biological effects of DMT and its metabolites on cell proliferation and function are key questions for future studies.
Collapse
Affiliation(s)
- Melissa M Gomes
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Janine B Coimbra
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Renan O Clara
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe A Dörr
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina R Moreno
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Jair R Chagas
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sérgio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz H Catalani
- Department of Fundamental Chemistry, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana Campa
- Department of Clinical Chemistry and Toxicology, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54:245-57. [PMID: 22998574 DOI: 10.1111/jpi.12010] [Citation(s) in RCA: 609] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 01/14/2023]
Abstract
The reactions of N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK) and N(1) -acetyl-5-methoxykynuramine (AMK) with (•) OH, (•) OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion-limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3 , but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, DF, México.
| | | | | |
Collapse
|
11
|
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) was found to catalyze the oxidation of indole by H(2)O(2), with generation of 2- and 3-oxoindole as the major products. This reaction occurred in the absence of O(2) and reducing agents and was not inhibited by superoxide dismutase or hydroxyl radical scavengers, although it was strongly inhibited by L-Trp. The stoichiometry of the reaction indicated a one-to-one correspondence for the consumption of indole and H(2)O(2). The (18)O-labeling experiments indicated that the oxygen incorporated into the monooxygenated products was derived almost exclusively from H(2)(18)O(2), suggesting that electron transfer was coupled to the transfer of oxygen from a ferryl intermediate of IDO. These results demonstrate that IDO oxidizes indole by means of a previously unrecognized peroxygenase activity. We conclude that IDO inserts oxygen into indole in a reaction that is mechanistically analogous to the "peroxide shunt" pathway of cytochrome P450.
Collapse
|
12
|
Gomes MM, Dörr FA, Catalani LH, Campa A. Oxidation of lysergic acid diethylamide (LSD) by peroxidases: a new metabolic pathway. Forensic Toxicol 2012. [DOI: 10.1007/s11419-011-0131-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol 2011; 8:168-81. [PMID: 21358968 PMCID: PMC3001211 DOI: 10.2174/157015910792246244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 02/10/2010] [Accepted: 02/18/2010] [Indexed: 01/05/2023] Open
Abstract
The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
14
|
González-Sánchez MI, Laurenti M, Rubio-Retama J, Valero E, Lopez-Cabarcos E. Fluorescence Decrease of Conjugated Polymers by the Catalytic Activity of Horseradish Peroxidase and Its Application in Phenolic Compounds Detection. Biomacromolecules 2011; 12:1332-8. [DOI: 10.1021/bm200091m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. I. González-Sánchez
- Physical Chemistry Department, School of Industrial Engineering, University of Castilla-La Mancha, Albacete 02071, Spain
| | - M. Laurenti
- Physical Chemistry Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
| | - J. Rubio-Retama
- Physical Chemistry Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
| | - E. Valero
- Physical Chemistry Department, School of Industrial Engineering, University of Castilla-La Mancha, Albacete 02071, Spain
| | - E. Lopez-Cabarcos
- Physical Chemistry Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
| |
Collapse
|
15
|
Abstract
Melatonin is widely known for its antioxidant, immunomodulatory, and anti-inflammatory effects. Hypochlorous acid (HOCl) is one example of an endogenous oxidant that is promptly neutralized by melatonin. Melatonin also inhibits myeloperoxidase, the enzyme that catalyzes the oxidation of chloride to HOCl. Taurine is the most abundant free amino acid in leukocytes. In activated neutrophils, taurine is converted to taurine chloramine (Tau-NHCl) through a reaction with HOCl. In addition, the related compound taurine bromamine (Tau-NHBr) can be released by neutrophils and eosinophils. The aim of this study was to investigate the reactivity of Tau-NHCl and Tau-NHBr with melatonin. We found that melatonin can react with either Tau-NHCl or Tau-NHBr, leading to the production of 2-hydroxymelatonin and N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK). The reaction was pH-dependent, and it occurs more rapidly at a slightly acidic pH. Tau-NHBr was significantly more reactive than Tau-NHCl. Using Tau-NHBr as the oxidizing agent, 1 mm melatonin was oxidized in less than 1 min. The pH dependence of the reaction with Tau-NHCl and the increased reactivity of Tau-NHBr can be explained by a mechanism based on the initial attack of chloronium (Cl(+)) or bromonium (Br(+)) ions on melatonin. We also found that the addition of iodide to the reaction medium increased the yield of AFMK. These findings could contribute to the establishment of new functions for melatonin in inflammatory and parasitic diseases, where the role of this indoleamine has been extensively investigated.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Departamento de Química, Faculdade de Ciências, Unesp - Univ Estadual Paulista, Bauru, SP, Brasil.
| | | | | | | |
Collapse
|
16
|
Nigro AP, Goodin DB. Reaction of N-hydroxyguanidine with the ferrous-oxy state of a heme peroxidase cavity mutant: a model for the reactions of nitric oxide synthase. Arch Biochem Biophys 2010; 500:66-73. [PMID: 20346907 PMCID: PMC2902621 DOI: 10.1016/j.abb.2010.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 12/01/2022]
Abstract
Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe(+4)O center of either Compound I (Fe(+4)=O, porph+(.)) or Compound ES (Fe(+4)=O, Trp+(.)). R48A/W191F formed a Fe(+2)O2 complex upon photolysis of Fe(+2)CO in the presence of O2, and N-hydroxyguanidine was observed to react with this species to produce products, distinct from N-nitrosoguanidine, that gave a positive Griess reaction for nitrate+nitrite, a positive Berthelot reaction for urea, and no evidence for formation of NO(.). It is proposed that HNO and urea are produced in analogy with reactions of nitric oxide synthase in the pterin-free state.
Collapse
Affiliation(s)
- Alycen Pond Nigro
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - David B. Goodin
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
17
|
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44:175-200. [PMID: 19635037 DOI: 10.1080/10409230903044914] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
18
|
Ferry G, Ubeaud C, Lambert PH, Bertin S, Cogé F, Chomarat P, Delagrange P, Serkiz B, Bouchet JP, Truscott R, Boutin J. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2009; 388:205-15. [PMID: 15636586 PMCID: PMC1186709 DOI: 10.1042/bj20042075] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The catabolism of melatonin, whether naturally occurring or ingested, takes place via two pathways: approximately 70% can be accounted for by conjugation (sulpho- and glucurono-conjugation), and approximately 30% by oxidation. It is commonly thought that the interferon-induced enzyme indoleamine 2,3-dioxygenase (EC 1.13.11.42), which oxidizes tryptophan, is also responsible for the oxidation of 5-hydroxytryptamine (serotonin) and its derivative, melatonin. Using the recombinant enzyme expressed in Escherichia coli, we show in the present work that indoleamine 2,3-dioxygenase indeed cleaves tryptophan; however, under the same conditions, it is incapable of cleaving the two other indoleamines. By contrast, myeloperoxidase (EC 1.11.1.7) is capable of cleaving the indole moiety of melatonin. However, when using the peroxidase conditions of assay -- with H2O2 as co-substrate -- indoleamine 2,3-dioxygenase is able to cleave melatonin into its main metabolite, a kynurenine derivative. The present work establishes that the oxidative metabolism of melatonin is due, in the presence of H2O2, to the activities of both myeloperoxidase and indoleamine 2,3-dioxygenase (with lower potency), since both enzymes have Km values for melatonin in the micromolar range. Under these conditions, several indolic compounds can be cleaved by both enzymes, such as tryptamine and 5-hydroxytryptamine. Furthermore, melatonin metabolism results in a kynurenine derivative, the pharmacological action of which remains to be studied, and could amplify the mechanisms of action of melatonin.
Collapse
Affiliation(s)
- Gilles Ferry
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
| | - Caroline Ubeaud
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
| | - Pierre-Hervé Lambert
- †Physico-chimie analytique, Institut de Recherches SERVIER 11, rue des Moulineaux, 92150 Suresnes, France
| | - Sophie Bertin
- †Physico-chimie analytique, Institut de Recherches SERVIER 11, rue des Moulineaux, 92150 Suresnes, France
| | - Francis Cogé
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
| | - Pascale Chomarat
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
| | - Philippe Delagrange
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
| | - Bernard Serkiz
- †Physico-chimie analytique, Institut de Recherches SERVIER 11, rue des Moulineaux, 92150 Suresnes, France
| | - Jean-Paul Bouchet
- †Physico-chimie analytique, Institut de Recherches SERVIER 11, rue des Moulineaux, 92150 Suresnes, France
| | - Roger J. W. Truscott
- ‡Australian Cataract Research Foundation and Department of Chemistry, University of Wollongong, New South Wales 2522, Australia
| | - Jean A. Boutin
- *Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER 125, chemin de Ronde 78290, Croissy-sur-Seine, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Hardeland R, Tan DX, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 2009; 47:109-126. [PMID: 19573038 DOI: 10.1111/j.1600-079x.2009.00701.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kynuramines represent their own class of biogenic amines. They are formed either by decarboxylation of kynurenines or pyrrole ring cleavage of indoleamines. N(2)-formylated compounds formed in this last reaction can be deformylated either enzymatically by arylamine formamidases or hemoperoxidases, or photochemically. The earlier literature mainly focussed on cardiovascular effects of kynuramine, 5-hydroxykynuramine and their N(1),N(1)-dimethylated analogs, including indirect effects via release of catecholamines or acetylcholine and interference with serotonin receptors. After the discovery of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMK) as major brain metabolites of melatonin, these compounds became of particular interest. They were shown to be produced enzymatically, pseudoenzymatically, by various free radical-mediated and via photochemical processes. In recent years, AFMK and AMK were shown to scavenge reactive oxygen and nitrogen species, thereby forming several newly discovered 3-indolinone, cinnolinone and quinazoline compounds, and to protect tissues from damage by reactive intermediates in various models. AMK is of special interest due to its properties as a potent cyclooxygenase inhibitor, NO scavenger forming a stable nitrosation product, inhibitor and/or downregulator of neuronal and inducible NO synthases, and a mitochondrial metabolism modulator. AMK easily interacts with aromates, forms adducts with tyrosyl and tryptophanyl residues, and may modify proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
20
|
Abstract
It has been claimed that melatonin reacts directly with hydrogen peroxide with a very high rate constant (2.5 x 10(5)-2.3 x 10(6) M(-1) s(-1)) Both these values were derived from inhibition by melatonin of peroxidase-catalyzed oxidation of Phenol Red by hydrogen peroxide, assuming that this inhibition is due to direct scavenging of hydrogen peroxide by melatonin. In this study, we show that this reasoning is illegitimate and melatonin decreases the yield of oxidation of Phenol Red as a competitive substrate. Monitoring changes of concentration of hydrogen peroxide incubated with melatonin using Xylenol Orange points to poor reactivity of melatonin with H2O2.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | | | |
Collapse
|
21
|
Mahmoudi A, Nazari K, Khosraneh M, Mohajerani B, Kelay V, Moosavi-Movahedi A. Can amino acids protect horseradish peroxidase against its suicide-peroxide substrate? Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Gil‐Rodríguez P, Ferreira‐Batista C, Vázquez‐Duhalt R, Valderrama B. A Novel Heme Peroxidase fromRaphanus sativusIntrinsically Resistant to Hydrogen Peroxide. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Ronsein GE, Oliveira MCB, Miyamoto S, Medeiros MHG, Di Mascio P. Tryptophan Oxidation by Singlet Molecular Oxygen [O2(1Δg)]: Mechanistic Studies Using18O-Labeled Hydroperoxides, Mass Spectrometry, and Light Emission Measurements. Chem Res Toxicol 2008; 21:1271-83. [DOI: 10.1021/tx800026g] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Ximenes VF, Rodrigues AP, Cabello C, de Menezes ML, Fernandes JR. The co-catalytic effect of chlorpromazine on peroxidase-mediated oxidation of melatonin: enhanced production of N1-acetyl-N2-formyl-5-methoxykynuramine. J Pineal Res 2008; 44:115-20. [PMID: 18289161 DOI: 10.1111/j.1600-079x.2007.00497.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating evidence points to relationships between increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. Chlorpromazine (CPZ), which remains a benchmark treatment for people with schizophrenia, has been described as a pro-oxidant compound. Because the antioxidant compound melatonin exerts protective effects against CPZ-induced liver disease in rats, in this investigation, our main objective was to study the effect of CPZ as a co-catalyst of peroxidase-mediated oxidation of melatonin. We found that melatonin was an excellent reductor agent of preformed CPZ cation radical (CPZ(*+)). The addition of CPZ during the horseradish peroxidase (HRP)-catalyzed oxidation of melatonin provoked a significant increase in the rate of oxidation and production of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK). Similar results were obtained using myeloperoxidase. The effect of CPZ on melatonin oxidation was rather higher at alkaline pH. At pH 9.0, the efficiency of oxidation of melatonin was 15 times higher and the production of AFMK was 30 times higher as compared with the assays in the absence of CPZ. We suggest that CPZ is able to exacerbate the rate of oxidation of melatonin by an electron transfer mechanism where CPZ(*+), generated during the peroxidase-catalyzed oxidation, is able to efficiently oxidize melatonin.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, Brasil.
| | | | | | | | | |
Collapse
|
25
|
Ling KQ, Li WS, Sayre LM. Oxidations of N-(3-Indoleethyl) Cyclic Aliphatic Amines by Horseradish Peroxidase: The Indole Ring Binds to the Enzyme and Mediates Electron-Transfer Amine Oxidation. J Am Chem Soc 2007; 130:933-44. [DOI: 10.1021/ja075905s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke-Qing Ling
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Shan Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Lawrence M. Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
26
|
Ximenes VF, Fernandes JR, Bueno VB, Catalani LH, de Oliveira GH, Machado RGP. The effect of pH on horseradish peroxidase-catalyzed oxidation of melatonin: production of N1-acetyl-N2-5-methoxykynuramine versus radical-mediated degradation. J Pineal Res 2007; 42:291-6. [PMID: 17349028 DOI: 10.1111/j.1600-079x.2007.00419.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a growing body of evidence that melatonin and its oxidation product, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Silva CLM, Tamura EK, Macedo SMD, Cecon E, Bueno-Alves L, Farsky SHP, Ferreira ZS, Markus RP. Melatonin inhibits nitric oxide production by microvascular endothelial cells in vivo and in vitro. Br J Pharmacol 2007; 151:195-205. [PMID: 17375079 PMCID: PMC2013957 DOI: 10.1038/sj.bjp.0707225] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that melatonin inhibits bradykinin-induced NO production by endothelial cells in vitro. The purpose of this investigation was to extend this observation to an in vivo condition and to explore the mechanism of action of melatonin. EXPERIMENTAL APPROACH RT-PCR assays were performed with rat cultured endothelial cells. The putative effect of melatonin upon arteriolar tone was investigated by intravital microscopy while NO production by endothelial cells in vitro was assayed by fluorimetry, and intracellular Ca(2+) measurements were assayed by confocal microscopy. KEY RESULTS No expression of the mRNA for the melatonin synthesizing enzymes, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase, or for the melatonin MT(2) receptor was detected in microvascular endothelial cells. Melatonin fully inhibited L-NAME-sensitive bradykinin-induced vasodilation and also inhibited NO production induced by histamine, carbachol and 2-methylthio ATP, but did not inhibit NO production induced by ATP or alpha, beta-methylene ATP. None of its inhibitory effects was prevented by the melatonin receptor antagonist, luzindole. In nominally Ca(2+)-free solution, melatonin reduced intracellular Ca(2+) mobilization induced by bradykinin (40%) and 2-methylthio ATP (62%) but not Ca(2+) mobilization induced by ATP. CONCLUSIONS AND IMPLICATIONS We have confirmed that melatonin inhibited NO production both in vivo and in vitro. In addition, the melatonin effect was selective for some G protein-coupled receptors and most probably reflects an inhibition of Ca(2+) mobilization from intracellular stores.
Collapse
Affiliation(s)
- C L M Silva
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - E K Tamura
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - S M D Macedo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - E Cecon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - L Bueno-Alves
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - S H P Farsky
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Z S Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - R P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
- Author for correspondence:
| |
Collapse
|
28
|
Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42:28-42. [PMID: 17198536 DOI: 10.1111/j.1600-079x.2006.00407.x] [Citation(s) in RCA: 1143] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin's interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans. Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
29
|
Rodrigues AP, da Fonseca LM, de Faria Oliveira OM, Brunetti IL, Ximenes VF. Oxidation of acetylacetone catalyzed by horseradish peroxidase in the absence of hydrogen peroxide. Biochim Biophys Acta Gen Subj 2006; 1760:1755-61. [PMID: 17049421 DOI: 10.1016/j.bbagen.2006.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques.
Collapse
Affiliation(s)
- Ana Paula Rodrigues
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
Ximenes VF, Silva SDO, Rodrigues MR, Catalani LH, Maghzal GJ, Kettle AJ, Campa A. Superoxide-dependent Oxidation of Melatonin by Myeloperoxidase. J Biol Chem 2005; 280:38160-9. [PMID: 16148002 DOI: 10.1074/jbc.m506384200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 2005; 2:22. [PMID: 16153306 PMCID: PMC1262766 DOI: 10.1186/1743-7075-2-22] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Accepted: 09/10/2005] [Indexed: 12/19/2022] Open
Abstract
Melatonin, originally discovered as a hormone of the pineal gland, is also produced in other organs and represents, additionally, a normal food constituent found in yeast and plant material, which can influence the level in the circulation. Compared to the pineal, the gastrointestinal tract contains several hundred times more melatonin, which can be released into the blood in response to food intake and stimuli by nutrients, especially tryptophan. Apart from its use as a commercial food additive, supraphysiological doses have been applied in medical trials and pure preparations are well tolerated by patients. Owing to its amphiphilicity, melatonin can enter any body fluid, cell or cell compartment. Its properties as an antioxidant agent are based on several, highly diverse effects. Apart from direct radical scavenging, it plays a role in upregulation of antioxidant and downregulation of prooxidant enzymes, and damage by free radicals can be reduced by its antiexcitatory actions, and presumably by contributions to appropriate internal circadian phasing, and by its improvement of mitochondrial metabolism, in terms of avoiding electron leakage and enhancing complex I and complex IV activities. Melatonin was shown to potentiate effects of other antioxidants, such as ascorbate and Trolox. Under physiological conditions, direct radical scavenging may only contribute to a minor extent to overall radical detoxification, although melatonin can eliminate several of them in scavenger cascades and potentiates the efficacy of antioxidant vitamins. Melatonin oxidation seems rather important for the production of other biologically active metabolites such as N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), which have been shown to also dispose of protective properties. Thus, melatonin may be regarded as a prodrug, too. AMK interacts with reactive oxygen and nitrogen species, conveys protection to mitochondria, inhibits and downregulates cyclooxygenase 2.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, D-37073 Göttingen, Germany
| | - SR Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 - 5Avenue, New York, NY 10029, USA
| |
Collapse
|
32
|
Ling KQ, Sayre LM. Horseradish peroxidase-mediated aerobic and anaerobic oxidations of 3-alkylindoles. Bioorg Med Chem 2005; 13:3543-51. [PMID: 15848767 DOI: 10.1016/j.bmc.2005.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 02/05/2005] [Accepted: 02/09/2005] [Indexed: 11/29/2022]
Abstract
Little is known about the HRP-mediated oxidations of 3-alkylindoles. Whereas 3-methylindole and 3-ethylindole were found to be turned over smoothly by HRP, reactions of tryptophol and N-acetyltryptamine were inefficient. Oxidations of the former two indoles by HRP under aerobic conditions led to the corresponding ring-opened o-acylformanilides and oxindoles, whereas anaerobic oxidations resulted in oxidative dimerization. The major products of anaerobic oxidation of 3-methylindole were shown to be two hydrated dimers, while anhydrodimers were obtained in the 3-ethyl case. The proposed mechanism involves HRP-mediated one-electron oxidation to give an indole radical that either dimerizes (anaerobic conditions) or reacts with O2 (aerobic conditions). Measured kinetics of indole oxidation by HRP compounds I and II mirrored their relative reactivities under turnover conditions. The observed comparable binding affinities for all four indole substrates investigated suggest that the low reactivity of tryptophol and N-acetyltryptamine reflect binding to HRP in an orientation that is disadvantageous to electron transfer oxidation of the indole ring.
Collapse
Affiliation(s)
- Ke-Qing Ling
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
33
|
Bian K, Gao Z, Weisbrodt N, Murad F. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci U S A 2003; 100:5712-7. [PMID: 12709594 PMCID: PMC156266 DOI: 10.1073/pnas.0931291100] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, substantial evidence has emerged that revealed a very close association between the formation of nitrotyrosine and the presence of activated granulocytes containing peroxidases, such as myeloperoxidase. Peroxidases share heme-containing homology and can use H(2)O(2) to oxidize substrates. Heme is a complex of iron with protoporphyrin IX, and the iron-containing structure of heme has been shown to be an oxidant in several model systems where the prooxidant effects of free iron, heme, and hemoproteins may be attributed to the formation of hypervalent states of the heme iron. In the current study, we have tested the hypothesis that free heme and iron play a crucial role in NO(2)-Tyr formation. The data from our study indicate that: (i) hemeiron catalyzes nitration of tyrosine residues by using hydrogen peroxide and nitrite, a reaction that revealed the mechanism underlying the protein nitration by peroxidase, H(2)O(2), and NO(2)(-); (ii) H(2)O(2) plays a key role in the protein oxidation that forms the basis for the protein nitration, whereas nitrite is an essential element that facilitates nitration by the heme(Fe), H(2)O(2), and the NO(2)(-) system; (iii) the formation of a Fe(IV) hypervalent compound may be essential for heme(Fe)-catalyzed nitration, whereas O(2)(*-) (ONOO(-) formation), (*)OH (Fenton reaction), and compound III are unlikely to contribute to the reaction; and (iv) hemoprotein-rich tissues such as cardiac muscle are vulnerable to protein nitration in pathological conditions characterized by the overproduction of H(2)O(2) and NO(2)(-), or nitric oxide.
Collapse
Affiliation(s)
- Ka Bian
- Department of Integrative Biology and Pharmacology, Institute of Molecular Medicine, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Rodrigues MR, Rodriguez D, Henrique Catalani L, Russo M, Campa A. Interferon-gamma independent oxidation of melatonin by macrophages. J Pineal Res 2003; 34:69-74. [PMID: 12485374 DOI: 10.1034/j.1600-079x.2003.02944.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mononuclear phagocytes appear to synthesize kynurenine-like products from the oxidation of biologically active indole compounds including melatonin, catalyzed by interferon (IFN)-gamma-inducible enzyme indoleamine 2,3-dioxygenase (IDO). Concanavalin A (Con A) is a plant lectin that induces interferon-gamma (IFN-gamma) production by T cells. In this study we investigated whether Con A-primed peritoneal macrophages are able to oxidize melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). The AFMK production was accompanied by chemiluminescence. It was found that Con A-primed but not resident macrophages produce AFMK. Surprisingly, Con A-primed macrophages from IFN-gamma-deficient mice were as effective as macrophages from IFN-gamma-sufficient mice in oxidizing melatonin. Moreover, addition of an inhibitor of IDO (1-methyltryptophan) did not affect melatonin oxidation. Con A-primed but not resident macrophages have a significant content of myeloperoxidase (MPO) and inhibition of MPO by azide completely blocked chemiluminescence and AFMK production. Thus, our findings provide evidence that melatonin oxidation by macrophages may occur through a mechanism dependent of MPO and independent of IFN-gamma and IDO activity.
Collapse
Affiliation(s)
- Maria R Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
35
|
Olsen LF, Kummer U, Kindzelskii AL, Petty HR. A model of the oscillatory metabolism of activated neutrophils. Biophys J 2003; 84:69-81. [PMID: 12524266 PMCID: PMC1302594 DOI: 10.1016/s0006-3495(03)74833-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Accepted: 09/04/2002] [Indexed: 11/18/2022] Open
Abstract
We present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration. The period of oscillation changes from >200 s to 10-30 s. The model is consistent with previously reported oscillations in cell metabolism and oxidant production. Key features and predictions of the model were confirmed experimentally. The requirement of the hexose monophosphate pathway for 10 s oscillations was verified using 6-aminonicotinamide and dexamethasone, which are inhibitors of glucose-6-phosphate dehydrogenase. The role of the NADPH oxidase in promoting oscillations was confirmed by dose-response studies of the effect of diphenylene iodonium, an inhibitor of the NADPH oxidase. Moreover, the model predicted an increase in the amplitude of NADPH oscillations in the presence of melatonin, which was confirmed experimentally. Successful computer modeling of complex chemical dynamics within cells and their chemical perturbation will enhance our ability to identify new antiinflammatory compounds.
Collapse
Affiliation(s)
- Lars F Olsen
- European Media Laboratory, Schloss-Wolfsbrunnenweg 33, D-69118 Heidelberg, Germany.
| | | | | | | |
Collapse
|
36
|
Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. CHEMISTRY & BIOLOGY 2002; 9:555-65. [PMID: 12031662 DOI: 10.1016/s1074-5521(02)00149-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As the number of industrial applications for proteins continues to expand, the exploitation of protein engineering becomes critical. It is predicted that protein engineering can generate enzymes with new catalytic properties and create desirable, high-value, products at lower production costs. Peroxidases are ubiquitous enzymes that catalyze a variety of oxygen-transfer reactions and are thus potentially useful for industrial and biomedical applications. However, peroxidases are unstable and are readily inactivated by their substrate, hydrogen peroxide. Researchers rely on the powerful tools of molecular biology to improve the stability of these enzymes, either by protecting residues sensitive to oxidation or by devising more efficient intramolecular pathways for free-radical allocation. Here, we discuss the catalytic cycle of peroxidases and the mechanism of the suicide inactivation process to establish a broad knowledge base for future rational protein engineering.
Collapse
Affiliation(s)
- Brenda Valderrama
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Morelos 62250, México.
| | | | | |
Collapse
|