1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Stetskaya TA, Krapiva AB, Kobzeva KA, Gurtovoy DE, Komkova GV, Polonikov AV, Bushueva OY. Polymorphism in Genes Encoding Adaptor Proteins ST13 and STIP1 and the Risk of Ischemic Stroke: a Pilot Study. Bull Exp Biol Med 2024; 176:477-480. [PMID: 38492099 DOI: 10.1007/s10517-024-06050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 03/18/2024]
Abstract
Adaptor proteins stress induced phosphoprotein 1 (STIP1) and ST13 Hsp70 interacting protein (ST13) may play a crucial role in the pathophysiology of ischemic stroke through controlling protein folding, neuronal survival, and regulation of HSP70/HSP90. The present pilot study investigated whether tagSNPs in genes encoding ST13 (rs138335, rs138344, rs7290793, and rs138344) and STIP1 (rs4980524) are associated with ischemic stroke. DNA samples from 721 ischemic stroke patients and 471 healthy controls were genotyped using the MassArray-4. Our research revealed a relationship between rs138344 ST13 and the risk of ischemic stroke, which was seen only in females (risk allele G; OR=1.34, 95%CI=1.07-1.69; p=0.01). The haplotype rs138335G-rs138344C-rs7290793C ST13 was linked with lower risk of ischemic stroke in females: OR=0.42; 95%CI=0.26-0.68; p=0.0005. Thus, ST13 represents a novel genetic marker for ischemic stroke.
Collapse
Affiliation(s)
- T A Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute of Genetics and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A B Krapiva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - K A Kobzeva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - D E Gurtovoy
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - G V Komkova
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A V Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute of Genetics and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - O Yu Bushueva
- Laboratory of Genomic Research, Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
- Department of Biology, Medical Genetics, and Ecology, Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| |
Collapse
|
3
|
Patnaik S, Nathan S, Kar B, Gregoric ID, Li YP. The Role of Extracellular Heat Shock Proteins in Cardiovascular Diseases. Biomedicines 2023; 11:1557. [PMID: 37371652 DOI: 10.3390/biomedicines11061557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
In the early 1960s, heat shock proteins (HSPs) were first identified as vital intracellular proteinaceous components that help in stress physiology and reprogram the cellular responses to enable the organism's survival. By the early 1990s, HSPs were detected in extracellular spaces and found to activate gamma-delta T-lymphocytes. Subsequent investigations identified their association with varied disease conditions, including autoimmune disorders, diabetes, cancer, hepatic, pancreatic, and renal disorders, and cachexia. In cardiology, extracellular HSPs play a definite, but still unclear, role in atherosclerosis, acute coronary syndromes, and heart failure. The possibility of HSP-targeted novel molecular therapeutics has generated much interest and hope in recent years. In this review, we discuss the role of Extracellular Heat Shock Proteins (Ec-HSPs) in various disease states, with a particular focus on cardiovascular diseases.
Collapse
Affiliation(s)
- Soumya Patnaik
- Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sriram Nathan
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Biswajit Kar
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yi-Ping Li
- Division of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Linares-Alcántara E, Mendlovic F. Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity. Immunol Invest 2022; 51:1725-1755. [PMID: 34986758 DOI: 10.1080/08820139.2021.2020812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.
Collapse
Affiliation(s)
- Elizabeth Linares-Alcántara
- Facultad de Ciencias, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
| |
Collapse
|
5
|
Tupta B, Stuehr E, Sumi MP, Sweeny EA, Smith B, Stuehr DJ, Ghosh A. GAPDH is involved in the heme-maturation of myoglobin and hemoglobin. FASEB J 2022; 36:e22099. [PMID: 34972240 DOI: 10.1096/fj.202101237rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
GAPDH, a heme chaperone, has been previously implicated in the incorporation of heme into iNOS and soluble guanylyl cyclase (sGC). Since sGC is critical for myoglobin (Mb) heme-maturation, we investigated the role of GAPDH in the maturation of this globin, as well as hemoglobins α, β, and γ. Utilizing cell culture systems, we found that overexpression of wild-type GAPDH increased, whereas GAPDH mutants H53A and K227A decreased, the heme content of Mb and Hbα and Hbβ. Overexpression of wild-type GAPDH fully recovered the heme-maturation inhibition observed with the GAPDH mutants. Partial rescue was observed by overexpression of sGCβ1 but not by overexpression of a sGCΔβ1 deletion mutant, which is unable to bind the sGCα1 subunit required to form the active sGCα1β1 complex. Wild type and mutant GAPDH was found to be associated in a complex with each of the globins and Hsp90. GAPDH at endogenous levels was found to be associated with Mb in differentiating C2C12 myoblasts, and with Hbγ or Hbα in differentiating HiDEP-1 erythroid progenitor cells. Knockdown of GAPDH in C2C12 cells suppressed Mb heme-maturation. GAPDH knockdown in K562 erythroleukemia cells suppressed Hbα and Hbγ heme-maturation as well as Hb dimerization. Globin heme incorporation was not only dependent on elevated sGCα1β1 heterodimer formation, but also influenced by iron provision and magnitude of expression of GAPDH, d-aminolevulinic acid, and FLVCR1b. Together, our data support an important role for GAPDH in the maturation of myoglobin and γ, β, and α hemoglobins.
Collapse
Affiliation(s)
- Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Brandon Smith
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Tuusa J, Koski MK, Ruskamo S, Tasanen K. The intracellular domain of BP180/collagen XVII is intrinsically disordered and partially folds in an anionic membrane lipid-mimicking environment. Amino Acids 2020; 52:619-627. [PMID: 32219587 DOI: 10.1007/s00726-020-02840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The trimeric transmembrane collagen BP180, also known as collagen XVII, is an essential component of hemidesmosomes at the dermal-epidermal junction and connects the cytoplasmic keratin network to the extracellular basement membrane. Dysfunction of BP180 caused by mutations in patients with junctional epidermolysis bullosa or autoantibodies in those with bullous pemphigoid leads to severe skin blistering. The extracellular collagenous domain of BP180 participates in the protein's triple-helical folding, but the structure and functional importance of the intracellular domain (ICD) of BP180 are largely unknown. In the present study, we purified and characterized human BP180 ICD. When expressed in Escherichia coli as glutathione-S-transferase or 6 × histidine tagged fusion protein, the BP180 ICD was found to exist as a monomer. Analysis of the secondary structure content by circular dichroism spectroscopy revealed that the domain is intrinsically disordered. This finding aligned with that of a bioinformatic analysis, which predicted a disordered structure. Interestingly, both anionic detergent micelles and lipid vesicles induced partial folding of the BP180 ICD, suggesting that in its natural environment, the domain's folding and unfolding may be regulated by interaction with the cell membrane or accompanying proteins. We hypothesize that the intrinsically disordered structure of the ICD of BP180 contributes to the mechanism that allows the remodeling of hemidesmosome assembly.
Collapse
Affiliation(s)
- Jussi Tuusa
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - M Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
8
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
9
|
Nellimarla S, Baid K, Loo YM, Gale M, Bowdish DME, Mossman KL. Class A Scavenger Receptor-Mediated Double-Stranded RNA Internalization Is Independent of Innate Antiviral Signaling and Does Not Require Phosphatidylinositol 3-Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2015; 195:3858-65. [PMID: 26363049 DOI: 10.4049/jimmunol.1501028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
Abstract
dsRNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and after release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As) mediate dsRNA entry, it is unknown whether they contribute to signaling beyond ligand internalization. In this study, we investigated whether SR-As contribute to innate immune signaling independent of the classic TLR and retinoic acid-inducible gene-I-like receptor (RLR) pathways. We generated a stable A549 human epithelial cell line with inducible expression of the hepatitis C virus protease NS3/4A, which efficiently cleaves TRIF and IFN-β promoter stimulator 1, adaptors for TLR3 and the RLRs, respectively. Cells expressing NS3/4A and TLR3/MyD88/IFN-β promoter stimulator 1(-/-) mouse embryonic fibroblasts completely lacked antiviral activity to extracellular dsRNA relative to control cells, suggesting that SR-As do not possess signaling capacity independent of TLR3 or the RLRs. Previous studies implicated PI3K signaling in SR-A-mediated activities and in downstream production of type I IFN. We found that SR-A-mediated dsRNA internalization occurs independent of PI3K activation, whereas downstream signaling leading to IFN production was partially dependent on PI3K activity. Overall, these findings suggest that SR-A-mediated dsRNA internalization is independent of innate antiviral signaling.
Collapse
Affiliation(s)
- Srinivas Nellimarla
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Kaushal Baid
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA 98109; and
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA 98109; and
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1; Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
10
|
Nellimarla S, Mossman KL. Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res 2015; 34:419-26. [PMID: 24905198 DOI: 10.1089/jir.2014.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Double-stranded RNA (dsRNA) is arguably the most potent viral trigger of innate immune signaling. Its activity has been recognized for over 5 decades, first as a toxin, then as a central component of the interferon system, as an efficient activator of antiviral responses and an immunomodulator for therapeutic applications. Nucleic acid sensing is the main basis for antiviral defense systems throughout the diverse forms of life from bacteria to plants and animals. Pattern recognition receptors of the host defense system not only sense viral dsRNA as a pathogen-associated molecular pattern in infected cells, but also recognize circulating endogenous dsRNA, a nonmicrobial signal, as a danger-associated molecular pattern, often leading to autoimmunity. Despite the effects of extracellular viral and host dsRNA associated with infection and autoimmunity, respectively, the understanding of cellular mechanisms for its recognition and uptake has only been appreciated in recent years. This review presents an overview of this unique form of nucleic acid, addressing its roles in infection, autoimmunity, and host sensing mechanisms. The goal of this review is to highlight the novel findings with a focus on extracellular recognition and uptake by the cell.
Collapse
Affiliation(s)
- Srinivas Nellimarla
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University , Hamilton, Ontario, Canada
| | | |
Collapse
|
11
|
Ben J, Zhang Y, Zhou R, Zhang H, Zhu X, Li X, Zhang H, Li N, Zhou X, Bai H, Yang Q, Li D, Xu Y, Chen Q. Major vault protein regulates class A scavenger receptor-mediated tumor necrosis factor-α synthesis and apoptosis in macrophages. J Biol Chem 2013; 288:20076-84. [PMID: 23703615 DOI: 10.1074/jbc.m112.449538] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Giovine M, Scarfì S, Pozzolini M, Penna A, Cerrano C. Cell reactivity to different silica. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:143-174. [PMID: 24420713 DOI: 10.1007/978-3-642-41004-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between mineral structures and living beings is increasingly attracting the interest of research. The formation of skeletons, geomicrobiology, the study of the origin of life, soil biology, benthos biology, human and mammalian diseases generated by the inhalation of dust and biomaterials are some examples of scientific areas where the topic has a relevance. In this chapter we focus on cell reactivity to siliceous rocks and to the various forms of silicon dioxide, in particular. The examples here reported carefully review how such minerals may strongly affect different living beings, from simple ones to humans. The biomineralogy concept is explained, focusing on the effects of rocks on cell growth and development. The toxic action of silicon dioxide in mammalian lungs is the oldest evidence of crystalline silica bioactivity. More recently, we could demonstrate that crystalline silica has a deep impact on cell biology throughout the whole animal kingdom. One of the most illustrative case studies is the marine sponge Chondrosia reniformis, which has the amazing ability to incorporate and etch crystalline silica releasing dissolved silicates in the medium. This specific and selective action is due to the chemical reaction of ascorbic acid with quartz surfaces. One consequence of this is an increased production of collagen. The discovery of this mechanism opened the door to a new understanding of silica toxicity for animal cells and mammalian cells in particular. The presence of silica in sea water and substrates also affects processes like the settlement of larvae and the growth of diatoms. The following sections review all such aspects.
Collapse
Affiliation(s)
- Marco Giovine
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genoa, Italy,
| | | | | | | | | |
Collapse
|
13
|
Hypobaric Hypoxia and Reoxygenation Induce Proteomic Profile Changes in the Rat Brain Cortex. Neuromolecular Med 2012; 15:82-94. [DOI: 10.1007/s12017-012-8197-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
14
|
Xu Q, Metzler B, Jahangiri M, Mandal K. Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol 2011; 302:H506-14. [PMID: 22058161 DOI: 10.1152/ajpheart.00646.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.
Collapse
Affiliation(s)
- Qingbo Xu
- Cardiovascular Division, King's British Heart Foundation Center, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Wang D, Eiz-Vesper B, Zeitvogel J, Dressel R, Werfel T, Wittmann M. Human keratinocytes release high levels of inducible heat shock protein 70 that enhances peptide uptake. Exp Dermatol 2011; 20:637-41. [DOI: 10.1111/j.1600-0625.2011.01287.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Mookherjee N, Lippert DND, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, Pistolic J, Gardy J, Miri P, Naseer M, Foster LJ, Hancock REW. Intracellular receptor for human host defense peptide LL-37 in monocytes. THE JOURNAL OF IMMUNOLOGY 2009; 183:2688-96. [PMID: 19605696 DOI: 10.4049/jimmunol.0802586] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human cationic host defense peptide LL-37 has a broad range of immunomodulatory, anti-infective functions. A synthetic innate defense regulator peptide, innate defense regulator 1 (IDR-1), based conceptually on LL-37, was recently shown to selectively modulate innate immunity to protect against a wide range of bacterial infections. Using advanced proteomic techniques, ELISA, and Western blotting procedures, GAPDH was identified as a direct binding partner for LL-37 in monocytes. Enzyme kinetics and mobility shift studies also indicated LL-37 and IDR-1 binding to GAPDH. The functional relevance of GAPDH in peptide-induced responses was demonstrated by using gene silencing of GAPDH with small interfering RNA (siRNA). Previous studies have established that the induction of chemokines and the anti-inflammatory cytokine IL-10 are critical immunomodulatory functions in the anti-infective properties of LL-37 and IDR-1, and these functions are modulated by the MAPK p38 pathway. Consistent with that, this study demonstrated the importance of the GAPDH interactions with these peptides since gene silencing of GAPDH resulted in impaired p38 MAPK signaling, downstream chemokine and cytokine transcriptional responses induced by LL-37 and IDR-1, and LL-37-induced cytokine production. Bioinformatic analysis, using InnateDB, of the major interacting partners of GAPDH indicated the likelihood that this protein can impact on innate immune pathways including p38 MAPK. Thus, this study has demonstrated a novel function for GAPDH as a mononuclear cell receptor for human cathelicidin LL-37 and immunomodulatory IDR-1 and conclusively demonstrated its relevance in the functioning of cationic host defense peptides.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang X, Zheng Y, Xu Y, Ben J, Gao S, Zhu X, Zhuang Y, Yue S, Bai H, Chen Y, Jiang L, Ji Y, Xu Y, Fan L, Sha J, He Z, Chen Q. A novel peptide binding to the cytoplasmic domain of class A scavenger receptor reduces lipid uptake in THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:76-83. [PMID: 19049904 DOI: 10.1016/j.bbalip.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/08/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
Class A scavenger receptor (SR-A) contributes primarily to lipid accumulation in cells. The cytoplasmic domain of SR-A (CSR-A) is responsible for internalization of the receptor-ligand complex into cells. In the present study we tried to reduce cellular uptake of acetylated low density lipoprotein (AcLDL) by inducing the interaction between the CSR-A and a novel peptide H11, which was screened from a phage-displayed peptide library. When H11 was fused with a cross membrane peptide TAT, the fusion peptide could enter cell efficiently. The peptide H11 inhibited the binding and uptake of DiI-AcLDL and attenuated lipid accumulation in the differentiated human acute monocytic leukemia cell line (THP-1) macrophages. Furthermore, the interaction of peptide H11 with the CSR-A inhibited the expression of SR-A protein as well as the phosphorylation of c-jun N-terminal kinase 2 (JNK2) in cells, which mediates cellular lipid accumulation-related signaling pathways. These results suggest that the CSR-A can be a potential target to prevent lipid accumulation in cells. The peptide H11 may be useful in regulating SR-A functions in macrophages.
Collapse
Affiliation(s)
- Xiaohua Wang
- Institute of Reproductive Medicine, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 2008; 49:134-40. [PMID: 18692595 PMCID: PMC2592563 DOI: 10.1016/j.vph.2008.06.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA
| | | | | |
Collapse
|
19
|
Hamilton RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med 2008; 44:1246-58. [PMID: 18226603 PMCID: PMC2680955 DOI: 10.1016/j.freeradbiomed.2007.12.027] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/22/2007] [Accepted: 12/15/2007] [Indexed: 11/22/2022]
Abstract
Inhalation of the crystalline form of silica is associated with a variety of pathologies, from acute lung inflammation to silicosis, in addition to autoimmune disorders and cancer. Basic science investigators looking at the mechanisms involved with the earliest initiators of disease are focused on how the alveolar macrophage interacts with the inhaled silica particle and the consequences of silica-induced toxicity on the cellular level. Based on experimental results, several rationales have been developed for exactly how crystalline silica particles are toxic to the macrophage cell that is functionally responsible for clearance of the foreign particle. For example, silica is capable of producing reactive oxygen species (ROS) either directly (on the particle surface) or indirectly (produced by the cell as a response to silica), triggering cell-signaling pathways initiating cytokine release and apoptosis. With murine macrophages, reactive nitrogen species are produced in the initial respiratory burst in addition to ROS. An alternative explanation for silica toxicity includes lysosomal permeability, by which silica disrupts the normal internalization process leading to cytokine release and cell death. Still other research has focused on the cell surface receptors (collectively known as scavenger receptors) involved in silica binding and internalization. The silica-induced cytokine release and apoptosis are described as the function of receptor-mediated signaling rather than free radical damage. Current research ideas on silica toxicity and binding in the alveolar macrophage are reviewed and discussed.
Collapse
Affiliation(s)
- Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, SB 154, Missoula, MT 59812, USA
| | | | | |
Collapse
|
20
|
Fuchs D, Piller R, Linseisen J, Daniel H, Wenzel U. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics 2007; 7:3278-88. [PMID: 17708591 DOI: 10.1002/pmic.200700096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flaxseed is one of the richest sources of lignans that are converted to enterolactone by the intestinal microflora. Enterolactone has been suggested to be the prime active compound mediating atherosclerosis-protective effects that were shown for flaxseed. The effects of a 1-wk intervention with 0.4 g of flaxseed/kg body weight per day on enterolactone plasma levels in seven healthy men revealed that all participants (PAs) responded with enhanced enterolactone plasma levels. Proteome analysis of peripheral blood mononuclear cells (PBMC) from donors before, during, and after the intervention showed that flaxseed consumption affected significantly the steady-state levels of 16 proteins of which four were altered in a similar manner when blood mononuclear cells were exposed ex vivo to enterolactone. Enhanced levels of peroxiredoxin and reduced levels of the long-chain fatty acid beta-oxidation multienzyme complex may be taken as indicators of a reduced oxidative stress whereas reduced levels of glycoprotein IIIa/II could indicate improved protection from thrombotic and inflammatory processes. In conclusion, the blood mononuclear cell proteome responds to dietary flaxseed intake with changes in a number of atherosclerosis-relevant proteins that may be taken as biomarkers of exposure and some of these changes observed can be attributed to the action of the lignan metabolite enterolactone.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | | | | | | | | |
Collapse
|
21
|
Maurer MH, Haux D, Sakowitz OW, Unterberg AW, Kuschinsky W. Identification of early markers for symptomatic vasospasm in human cerebral microdialysate after subarachnoid hemorrhage: preliminary results of a proteome-wide screening. J Cereb Blood Flow Metab 2007; 27:1675-83. [PMID: 17327882 DOI: 10.1038/sj.jcbfm.9600466] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major complication of aneurysmal subarachnoid hemorrhage (SAH) is symptomatic vasospasm, a complex syndrome consisting of neurological deterioration and exclusion of other sources of ischemia. Approximately 30% of SAH patients are affected. Although symptomatic vasospasm is associated with high mortality and poor clinical outcome, it is not possible to identify the individual risk on a molecular level for patients before symptoms have developed. In this study, we hypothesize that protein changes occur in the cerebral microdialysate of patients who later develop symptomatic vasospasm which are not found in matched-pairs control subjects. We searched for changes in protein concentrations in microdialysate sampled from the fronto-temporal brain tissue of five vasospastic and five nonvasospastic SAH patients using proteomics technology based on two-dimensional gel electrophoresis and mass spectrometry. Microdialysate samples were taken at least 1.5 days before the onset of symptomatic vasospasm. Comparing protein expression profiles, we found that the protein concentrations of several isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were 1.79-fold+/-1.29 (N=5, P<0.05) higher in the group which later developed symptomatic vasospasm, whereas heat-shock cognate 71 kDa protein (HSP7C) isoforms were decreased to 0.50-fold+/-0.19 (N=5, P<0.05; all expression data means+/-s.d.). The changes in protein concentrations were detected 3.8+/-1.7 days (N=5, P<0.05) before symptomatic vasospasm developed. We conclude that GAPDH and HSP7C may be used as early markers indicating the later development of symptomatic vasospasm after SAH, enabling selective early therapeutic intervention in this high-risk group of patients.
Collapse
Affiliation(s)
- Martin H Maurer
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
23
|
NK cell-based immunotherapies against tumors. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNatural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Collapse
|
24
|
Asea A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. CURRENT IMMUNOLOGY REVIEWS 2006; 2:209-215. [PMID: 17502920 PMCID: PMC1868403 DOI: 10.2174/157339506778018514] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heat shock proteins exert their beneficial effects via basically two modes of action depending on their relative location within the host. Intracellular heat shock proteins found within cells serve a cytoprotective role by chaperoning naïve, misfolded and/or denatured proteins in response to stressful stimuli by a process known as the stress response. However, stressful stimuli also induce the release of intracellular heat shock proteins into the extracellular milieu and circulation. The extracellular heat shock protein proteins serve a cytostimulatory role by initiating immune responses designed to fend off microbial infection and destroy neoplastic transformed cells. This review will briefly cover recent advances into elucidating the mechanism(s) by which stress induces the release of heat shock proteins into the circulation, how it initiates immune responses and suggest the possible biological significance of circulating Hsp to the host.
Collapse
Affiliation(s)
- Alexzander Asea
- Division of Investigative Pathology, Scott & White Clinic and Texas A&M University System Health Science Center College of Medicine, 2401 South 31 Street, Temple, TX 76508, USA
| |
Collapse
|
25
|
Nakamura T, Suzuki H, Wada Y, Kodama T, Doi T. Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochem Biophys Res Commun 2006; 343:286-94. [PMID: 16540084 DOI: 10.1016/j.bbrc.2006.02.146] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/24/2006] [Indexed: 11/29/2022]
Abstract
It has been reported that ligands of the macrophage scavenger receptor (MSR) induce a range of cellular responses including urokinase-type plasminogen activator and the production of inflammatory cytokines. Although nitric oxide (NO) is an important regulatory molecule in physiological functions such as vascular homeostasis, neurotransmission, and host defense, the effect of MSR ligands on NO production from macrophages was unknown. Here, we demonstrate that the MSR ligand, fucoidan, but neither oxidized low-density lipoprotein, acetylated LDL, maleylated bovine serum albumin nor dextran sulfate induces activation of inducible nitric oxide synthase (iNOS) promoter or NO production in RAW264.7 cells. Furthermore, we investigated the molecular mechanism by which fucoidan induces iNOS promoter activation. Using different inhibitors, we showed that the stimulation of fucoidan was mediated by both the p38 mitogen-activated protein kinase and the NF-kappaB-dependent pathways. Although these two pathways were independent, heat shock protein 90 (HSP90) played a significant role in both pathways. Our previous study showed that HSP90 directly interacts with the cytoplasmic domain of MSR. These results provide the evidence that HSP90 bound to the cytoplasmic domain of MSR is implicated in MSR-mediated signal transduction. Moreover, fucoidan-induced NO production by peritoneal macrophages from MSR-knockout (MSR-/-) mice significantly decreases compared with those from wild-type mice. This is the first indication that MSR transduces the signal of fucoidan to iNOS gene expression.
Collapse
Affiliation(s)
- Toshinobu Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR. Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 2005; 5:4894-904. [PMID: 16281185 DOI: 10.1002/pmic.200500047] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The extracellular matrix is a vital compartment in plants with a prominent role in defence against pathogen attack. Using a maize cell suspension culture system and pathogen elicitors, responses to pathogen attack that are localised to the extracellular matrix were examined by a proteomic approach. Elicitor treatment of cell cultures induced a rapid change in the phosphorylation status of extracellular peroxidases, the apparent disappearance of a putative extracellular beta-N-acetylglucosamonidase, and accumulation of a secreted putative xylanase inhibitor protein. Onset of the defence response was attended by an accumulation of glyceraldehyde-3-phosphate dehydrogenase and a fragment of a putative heat shock protein. Several distinct spots of both proteins, which preferentially accumulated in cell wall protein fractions, were identified. These three novel observations, viz. (i) secretion of a new class of putative enzyme inhibitor, (ii) the apparent recruitment of classical cytosolic proteins into the cell wall and (ii) the change in phosphorylation status of extracellular matrix proteins, suggest that the extracellular matrix plays a complex role in defence. We discuss the role of the extracellular matrix in signal modulation during pathogen-induced defence responses.
Collapse
Affiliation(s)
- Stephen Chivasa
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
27
|
Yan L, Cerny RL, Cirillo JD. Evidence that hsp90 is involved in the altered interactions of Acanthamoeba castellanii variants with bacteria. EUKARYOTIC CELL 2005; 3:567-78. [PMID: 15189979 PMCID: PMC420136 DOI: 10.1128/ec.3.3.567-578.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are many similarities between the interactions of environmental protozoa with pathogenic bacterial species and those observed in mammalian macrophages. Since single-celled protozoa predate mammalian hosts, it is likely that interactions in environmental biofilms have selected for many of the bacterial virulence mechanisms responsible for human disease. In order to better understand bacterial-phagocyte interactions, we developed a selection for Acanthamoeba castellanii variants that are more resistant to killing by bacterial pathogens. We identified four amoebal clones that display decreased phagocytosis of bacteria but no difference in uptake of latex beads compared to wild-type amoebae. These amoebal variants display differences in cellular morphology, partial resistance to killing by bacteria, more bactericidal activity, and higher frequencies of lysosome fusion with the bacterial vacuole. Three proteins are present at lower levels in these variants than in wild-type amoebae, and matrix-assisted laser desorption ionization-time of flight mass spectrometry allowed identification of two of them as actin and hsp90. We found that specific inhibitors of hsp90 produce a similar phenotypic effect in macrophages. These data suggest that hsp90 plays a role in phagocytic and, possibly, bactericidal pathways that affect interactions of phagocytic cells with bacteria.
Collapse
Affiliation(s)
- Ling Yan
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | | | | |
Collapse
|
28
|
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45:269-90. [PMID: 15822178 DOI: 10.1146/annurev.pharmtox.45.120403.095902] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential. Knowledge concerning the mechanisms underlying GAPDH nuclear translocation and subsequent cell death is growing. Additional evidence suggests that GAPDH may be an intracellular sensor of oxidative stress during early apoptosis. Abnormal expression, nuclear accumulation, changes in physical properties, and loss of glycolytic activity of GAPDH have been found in cellular and transgenic models as well as postmortem tissues of several neurodegenerative diseases. The interaction of GAPDH with disease-related proteins as well as drugs used to treat these diseases suggests that it is a potential molecular target for drug development.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | | | |
Collapse
|
29
|
Beamer CA, Holian A. Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am J Physiol Lung Cell Mol Physiol 2005; 289:L186-95. [PMID: 15849212 DOI: 10.1152/ajplung.00474.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar macrophages express the class A scavenger receptor (CD204) (Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, and Linton MF. Arterioscler Thromb Vasc Biol 20: 2593-2599, 2000); yet its role in vivo in lung defense against environmental particles has not been clearly defined. In the current study, CD204 null mice (129Sv background) were used to investigate the link between CD204 and downstream events of inflammation and fibrosis following silica exposure in vivo. CD204-/- macrophages were shown to recognize and uptake silica in vitro, although this response was attenuated compared with 129Sv wild-type mice. The production of tumor necrosis factor-alpha in lavage fluid was significantly enhanced in CD204 null mice compared with wild-type mice following silica exposure. Moreover, after exposure to environmental particles, CD204-/- macrophages exhibited improved cell viability in a dose-dependent manner compared with wild-type macrophages. Finally, histopathology from a murine model of chronic silicosis in 129Sv wild-type mice displayed typical focal lesions, interstitial thickening with increased connective tissue matrix, and cellular infiltrate into air space. In contrast, CD204-/- mice exhibited little to no deposition of collagen, yet they demonstrated enhanced accumulation of inflammatory cells largely composed of neutrophils. Our findings point to an important role of CD204 in mounting an efficient and appropriately regulated immune response against inhaled particles. Furthermore, these results indicate that the functions of CD204 are critical to the development of fibrosis and the resolution of inflammation.
Collapse
Affiliation(s)
- Celine A Beamer
- Univ. of Montana, Center for Environmental Health Sciences, Dept. of Biomedical and Pharmaceutical Sciences, School of Pharmacy and Allied Health Sciences, Skaggs Bldg., Rm. 155, Missoula, MT 59812-1552, USA.
| | | |
Collapse
|
30
|
Abstract
The role of stress proteins in immunity and their feasibility as vaccine vehicles against infectious disease have been the focus of intensive examination. Endoplasmic reticulum (ER)-resident stress proteins in particular are interesting model proteins as they perform crucial functions in an organelle that responds promptly to cell stress. We describe transcriptional regulation of ER-resident stress proteins, their involvement in the cellular response to infection and discuss their potential as vaccine candidates against infectious diseases.
Collapse
Affiliation(s)
- Ulrike K Rapp
- Max Planck Institute for Infection Biology, Schumannstrasse 21-22, 10117 Berlin, Germany.
| | | |
Collapse
|
31
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
32
|
Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228:111-33. [PMID: 12563018 DOI: 10.1177/153537020322800201] [Citation(s) in RCA: 1080] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems. In the 5 years since we last reviewed this subject, much has been learned about hsp90 structure, nucleotide-binding, and cochaperone interactions; the most important concept is that ATP hydrolysis by an intrinsic ATPase activity results in a conformational change in hsp90 that is required to induce conformational change in a substrate protein. The conformational change induced in steroid receptors is an opening of the steroid-binding cleft so that it can be accessed by steroid. We have now developed a minimal system of five purified proteins-hsp90, hsp70, Hop, hsp40, and p23- that assembles stable receptor*hsp90 heterocomplexes. An hsp90*Hop*hsp70*hsp40 complex opens the cleft in an ATP-dependent process to produce a receptor*hsp90 heterocomplex with hsp90 in its ATP-bound conformation, and p23 then interacts with the hsp90 to stabilize the complex. Stepwise assembly experiments have shown that hsp70 and hsp40 first interact with the receptor in an ATP-dependent reaction to produce a receptor*hsp70*hsp40 complex that is "primed" to be activated to the steroid-binding state in a second ATP-dependent step with hsp90, Hop, and p23. Successful use of the five-protein system with other substrates indicates that it can assemble signal protein*hsp90 heterocomplexes whether the substrate is a receptor, a protein kinase, or a transcription factor. This purified system should facilitate understanding of how eukaryotic hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|