1
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
2
|
Mayer CM, Fick LJ, Gingerich S, Belsham DD. Hypothalamic cell lines to investigate neuroendocrine control mechanisms. Front Neuroendocrinol 2009; 30:405-23. [PMID: 19341762 DOI: 10.1016/j.yfrne.2009.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 12/22/2022]
Abstract
The hypothalamus is the control center for most physiological processes; yet has been difficult to study due to the inherent heterogeneity of this brain region. For this reason, researchers have turned towards cell models. Primary hypothalamic cultures are difficult to maintain, are heterogeneous neuronal and glial cell populations and often contain a minimal number of viable peptide-secreting neurons. In contrast, immortalized, clonal cell lines represent an unlimited, homogeneous population of neurons that can be manipulated using a number of elegant molecular techniques. Cell line studies and in vivo experimentation are complementary and together provide a powerful tool to drive scientific discovery. This review focuses on three key neuroendocrine systems: energy homeostasis, reproduction, and circadian rhythms; and the use of hypothalamic cell lines to dissect the complex pathways utilized by individual neurons in these systems.
Collapse
|
3
|
Mukai M, Tischkau SA. Effects of tryptophan photoproducts in the circadian timing system: searching for a physiological role for aryl hydrocarbon receptor. Toxicol Sci 2006; 95:172-81. [PMID: 17020875 DOI: 10.1093/toxsci/kfl126] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) mediates adverse effects of dioxins, but its physiological role remains ambiguous. The similarity between AhR and canonical circadian clock genes suggests potential involvement of AhR in regulation of circadian timing. Photoproducts of tryptophan (TRP), including 6-formylindolo[3,2-b]carbazole (FICZ), have high affinity for AhR and are postulated as endogenous ligands. Although TRP photoproducts activate AhR signaling in vitro, their effects in vivo have not been investigated in mammals. Because TRP photoproducts may act as transducers of light, we examined their effects on the circadian clock. Intraperitoneal injection of TRP photoproducts or FICZ to C57BL/6J mice dose dependently induced AhR downstream targets, cytochrome P4501A1 (CYP1A1) and cytochrome P4501B1 mRNA expression, in liver. c-fos mRNA, a commonly used marker for light responses, was also induced with FICZ, and all responses were AhR dependent. A rat-immortalized suprachiasmatic nucleus (SCN) cell line, SCN 2.2, was used to examine the direct effect of TRP photoproducts on the molecular clock. Both TRP photoproducts and FICZ-increased CYP1A1 expression and prolonged FICZ incubation altered the circadian expression of clock genes (Per1, Cry1, and Cry2) in SCN 2.2 cells. Furthermore, FICZ inhibited glutamate-induced phase shifting of the mouse SCN electrical activity rhythm. Circadian light entrainment is critical for adjustment of the endogenous rhythm to environmental light cycle. Our results reveal a potential for TRP photoproducts to modulate light-dependent regulation of circadian rhythm through triggering of AhR signaling. This may lead to further understanding of toxicity of dioxins and the role of AhR in circadian rhythmicity.
Collapse
Affiliation(s)
- Motoko Mukai
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | |
Collapse
|
4
|
Matsushita T, Amagai Y, Terai K, Kojima T, Obinata M, Hashimoto S. A novel neuronal cell line derived from the ventrolateral region of the suprachiasmatic nucleus. Neuroscience 2006; 140:849-56. [PMID: 16616428 DOI: 10.1016/j.neuroscience.2006.02.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 02/23/2006] [Accepted: 02/23/2006] [Indexed: 11/22/2022]
Abstract
The suprachiasmatic nucleus of the anterior hypothalamus is the center of an internal biological clock in mammals. Glutamate is the neurotransmitter of retino-hypothalamic tract responsible for mediating the circadian actions of light in rodents. N-methyl-d-aspartate receptors, particularly NR2B subunit are reported to be principally involved in photic resetting of the biological clock in vivo and in slice culture. But, the precise cellular mechanisms of the resetting are not elucidated, because no adequate neuronal cell lines derived from the suprachiasmatic nucleus have been established. We established a neuronal cell line, N14.5, derived from the suprachiasmatic nucleus of a transgenic rat harboring the temperature-sensitive simian virus 40 large T-antigen gene. When the cells were cultured at 39 degrees C, the morphological features were turned fibroblastic into neuronal round cell body with neurite extensions. These cells showed immunoreactivities for neuronal markers (betaIII-tubulin, microtubule-associated protein 2 and TAU2) and as well as for vasoactive intestinal peptide which is expressed in the ventrolateral region of the suprachiasmatic nucleus. The cells expressed N-methyl-d-aspartate receptors, particularly NR1 and NR2B subunits as revealed by quantitative PCR. N-methyl-d-aspartate activated phosphorylation of p44/42 mitogen-activated protein kinase and increased expression level of Per1 and Per2 mRNA. These results suggest that the N14.5 is a novel neuronal cell line derived from the ventrolateral region of the suprachiasmatic nucleus, and that N-methyl-d-aspartate receptors expressed in the cells are a functional receptor. The N14.5 cells may be a useful tool to elucidate numerous chronobiological processes, especially resetting mechanism induced by an external light signal.
Collapse
Affiliation(s)
- T Matsushita
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585 Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 G protein-coupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasocon-striction, cell proliferation in cancer cells, and reproductive and metabolic functions. Activation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Molecular Pharmacology & Biological Chemistry, Northwestern University Feinberg School of Medicine Center for Drug Discovery and Chemical Biology, Chicago, IL 60611, USA.
| | | |
Collapse
|
6
|
Kaeffer B, Pardini L. Clock genes of mammalian cells: Practical implications in tissue culture. In Vitro Cell Dev Biol Anim 2005; 41:311-20. [PMID: 16448219 DOI: 10.1007/s11626-005-0001-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The clock genes family is expressed by all the somatic cells driving central and peripheral circadian rhythms through transcription/translation feedback loops. The circadian clock provides a local time for a cell and a way to integrate the normal environmental changes to smoothly adapt the cellular machinery to new conditions. The central circadian rhythm is retained in primary cultures by neurons of the suprachiasmatic nuclei. The peripheral circadian rhythms of the other somatic cells are progressively dampened down up to loss unless neuronal signals of the central clock are provided for re-entrainment. Under typical culture conditions (obscurity, 37 +/- 1 degrees C, 5-7% CO(2)), freshly explanted peripheral cells harbor chaotic expression of clock genes for 12-14 h and loose, coordinated oscillating patterns of clock components. Cells of normal or cancerous phenotypes established in culture harbor low levels of clock genes idling up to the re-occurrence of new synchronizer signals. Synchronizers are physicochemical cues (like thermic oscillations, short-term exposure to high concentrations of serum or single medium exchange) able to re-induce molecular oscillations of clock genes. The environmental synchronizers are integrated by response elements located in the promoter region of period genes that drive the central oscillator complex (CLOCK:BMAL1 and NPAS2:BMAL1 heterodimers). Only a few cell lines from different species and lineages have been tested for the existence or the functioning of a circadian clockwork. The best characterized cell lines are the immortalized SCN2.2 neurons of rat suprachiasmatic nuclei for the central clock and the Rat-1 fibroblasts or the NIH/3T3 cells for peripheral clocks. Isolation methods of fragile cell phenotypes may benefit from research on the biological clocks to design improved tissue culture media and new bioassays to diagnose pernicious consequences for health of circadian rhythm alterations.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- CRNH de Nantes, Institut National Recherche Agronomique, Unité Fonctions Digestives et Nutrition Humaine, BP 71627 44316, NANTES, Cedex 03, France.
| | | |
Collapse
|
7
|
Gerdin MJ, Masana MI, Rivera-Bermúdez MA, Hudson RL, Earnest DJ, Gillette MU, Dubocovich ML. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J 2005; 18:1646-56. [PMID: 15522910 DOI: 10.1096/fj.03-1339com] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormone melatonin phase shifts circadian rhythms generated by the mammalian biological clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, through activation of G protein-coupled MT2 melatonin receptors. This study demonstrated that pretreatment with physiological concentrations of melatonin (30-300 pM or 7-70 pg/mL) decreased the number of hMT2 melatonin receptors heterologously expressed in mammalian cells in a time and concentration-dependent manner. Furthermore, hMT2-GFP melatonin receptors heterologously expressed in immortalized SCN2.2 cells or in non-neuronal mammalian cells were internalized upon pretreatment with both physiological (300 pM or 70 pg/mL) and supraphysiological (10 nM or 2.3 ng/mL) concentrations of melatonin. The decrease in MT2 melatonin receptor number induced by melatonin (300 pM for 1 h) was reversible and reached almost full recovery after 8 h; however, after treatment with 10 nM melatonin full recovery was not attained even after 24 h. This recovery process was partially protein synthesis dependent. Furthermore, exposure to physiological concentrations of melatonin (300 pM) for a time mimicking the nocturnal surge (8 h) desensitized functional responses mediated through melatonin activation of endogenous MT2 receptors, i.e., stimulation of protein kinase C (PKC) in immortalized SCN2.2 cells and phase shifts of circadian rhythms of neuronal firing in the rat SCN brain slice. We conclude that in vivo the nightly secretion of melatonin desensitizes endogenous MT2 melatonin receptors in the mammalian SCN thereby providing a temporally integrated profile of sensitivity of the mammalian biological clock to a melatonin signal.
Collapse
Affiliation(s)
- Matthew J Gerdin
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Although the mechanisms underlying hypothalamic surge secretion of gonadotropin-releasing hormone (GnRH) in rodent models have remained enduring mysteries in the field of neuroendocrinology, the identities of two fundamental constituents are clear. Elevated ovarian oestrogen, in conjunction with circadian signals, combine to elicit GnRH surges that are confined to the afternoon of the proestrus phase. The phenomenon of oestrogen positive feedback, although extensively investigated, is not completely understood, and may involve the actions of this steroid directly on GnRH perikarya, as well as on the activity of neuronal afferents. Additionally, whereas many studies have focused upon regulation of GnRH surge secretion by the neuroanatomical biological clock, the suprachiasmatic nucleus, it remains unclear why this daily signal is capable of stimulating surges only in the presence of oestrogen. This review re-examines multiple models of circadian control of reproductive neurosecretion, armed with the recent characterisation of the intracellular transcriptional feedback loops that comprise the circadian clock, and attempts to evaluate previous studies on this topic within the context of these new discoveries. Recent advances reveal the presence of oscillating circadian clocks throughout the central nervous system and periphery, including the anterior pituitary and hypothalamus, raising the possibility that synchrony between multiple cellular clocks may be involved in GnRH surge generation. Current studies are reviewed that demonstrate the necessity of functional clock oscillations in generating GnRH pulsatile secretion in vitro, suggesting that a GnRH-specific intracellular circadian clock may underlie GnRH surges as well. Multiple possible steroidal and neuronal contributions to GnRH surge generation are discussed, in addition to how these signals of disparate origin may be integrated at the cellular level to initiate this crucial reproductive event.
Collapse
Affiliation(s)
- P E Chappell
- Department of Reproductive Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0674, USA.
| |
Collapse
|
9
|
Wise DD, Shear JB. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line. Neuroscience 2004; 128:263-8. [PMID: 15350639 DOI: 10.1016/j.neuroscience.2004.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Nicotinamide adenine dinucleotides can exhibit a daily rhythm in plants and regulate the activity of mammalian clock-like transcription factors in vitro. Because one such redox-sensitive transcription factor is present in the master circadian clock of the brain (the suprachiasmatic nuclei, SCN) and the SCN exhibits a characteristic daily rhythm in glucose usage, nicotinamide cofactors might be expected to influence, exhibit, and/or reflect biological rhythms in SCN cells. Therefore, cofactors were extracted from a model SCN cell line at 3 h intervals over 1-2 day periods and samples were analyzed by capillary electrophoresis with multiphoton excitation of fluorescence. Natively fluorescent reduced cofactors (nicotinamide adenine dinucleotide, NADH, and its phosphorylated form, NADPH) were assayed directly, and nonfluorescent oxidized cofactors (nicotinamide adenine dinucleotide, NAD, and its phosphorylated form, NADP) were enzymatically reduced to their fluorescent counterparts before analysis. In the first day after a synchronizing pulse of fetal bovine serum, a dramatic upregulation in cellular NADH content was observed, consistent with a response to serum insulin; this was accompanied by a smaller decrease in NADPH redox state, which may indicate scavenging of reactive oxygen species generated by increased cellular metabolism. However, when cells were investigated after these early phenomena had recovered or stabilized, no circadian NAD(P)(H) rhythms were observed. During these studies, the NADH/NAD(H) concentration ratio in SCN2.2 cells (0.13+/-0.03) was not high enough to activate clock-like transcription factors. Although the NADPH/NADP(H) concentration ratio was more appropriate (0.8+/-0.1), the intracellular NADPH concentration was < or = 0.7 mM, far too low for half-maximal DNA binding of clock-like transcription factors in vitro. Moreover, these concentration and ratio values represent cellular averages, and free cofactors should be much lower in the cell nucleus. Our data show that SCN2.2 cells maintain nearly constant circadian NAD(P)(H) levels, and that the previously reported in vitro relationship between clock-like transcription factors and NAD(P)(H) does not appear to be biologically relevant.
Collapse
Affiliation(s)
- D D Wise
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, 78712-0165, USA
| | | |
Collapse
|
10
|
Rivera-Bermúdez MA, Masana MI, Brown GM, Earnest DJ, Dubocovich ML. Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res 2004; 1002:21-7. [PMID: 14988029 DOI: 10.1016/j.brainres.2003.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2003] [Indexed: 12/15/2022]
Abstract
Immortalized SCN2.2 cells retain most biochemical and biophysical characteristics of the native rat SCN including the expression of clock genes and circadian regulatory proteins, and its distinctive pacemaker function. This study assessed the expression and signaling of MT(1) and MT(2) melatonin receptors in SCN2.2 cells. SCN2.2 cells express MT(1) and MT(2) receptors mRNA as detected by RT-PCR. In situ hybridization with digoxigenin-labeled probes demonstrated that mRNA for MT(1) and MT(2) melatonin receptors is expressed mostly in cells with neuronal-like morphology, representing 10.8+/-2.2% and 9.8+/-0.2%, respectively, of the SCN2.2 cell population. MT(1) and MT(2) melatonin receptor proteins are expressed in both rat SCN2.2 cells and rat SCN tissue as demonstrated by Western blot analysis with specific receptor antiserum. Melatonin (0.1-100 nM) inhibited forskolin (20 microM)-stimulated cAMP formation in a dose-dependent manner and this effect was blocked by the competitive melatonin receptor antagonist luzindole (100-1000 nM). Furthermore, melatonin (1 nM) stimulated protein kinase C (PKC) activity by approximately 2-fold. The selective MT(2) receptor antagonist 4P-PDOT (100 nM) blocked this effect, indicating that the melatonin-mediated increase in PKC activity occurs through activation of MT(2) melatonin receptors. We conclude that SCN2.2 cells express functional melatonin receptors, providing an in vitro model to unveil the melatonin signaling pathway(s) involved in the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Moisés A Rivera-Bermúdez
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
11
|
Rivera-Bermúdez MA, Gerdin MJ, Earnest DJ, Dubocovich ML. Regulation of basal rhythmicity in protein kinase C activity by melatonin in immortalized rat suprachiasmatic nucleus cells. Neurosci Lett 2003; 346:37-40. [PMID: 12850542 DOI: 10.1016/s0304-3940(03)00590-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Melatonin phase shifts circadian rhythms of the neuronal firing rate and stimulates PKC activity at dusk (CT 10) and dawn (CT 23) in the rat suprachiasmatic nucleus (SCN) slice via activation of the MT(2) melatonin receptor. We demonstrated that in the SCN2.2 cells basal PKC activity follows a rhythmic oscillation with an acrophase during the subjective dark phase (CT 14-CT 22) and nadirs during the subjective light phase at CT 2 and CT 10. Melatonin (0.01-10 nM, 10 min) significantly doubled basal PKC activity at CT 2 and CT 10, and decreased basal PKC activity at CT 6. We conclude that melatonin regulates the basal rhythm in PKC activity generated in SCN2.2 cells at the same periods of sensitivity observed in the native SCN.
Collapse
Affiliation(s)
- Moisés A Rivera-Bermúdez
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
12
|
Allen GC, Earnest DJ. Real-time analysis of rhythmic gene expression in immortalized suprachiasmatic nucleus cells. Neuroreport 2002; 13:2027-30. [PMID: 12438919 DOI: 10.1097/00001756-200211150-00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immortalized cells derived from the suprachiasmatic nucleus (SCN) retain many properties of the SCN including the capacity to generate circadian rhythms. Stably transfected SCN2.2 cells expressing the human c- promoter linked to a luciferase reporter gene ( /luc) were examined for evidence of transgene responses to stimuli known to induce c- expression and of endogenous rhythmic variation. Bioluminescence-reported transgene expression was induced in SCN2.2 /luc cells following stimulation with fetal bovine serum or KCl. SCN2.2 /luc cells showed 24 h rhythms of bioluminescence with a 9- to 19-fold difference between peak and minimum levels. These results demonstrate that the regulation of /luc transgene expression in SCN2.2 cells is similar to that of the endogenous c- gene in the SCN.
Collapse
Affiliation(s)
- Gregg C Allen
- Department of Human Anatomy, Texas A and M University Health Science Center, College of Medicine, 238 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
13
|
Hurst WJ, Mitchell JW, Gillette MU. Synchronization and phase-resetting by glutamate of an immortalized SCN cell line. Biochem Biophys Res Commun 2002; 298:133-43. [PMID: 12379231 DOI: 10.1016/s0006-291x(02)02346-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SCN 2.2 cultures were stably transfected with luciferase reporter constructs driven by Ca(2+)/cAMP response element, E-box, or vasoactive intestinal peptide promoter to probe the circadian properties of this clock cell line. SCN 2.2 reporter lines displayed approximately 24-h rhythms of transcriptional activation after serum-shock. Serum-shocked cultures pulsed with glutamate exhibited phase-gated induction of phospho-CREB and of VIP, CRE, and E-box promoter activity. Glutamate-induced CRE promoter activity displayed restricted sensitivity to inhibitors of nitric oxide synthase and cGMP-dependent protein kinase. The temporal pattern of these sensitivities paralleled those of the SCN to light and glutamate during the night. Taken together, our data indicate that serum-shock can synchronize the circadian clock of SCN 2.2 cells to a state consistent with the day/night transition and, thus, establishes a temporal context for this cell line.
Collapse
Affiliation(s)
- William J Hurst
- Departments of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|