1
|
Niacin Protects against Butyrate-Induced Apoptosis in Rumen Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2179738. [PMID: 31737165 PMCID: PMC6815573 DOI: 10.1155/2019/2179738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/04/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
The effects and underlying mechanisms of butyrate and butyrate+niacin on apoptosis in sheep rumen epithelial cells were investigated. Cells were exposed to butyrate (0-140 mM) for 6 h. A low concentration (20 mM) of butyrate increased cell viability and promoted growth whereas high concentrations (40-140 mM) inhibited proliferation. Cells were then cocultured with 120 mM butyrate and niacin (0-100 mM) for 6 h. Niacin addition attenuated butyrate-induced cellular damage and promoted proliferation at 20-80 mM; 40 mM presented the optimal effect. Higher concentrations (100 mM) of niacin resulted in low cell viability. Subsequent experiments confirmed that 120 mM butyrate increased intracellular reactive oxygen species (ROS) production and reduced the intracellular total antioxidant capacity (T-AOC) versus the untreated control. Compared with 120 mM butyrate, cotreatment with 40 mM niacin significantly reduced the intracellular ROS content and increased the intracellular T-AOC. Flow cytometry analysis revealed that 120 mM butyrate increased the proportion of apoptotic cells by 17.8% versus the untreated control, and 120 mM butyrate+40 mM niacin treatment reduced the proportion of apoptotic cells by 28.6% and 39.4% versus the untreated control and butyrate treatment, respectively. Treatment with 120 mM butyrate increased caspase-9 and p53 mRNA levels and decreased the expression of Bcl-2 and Bax, and the Bcl-2/Bax ratio versus the untreated control. Treatment with 120 mM butyrate+40 mM niacin downregulated the expression of caspase-3 and p53 and increased the expression of Bcl-2 and Bax versus butyrate treatment alone but had no effect on the Bcl-2/Bax ratio. Thus, high concentrations of butyrate may induce rumen epithelial cell apoptosis by increasing oxidative stress and inducing caspase-9 and p53 expression. Cotreatment with niacin regulates apoptosis-related gene expression by reducing intracellular ROS production and DNA damage and downregulating caspase-3 and p53 expressions to protect rumen epithelial cells against butyrate-induced apoptosis.
Collapse
|
2
|
Kocaman G, Altinoz E, Erdemli ME, Gul M, Erdemli Z, Gul S, Bag HG. Protective effects of crocin on biochemistry and histopathology of experimental periodontitis in rats. Biotech Histochem 2019; 94:366-373. [DOI: 10.1080/10520295.2019.1571229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- G. Kocaman
- Department of Periodontology, Faculty of Dentistry, Karabuk University, Karabuk, Turkey
| | - E. Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M. E. Erdemli
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey
| | - M. Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Z. Erdemli
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - S. Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - H. G. Bag
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Altinoz E, Erdemli ME, Gul M, Aksungur Z, Gul S, Bag HG, Kaya GB, Turkoz Y. Neuroprotection against CCl4induced brain damage with crocin in Wistar rats. Biotech Histochem 2018; 93:623-631. [DOI: 10.1080/10520295.2018.1519725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - ME Erdemli
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey
| | - M Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Z Aksungur
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - S Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - HG Bag
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - GB Kaya
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Turkoz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Serum Metabolomics Study Based on LC-MS and Antihypertensive Effect of Uncaria on Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9281946. [PMID: 29849735 PMCID: PMC5904782 DOI: 10.1155/2018/9281946] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/15/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022]
Abstract
Our previous studies have shown that Uncaria has an important role in lowering blood pressure, but its intervention mechanism has not been clarified completely in the metabolic level. Therefore, in this study, a combination method of HPLC-TOF/MS-based metabolomics and multivariate statistical analyses was employed to explore the mechanism and evaluate the antihypertensive effect of Uncaria. Serum samples were analyzed and identified by HPLC-TOF/MS, while the acquired data was further processed by partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to discover the perturbed metabolites. A clear cluster among the different groups was obtained, and 7 significantly changed potential biomarkers were screened out. These biomarkers were mainly associated with lipid metabolism (dihydroceramide, ceramide, PC, LysoPC, and TXA2) and vitamin and amino acids metabolism (nicotinamide riboside, 5-HTP). The result indicated that Uncaria could decrease the blood pressure effectively, partially by regulating the above biomarkers and metabolic pathways. Analyzing and verifying the specific biomarkers, further understanding of the therapeutic mechanism and antihypertensive effect of Uncaria was acquired. Metabolomics provided a new insight into estimate of the therapeutic effect and dissection of the potential mechanisms of traditional Chinese medicine (TCM) in treating hypertension.
Collapse
|
5
|
Dassarma B, Nandi DK, Gangopadhyay S, Samanta S. Hepatoprotective effect of food preservatives (butylated hydroxyanisole, butylated hydroxytoluene) on carbon tetrachloride-induced hepatotoxicity in rat. Toxicol Rep 2017; 5:31-37. [PMID: 29276688 PMCID: PMC5730417 DOI: 10.1016/j.toxrep.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
The report about dose (230 mg/kg body wt/rat/day) that had been used for development of hepatotoxicity in male albino rat (Wister strain) was taken from our own previous study and it had never been used by any other group of researchers. This study had shown the detailed results of ROS mediated hepatotoxicity and oxidative stress profiles which was one of the important reports among the previous findings. GARS grade synthetic food preservative BHA, BHT could be able to reduce the hepatotoxicity in male albino (Wister strain) rats and it is the first time report in our study.
Carbon tetrachloride (CCl4), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. This study was carried out to establish the hepatoprotective measures of food preservative antioxidants butylated hydroxyanisole and butylated hydroxytolune (BHA, BHT) when mixed with food towards carbon tetrachloride (CCl4) intoxication (230 mg/ kg b wt/rat/day) in rat. Biochemical markers like serum glutamate pyruvate tranaminase (AST), serum glutamate oxaloacetate transaminase (ALT), alkaline phosphatase (ALP) and bilirubin content, antioxidant enzymes such as SOD, CAT, GPx, and malondialdehyde (MDA) as the end product of lipid peroxidanion were measured. The results had shown the elevated level of AST (121.16%), ALT (124.68%), ALP (122.41%) an, bilirubin content (57.14%) after CCl4 treatment. Marked decrease of activity of antioxidant enzymes such as SOD (85.36%), CAT (67.47%), GPx (50.7%) had indicated that the ROS mediated toxicity and pretreatment of BHA and BHT restored the activity of these enzymes. High level of MDA content with reduced GSH value was also observed due to oxidative stress. The hepatic antioxidant status was restored with the food preservative (BHA, BHT) antioxidant treatment which had indicated the significant protective effect against CCl4 induced hepatotoxicity and finally confirmed by histopathological studies.
Collapse
Affiliation(s)
- Barsha Dassarma
- Department of Physiology, Midnapore College, Midnapore, 721101, West Bengal, India
| | - Dilip K Nandi
- Department of Physiology and Nutrition, Raja N.L. Khan Women's College, Midnapore, 721102, West Bengal, India
| | - Somnath Gangopadhyay
- Department of Physiology, Occupational Ergonomics Laboratory, University College of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, 721101, West Bengal, India
| |
Collapse
|
6
|
Singh KD, Labala RK, Devi TB, Singh NI, Chanu HD, Sougrakpam S, Nameirakpam BS, Sahoo D, Rajashekar Y. Biochemical efficacy, molecular docking and inhibitory effect of 2, 3-dimethylmaleic anhydride on insect acetylcholinesterase. Sci Rep 2017; 7:12483. [PMID: 28970561 PMCID: PMC5624869 DOI: 10.1038/s41598-017-12932-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022] Open
Abstract
Evolution of resistance among insects to action of pesticides has led to the discovery of several insecticides (neonicotinoids and organophosphates) with new targets in insect nervous system. Present study evaluates the mode of inhibition of acetylchlonesterase (AChE), biochemical efficacy, and molecular docking of 2,3-dimethylmaleic anhydride, against Periplaneta americana and Sitophilus oryzae. The knockdown activity of 2,3-dimethylmaleic anhydride was associated with in vivo inhibition of AChE. At KD99 dosage, the 2,3-dimethylmaleic anhydride showed more than 90% inhibition of AChE activity in test insects. A significant impairment in antioxidant system was observed, characterized by alteration in superoxide dismutase and catalase activities along with increase in reduced glutathione levels. Computational docking programs provided insights in to the possible interaction between 2,3-dimethylmaleic anhydride and AChE of P. americana. Our study reveals that 2,3-dimethylmaeic anhydride elicits toxicity in S. oryzae and P. americana primarily by AChE inhibition along with oxidative stress.
Collapse
Affiliation(s)
- Kabrambam D Singh
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Rajendra K Labala
- Distributed Information Sub-Centre, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Thiyam B Devi
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Ningthoujam I Singh
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Heisnam D Chanu
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Sonia Sougrakpam
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Bunindro S Nameirakpam
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Dinabandhu Sahoo
- Microbial Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India
| | - Yallappa Rajashekar
- Insect Resources Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal-795001, Manipur, India.
| |
Collapse
|
7
|
Ritesh K, Suganya A, Dileepkumar H, Rajashekar Y, Shivanandappa T. A single acute hepatotoxic dose of CCl 4 causes oxidative stress in the rat brain. Toxicol Rep 2015; 2:891-895. [PMID: 28962426 PMCID: PMC5598138 DOI: 10.1016/j.toxrep.2015.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 02/05/2023] Open
Abstract
Carbon tetrachloride (CCl4), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. We have investigated whether oxidative stress is induced in the brain at a single hepatotoxic dosage (1 ml/kg bw) of CCl4. Increased lipid peroxidation (LPO), protein carbonyls (PC) content and glutathione (GSH) depletion were observed in the brain regions of rats treated with CCl4 which was higher than that of liver. A drastic reduction in the activity of glutathione-S-transferase (GST) was seen in the brain regions which was higher than that of liver. Similarly, activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), NADH- and NADPH-dehydrogenase were reduced in the brain regions similar to that of liver. Higher induction of oxidative stress in the brain compared to that of liver implies vulnerability of the brain for CCl4 neurotoxicity. Our study shows that a single hepatotoxic dose of CCl4 is equally neurotoxic to rats.
Collapse
Affiliation(s)
- K.R. Ritesh
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - A. Suganya
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - H.V. Dileepkumar
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Y. Rajashekar
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal 795001, Manipur, India
| | - T. Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| |
Collapse
|
8
|
La Marca M, Pucci L, Bollini R, Russo R, Sparvoli F, Gabriele M, Longo V. Antioxidant effect of a fermented powder of Lady Joy bean in primary rat hepatocytes. Cell Mol Biol Lett 2015; 20:102-16. [PMID: 26204396 DOI: 10.1515/cmble-2015-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/26/2015] [Indexed: 03/01/2024] Open
Abstract
The role and beneficial effects of plant and food extracts against various diseases induced by oxidative stress have received much attention in recent years. Legumes are rich in bioactive compounds, and some studies suggest a correlation between their consumption and a reduced incidence of diseases. Primary cultures of rat hepatocytes were used to investigate whether and how an extract obtained from a fermented powder of bean named Lady Joy (Phaseolus vulgaris L.) is able to regulate antioxidant and detoxifying enzymes through the NRF2 pathway, inhibit NF-kB activation, and reduce H2O2-induced endoplasmic reticulum (ER) stress. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by Lady Joy treatment. Western blot showed that Nrf2 was activated by Lady Joy treatment. Also, cells treated with this fermented bean were partially protected against NF-kB activation resulting from H2O2 stress. As a link between oxidative stress and ER dysfunction is hypothesized, we verified whether Lady Joy was able to protect cells from H2O2-induced ER stress, by studying the response of the proteins CHOP, BiP and caspase 12. The results of this study show that Lady Joy can induce the Nrf2 pathway, inhibit NF-kB, and protect ER from stress induced by H2O2.
Collapse
|
9
|
MURRAY ONIKAT, WONG CHIC, VRANKOVA KVETOSLAVA, RIGAS BASIL. Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate. Int J Oncol 2014; 44:521-9. [PMID: 24284479 PMCID: PMC3898803 DOI: 10.3892/ijo.2013.2190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022] Open
Abstract
Phospho-sulindac (P-S), a promising anticancer agent, is efficacious in pre-clinical models of human cancer and is apparently safe. Here, we studied the effect of P-S on pancreatic cancer growth. We found that P-S strongly inhibits the growth of human pancreatic cancer cells in vitro, is efficacious in inhibiting the growth of pancreatic xenografts in nude mice, and has an excellent safety profile. Microarray analysis revealed that P-S induced the expression of nuclear factor of activated T-cells, isoform c1 (NFATc1) gene. NFATc1, a calcineurin-responsive transcription factor associated with aggressive pancreatic cancer. The role of increased NFATc1 expression on the growth inhibitory effect of P-S on cancer growth was evaluated by silencing or by overexpressing it both in vitro and in vivo. We found that when the expression of NFATc1 was abrogated by RNAi, pancreatic cancer cells were more responsive to treatment with P-S. Conversely, overexpressing the NFATc1 gene made the pancreatic cancer cells less responsive to treatment with P-S. NFATc1 likely mediates drug resistance to P-S and is an unfavorable prognostic factor that predicts poor tumor response. We also demonstrated that NFATc1-mediated resistance can be overcome by cyclosporin A (CsA), an NFAT inhibitor, and that the combination of P-S and CsA synergistically inhibited pancreatic cancer cell growth. In conclusion, our preclinical data establish P-S as an efficacious drug for pancreatic cancer in preclinical models, which merits further evaluation.
Collapse
Affiliation(s)
- ONIKA T. MURRAY
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8173,
USA
| | - CHI C. WONG
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8173,
USA
| | - KVETOSLAVA VRANKOVA
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8173,
USA
| | - BASIL RIGAS
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8173,
USA
| |
Collapse
|
10
|
Roy S, Banerjee B, Vedasiromoni JR. Cytotoxic and apoptogenic effect of Swietenia mahagoni (L.) Jacq. leaf extract in human leukemic cell lines U937, K562 and HL-60. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:234-247. [PMID: 24366058 DOI: 10.1016/j.etap.2013.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 06/03/2023]
Abstract
The apoptogenic activity of Swietenia mahagoni leaf extract (SMLE) was investigated against three human leukemic cell lines - U937, K562 and HL-60. SMLE inhibited cell growth and metabolic activity of the leukemic cells and showed characteristic features of apoptosis. Flow-cytometric analysis showed that SMLE arrested U937 and K562 cell populations in the G2-M phase and the HL-60 cell population in the G1 phase of cell cycle. SMLE induced apoptosis was found to be mediated through mitochondrial intrinsic pathway involving the release of cytochrome c into the cytosol and activation of caspase-9 and caspase-3. Two flavonoids, catechin and quercetin-3-O-glucoside, isolated from SMLE, were found to inhibit the growth and metabolic activity of U937, K562 and HL-60 cells at much lower concentrations thus indicating that these two flavonoids might be the active ingredients responsible for the anti-leukemic activity of SMLE.
Collapse
Affiliation(s)
- S Roy
- Drug Development Department, Indian Institute of Chemical Biology (A Unit of Council of Scientific & Industrial Research, India), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - B Banerjee
- Department of Chemistry, K.N. College, Berhampur 742101, India
| | - J R Vedasiromoni
- Drug Development Department, Indian Institute of Chemical Biology (A Unit of Council of Scientific & Industrial Research, India), 4 Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
11
|
La Marca M, Beffy P, Pugliese A, Longo V. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes. PLoS One 2013; 8:e83538. [PMID: 24391783 PMCID: PMC3877042 DOI: 10.1371/journal.pone.0083538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022] Open
Abstract
Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, NAD(P)H quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, CNR, Pisa, Italy
| |
Collapse
|
12
|
Bhattacharya S, Das T, Biswas A, Gomes A, Gomes A, Dungdung SR. A cytotoxic protein (BF-CT1) purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation. Toxicon 2013; 74:138-50. [PMID: 23981271 DOI: 10.1016/j.toxicon.2013.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 01/18/2023]
Abstract
BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production.
Collapse
Affiliation(s)
- Shamik Bhattacharya
- Cell Biology and Physiology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
13
|
Das T, Bhattacharya S, Biswas A, Gupta SD, Gomes A, Gomes A. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon 2013; 65:1-4. [DOI: 10.1016/j.toxicon.2013.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
14
|
La Marca M, Beffy P, Della Croce C, Gervasi PG, Iori R, Puccinelli E, Longo V. Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes. Food Chem Toxicol 2012; 50:2822-30. [PMID: 22664424 DOI: 10.1016/j.fct.2012.05.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/18/2012] [Accepted: 05/19/2012] [Indexed: 11/25/2022]
Abstract
Primary cultures of rat hepatocytes were used to investigate whether and how eight isothiocynates (ITCs) with different chemical structures (the aromatic benzyl, 4-hydroxybenzyl, phenethyl isothiocyanates and the aliphatic allyl, napin, iberin, raphasatin isothiocyanates and sulforaphane) derived from hydrolyzed glucosinolates, were able to modulate cytochrome P450 (CYP) and antioxidant/detoxifying enzymes and to activate the Nrf2 transcription factor. The aromatic ITCs at 40 μM markedly increased the transcription of CYP1A1 and 1A2 mRNA and increased the associated ethoxyresorufin O-deethylase (EROD) activity after 24 h of treatment. By contrast, the aliphatic ITCs (40 μM) decreased CYP1A1 and 1A2 transcription, together with the corresponding EROD activity. The same treatment also caused a striking and similar transcriptional repression of CYP3A2, and the corresponding benzyloxyquinoline debenzylase activity in response to all the ITCs tested. In the same culture conditions, most of the antioxidant/detoxifying enzymes were significantly up-regulated by 40μM ITCs. In particular, NAD(P)H:quinone oxidoreductase and heme oxygenase-1 were induced, although to different levels, at transcriptional, protein and/or activity levels by all the ITCs. However, glutathione S-transferase activity was not induced by the allyl, benzyl, and 4-hydroxybenzyl ITCs, glutathione reductase activity was not induced by benzyl, and 4-hydroxybenzyl ITCs and catalase activity was not induced by allyl ITC. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus was revealed by immunoblotting after 1h of treatment for all the ITCs tested. The ability of ITCs to induce the antioxidant and phase II enzymes did not appear to be affected by their hydrophilicity or other structural factors. Taken together, these results show that these ITCs are effective inducers of ARE/Nrf2-regulated antioxidant/detoxifying genes and have the potential to inhibit, at least in rat liver, the bioactivation of carcinogens dependent on CYP3A2 catalysis.
Collapse
Affiliation(s)
- M La Marca
- Istituto di Biologia e Biotecnologia Agraria, CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Yadav R, France M, Younis N, Hama S, Ammori BJ, Kwok S, Soran H. Extended-release niacin with laropiprant: a review on efficacy, clinical effectiveness and safety. Expert Opin Pharmacother 2012; 13:1345-62. [DOI: 10.1517/14656566.2012.690395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Modulation of Liver l-γ-Glutamyl-l-cysteinylglycine Homeostasis By N-Acetyl-Glucosamine-thiazolidine-4(R)-carboxylic Acid in Mice. Am J Med Sci 2012; 343:310-5. [DOI: 10.1097/maj.0b013e31822b02f4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Yogesh P B, Bhattacharya S, Das T, Roy M, Besra SE, Gomes A, Mondal NB, Banerjee S. Anti-leukemic activity of sulfonoquinovosyldiacylglyceride (SQDG): a constituent of Azadirachta indica leaves. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Poduri A, Bahl A, Talwar KK, Khullar M. Proteomic analysis of circulating human monocytes in coronary artery disease. Mol Cell Biochem 2011; 360:181-8. [PMID: 21938407 DOI: 10.1007/s11010-011-1055-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/08/2011] [Indexed: 01/19/2023]
Abstract
Monocytes play an important role in inflammation and atherosclerosis; however, the molecular details underlying these diverse functions are not completely understood. Proteomic analysis of monocytes can provide new insights into their biological role in coronary artery disease (CAD). Twenty angiographically confirmed male, CAD patients (≥50% stenosis) attending cardiology clinic of Nehru Hospital, PGIMER, Chandigarh, and who were not receiving any lipid lowering therapy and 20 TMT negative subjects who served as controls were enrolled in the study. Circulating monocytes isolated from overnight fasting blood samples were analyzed by 2D gel electrophoresis (pH 4-7), and differentially expressed protein spots were subjected to mass spectrometry and identification of proteins. We observed 333 ± 40 protein spots in monocytes from patients and 312 ± 20 in controls; out of which 63 protein spots showed altered intensity in CAD patients. Thirteen spots showed fivefold increased and two protein spots showed fivefold decreased expression in CAD group as compared to control group, respectively. Two proteins showing decreased expression in monocytes from CAD patients were identified as: (i) glutathione transferase and (ii) heat shock protein 70 KDa. Proteins showing increased expression in CAD patients were identified as: (i) vimentin, (ii) mannose binding lectin receptor protein, and (iii) S100A8 calcium-binding protein. The results of our study offer identification of several proteins in monocytes which can provide new perspectives in role of monocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | |
Collapse
|
19
|
Pacelli C, De Rasmo D, Signorile A, Grattagliano I, di Tullio G, D'Orazio A, Nico B, Comi GP, Ronchi D, Ferranini E, Pirolo D, Seibel P, Schubert S, Gaballo A, Villani G, Cocco T. Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1041-53. [PMID: 21215313 DOI: 10.1016/j.bbadis.2010.12.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Mutations in the parkin gene are expected to play an essential role in autosomal recessive Parkinson's disease. Recent studies have established an impact of parkin mutations on mitochondrial function and autophagy. In primary skin fibroblasts from two patients affected by an early onset Parkinson's disease, we identified a hitherto unreported compound heterozygous mutation del exon2-3/del exon3 in the parkin gene, leading to the complete loss of the full-length protein. In both patients, but not in their heterozygous parental control, we observed severe ultrastructural abnormalities, mainly in mitochondria. This was associated with impaired energy metabolism, deregulated reactive oxygen species (ROS) production, resulting in lipid oxidation, and peroxisomal alteration. In view of the involvement of parkin in the mitochondrial quality control system, we have investigated upstream events in the organelles' biogenesis. The expression of the peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a strong stimulator of mitochondrial biogenesis, was remarkably upregulated in both patients. However, the function of PGC-1α was blocked, as revealed by the lack of its downstream target gene induction. In conclusion, our data confirm the role of parkin in mitochondrial homeostasis and suggest a potential involvement of the PGC-1α pathway in the pathogenesis of Parkinson's disease. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Consiglia Pacelli
- Department of Medical Biochemistry, Biology & Physics, University of Bari 'A. Moro', 70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cisplatin induced toxicity in rat tissues: The protective effect of Lisosan G. Food Chem Toxicol 2011; 49:233-7. [DOI: 10.1016/j.fct.2010.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 12/24/2022]
|
21
|
Debnath A, Saha A, Gomes A, Biswas S, Chakrabarti P, Giri B, Biswas AK, Gupta SD, Gomes A. A lethal cardiotoxic–cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon 2010; 56:569-79. [DOI: 10.1016/j.toxicon.2010.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
|
22
|
Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J Nutr Biochem 2010; 21:1089-98. [PMID: 20149621 DOI: 10.1016/j.jnutbio.2009.09.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 09/04/2009] [Accepted: 09/14/2009] [Indexed: 12/26/2022]
Abstract
Studies in this laboratory have previously shown that hydroxytyrosol, the major antioxidant polyphenol in olives, protects ARPE-19 human retinal pigment epithelial cells from oxidative damage induced by acrolein, an environmental toxin and endogenous end product of lipid oxidation, that occurs at increased levels in age-related macular degeneration lesions. A proposed mechanism for this is that protection by hydroxytyrosol against oxidative stress is conferred by the simultaneous activation of two critically important pathways, viz., induction of phase II detoxifying enzymes and stimulation of mitochondrial biogenesis. Cultured ARPE-19 cells were pretreated with hydroxytyrosol and challenged with acrolein. The protective effects of hydroxytyrosol on key factors of mitochondrial biogenesis and phase II detoxifying enzyme systems were examined. Hydroxytyrosol treatment simultaneously protected against acrolein-induced inhibition of nuclear factor-E2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor coactivator 1 alpha (PPARGC1α) in ARPE-19 cells. The activation of Nrf2 led to activation of phase II detoxifying enzymes, including γ-glutamyl-cysteinyl-ligase, NADPH (nicotinamide adenine dinucleotide phosphate)-quinone-oxidoreductase 1, heme-oxygenase-1, superoxide dismutase, peroxiredoxin and thioredoxin as well as other antioxidant enzymes, while the activation of PPARGC1α led to increased protein expression of mitochondrial transcription factor A, uncoupling protein 2 and mitochondrial complexes. These results suggest that hydroxytyrosol is a potent inducer of phase II detoxifying enzymes and an enhancer of mitochondrial biogenesis. Dietary supplementation of hydroxytyrosol may contribute to eye health by preventing the degeneration of retinal pigment epithelial cells induced by oxidative stress.
Collapse
|
23
|
Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem Biol Interact 2009; 183:293-303. [PMID: 19913524 DOI: 10.1016/j.cbi.2009.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/30/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Scorpion venom possesses protein toxins having numerous biological activities, some of which are potentially anticancerous. Previously we had reported antiproliferative activity of the venom of Indian black scorpion, Heterometrus bengalensis Koch. Here we have isolated and purified a novel protein named Bengalin (72kDa) from the venom, responsible for antiproliferative and apoptogenic activities against human leukemic cells U937 (histiocytic lymphoma) and K562 (chronic myelogenous leukemia). N-terminal sequence of first 20 amino acids of Bengalin was G-P-L-T-I-L-H-I-N-D-V-H-A-A/R-F-E-Q/G-F/G-N-T. Bengalin induced cell growth inhibition at IC(50) values of 3.7 and 4.1 microg/ml for U937 and K562 cells respectively did not significantly affect normal human lymphocytes. Inhibition of U937 and K562 cell proliferation occurred by apoptosis as evidenced from damaged nuclei, cell cycle arrest at sub G1 phase, increase of early apoptotic cells, augmentation of DNA fragmentation and also a reduction of telomerase activity. Further insights revealed that Bax:Bcl2 ratio was elevated after Bengalin treatment. Moreover Bengalin elicited loss of mitochondrial membrane potential (MMP) which commenced cytochrome c release in cytosol, decreased heat shock protein (HSP) 70 and 90 expression, activated caspase-9, caspase-3 and induced poly(ADP-ribose) polymerase (PARP) cleavage. We have also determined that HSP70 and 90 inhibitions correlated with Bengalin induced antiproliferation, caspase-3 upregulation, apoptogenesis and increased DNA fragmentation. These results hypothesize that Bengalin might provide a putative molecular mechanism for their anticancer effect on human leukemic cells which might be mediated by mitochondrial death cascade. Inhibition of HSPs might also play a crucial role in induction of apoptosis.
Collapse
Affiliation(s)
- Shubho Das Gupta
- Drug Development Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | | | | | | | | |
Collapse
|
24
|
Yeo MK, Kang M. Effects of Cu x TiO y nanometer particles on biological toxicity during zebrafish embryogenesis. KOREAN J CHEM ENG 2009. [DOI: 10.1007/s11814-009-0119-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Cho KH, Kim HJ, Rodriguez-Iturbe B, Vaziri ND. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol 2009; 297:F106-13. [PMID: 19420110 DOI: 10.1152/ajprenal.00126.2009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significant reduction of renal mass causes progressive deterioration of renal function and structure which is mediated by systemic and glomerular hypertension, hyperfiltration, oxidative stress, inflammation, and dyslipidemia. Niacin is known to improve lipid metabolism and exert antioxidant/anti-inflammatory actions. Therefore, we considered that niacin supplementation may attenuate oxidative stress, inflammation, and tissue injury in the remnant kidney. To this end, 56 nephrectomized [chronic kidney disease (CKD)] rats were randomly assigned to niacin-treated (50 mg x kg(-1) x day(-1) in the drinking water for 12 wk) and untreated groups. Sham-operated rats served as controls. The untreated CKD rats exhibited azotemia, hypertension, hypertriglyceridemia, proteinuria, glomerulosclerosis, tubulointerstitial damage, upregulation of MCP-1, plasminogen activator inhibitor-1 (PAI-1), transforming growth factor (TGF)-beta, cyclooxygenase (COX)-1, COX-2, and NAD(P)H oxidase (NOX-4, gp91(phox), p47(phox) and p22(phox) subunits) and activation of NF-kappaB (IkappaB phosphorylation). Niacin administration reduced MCP-1, PAI-1, TGF-beta, p47(phox), p22(phox), COX-1, and NF-kappaB activation, ameliorated hypertension, proteinuria, glomerulosclerosis, and tubulointerstitial injury. Although niacin lowered serum creatinine and raised creatinine clearance, the differences did not reach statistical significance. Thus niacin supplementation helps to attenuate histological injury and mitigate upregulation of oxidative and inflammatory systems in the remnant kidney.
Collapse
Affiliation(s)
- Kyu-hyang Cho
- Division of Nephrology and Hypertension, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
26
|
Schupp N, Schmid U, Heidland A, Stopper H. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis 2008; 199:278-87. [DOI: 10.1016/j.atherosclerosis.2007.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
27
|
Rubiolo JA, Vega FV. Resveratrol protects primary rat hepatocytes against necrosis induced by reactive oxygen species. Biomed Pharmacother 2008; 62:606-12. [PMID: 18674878 DOI: 10.1016/j.biopha.2008.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022] Open
Abstract
Reactive oxygen species can be important mediators of damage to cell molecules and structures. Besides the endogen antioxidant defences, the antioxidant intake in the diet has an important role in the protection against the development of diseases produced by oxidative damage. Resveratrol is a naturally occurring compound present in many plants some of which are part of the human diet. This molecule has been thoroughly investigated because of its antioxidant and anticarcinogenic properties among others. We investigated whether resveratrol could provide protective antioxidant action in primary rat hepatocyte cultures. Primary rat hepatocytes cultures were exposed to 300 microM tert-butyl hydroperoxide; 25, 50 or 75 microM resveratrol or to 300 microM tert-butyl hydroperoxide plus 25, 50 or 75 microM resveratrol for different time periods. Necrosis was evaluated by lactate dehydrogenase liberation to the medium. Apoptosis was evaluated by caspase 3 activity measurement. Changes in cellular morphology after the different treatments were recorded using bright field microscopy. Inhibition of the reactive oxygen species by resveratrol was studied by confocal microscopy and spectrofluorimetrically. Resveratrol inhibited necrosis induced by tert-butyl hydroperoxide. No apoptosis was observed in any treatment. It also was effective in eliminating reactive oxygen species. At 75 microM, the highest concentration tested, resveratrol became slightly cytotoxic. Our results show that resveratrol protects primary rat hepatocytes in culture from oxidative stress induced cell death. These results suggest that resveratrol could enhance the antioxidant status of hepatic cells.
Collapse
Affiliation(s)
- J A Rubiolo
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | | |
Collapse
|
28
|
Zhu H, Jia Z, Zhang L, Yamamoto M, Misra HP, Trush MA, Li Y. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp Biol Med (Maywood) 2008; 233:463-74. [PMID: 18367636 DOI: 10.3181/0711-rm-304] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Macrophages play important roles in immunity and other physiological processes. They are also target cells of various toxic agents, including oxidants and electrophiles. However, little is known regarding the molecular regulation and chemical inducibility of a spectrum of endogenous antioxidants and phase 2 enzymes in normal macrophages. Understanding the molecular pathway(s) controlling the coordinated expression of various macrophage antioxidants and phase 2 defenses is of importance for developing strategies to protect against macrophage injury induced by oxidants and electrophiles. Accordingly, this study was undertaken to determine the role of the nuclear factor E2-related factor 2 (Nrf2) in regulating both constitutive and chemoprotectant-inducible expression of various antioxidants and phase 2 enzymes in mouse macrophages. The constitutive expression of a series of antioxidants and phase 2 enzymes was significantly lower in macrophages derived from Nrf2-null (Nrf2(-/-)) mice than those from wild-type (Nrf2(+/+)) littermates. Incubation of wild-type macrophages with 3H-1,2-dithiole-3-thione (D3T) led to significant induction of various antioxidants and phase 2 enzymes, including catalase, glutathione, glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase 1. The inducibility of the above cellular defenses except for GPx by D3T was completely abolished in Nrf2(-/-) macrophages. As compared with wild-type cells, Nrf2(- /-) macrophages were much more susceptible to cell injury induced by reactive oxygen/nitrogen species, as well as two known macrophage toxins, acrolein and cadmium. Up-regulation of the antioxidants and phase 2 enzymes by D3T in wild-type macrophages resulted in increased resistance to the above oxidant-and electrophile-induced cell injury, whereas D3T treatment of Nrf2(- /-) macrophages provided only marginal or no cytoprotec-tion. This study demonstrates that Nrf2 is an indispensable factor in controlling both constitutive and inducible expression of a wide spectrum of antioxidants and phase 2 enzymes in macrophages as well as the susceptibility of these cells to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Hong Zhu
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center Research Building II, 1861 Pratt Drive, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ganji SH, Qin S, Zhang L, Kamanna VS, Kashyap ML. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 2008; 202:68-75. [PMID: 18550065 DOI: 10.1016/j.atherosclerosis.2008.04.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/28/2022]
Abstract
In pharmacological doses, nicotinic acid (niacin) reduces myocardial infarction, stroke and atherosclerosis. The beneficial effects of niacin on lipoproteins are thought to mediate these effects. We hypothesized that niacin inhibits oxidative stress and redox-sensitive inflammatory genes that play a critical role in early atherogenesis. In cultured human aortic endothelial cells (HAEC), niacin increased nicotinamide adenine dinucleotide phosphate (NAD(P)H) levels by 54% and reduced glutathione (GSH) by 98%. Niacin inhibited: (a) angiotensin II (ANG II)-induced reactive oxygen species (ROS) production by 24-86%, (b) low density lipoprotein (LDL) oxidation by 60%, (c) tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation by 46%, vascular cell adhesion molecule-1 (VCAM-1) by 77-93%, monocyte chemotactic protein-1 (MCP-1) secretion by 34-124%, and (d) in a functional assay TNF-alpha-induced monocyte adhesion to HAEC (41-54%). These findings indicate for the first time that niacin inhibits vascular inflammation by decreasing endothelial ROS production and subsequent LDL oxidation and inflammatory cytokine production, key events involved in atherogenesis. Initial data presented herein support the novel concept that niacin has vascular anti-inflammatory and potentially anti-atherosclerotic properties independent of its effects on lipid regulation.
Collapse
Affiliation(s)
- Shobha H Ganji
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, CA 90822, United States
| | | | | | | | | |
Collapse
|
30
|
Haenold R, Wassef R, Hansel A, Heinemann SH, Hoshi T. Identification of a new functional splice variant of the enzyme methionine sulphoxide reductase A (MSRA) expressed in rat vascular smooth muscle cells. Free Radic Res 2008; 41:1233-45. [PMID: 17907003 DOI: 10.1080/10715760701642096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species contribute to ageing of the vascular system and development of cardiovascular disease. Methionine-S-sulphoxide, an oxidized form of methionine, is repaired by the enzyme methionine sulphoxide reductase A (MSRA). The enzyme, targeted to mitochondria or the cytosol by alternative splicing, is vital for oxidative stress resistance. This study was designed to examine the endogenous expression and intracellular localization of MSRA in rat aortic vascular smooth muscle cells (VSMCs). We detected robust MSRA immunoreactivity exclusively in mitochondria. Sequence analysis of msrA transcripts revealed the presence of a novel mitochondrial splice variant, msrA2a, in cultured rat VSMCs as well as in aortic tissue preparations. The enzymatic activity of a recombinant MSRA2a protein was confirmed by the reduction of methionine sulphoxide in a model substrate peptide. We conclude that multiple MSRA variants participate in the repair of oxidized proteins in VSMC mitochondria, but that other protective mechanisms may exist in the cytoplasmic compartment.
Collapse
Affiliation(s)
- Ronny Haenold
- Department of Physiology, Richards D100, 3700 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Yu BB, Han XZ, Lou HX. Oligomers of resveratrol and ferulic acid prepared by peroxidase-catalyzed oxidation and their protective effects on cardiac injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7753-7. [PMID: 17696480 DOI: 10.1021/jf0711486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peroxidase extracted from Momordica charantia was used for the oligomerization of trans-resveratrol and ferulic acid on a preparative scale. One new heterocoupling oligomer, trans-3 E-3-[(4-hydroxy-3-methoxyphenyl)methylene]-4-(3,5-dihydroxyphenyl)-5-(4-hydroxyphenyl)tetrahydro-2-franone (6), and six resveratrol dimers, leachianol G (1), restrytisol B (2), parthenostilbenins A (3) and B (5), 7- O-acetylated leachianol G (4), and resveratrol trans-dehydrodimer (8), and one known ferulic acid dehydrodimer, (3alpha,3aalpha,6alpha,6aalpha)tetrahydro-3,6-bis(4-hydroxy-3-methoxyphenyl)-1 H,4 H-furo[3,4-c]furan-1,4-dione (7) were obtained. Bioactive experiments showed that compounds 6- 8 have strong free radical scavenging effects and also have protective effects on doxorubicin-induced cardiac cell injury when tested in vitro.
Collapse
Affiliation(s)
- Bei-Bei Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | | | | |
Collapse
|
32
|
Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR, Gomes A, Gomes A. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res 2007; 31:817-25. [PMID: 16876244 DOI: 10.1016/j.leukres.2006.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 05/31/2006] [Accepted: 06/06/2006] [Indexed: 11/25/2022]
Abstract
Venoms are rich source of several bioactive compounds that possess therapeutic potentials. The different constituents of scorpion venom can modulate cell proliferation, cell growth and cell cycle. In the present communication, the cytotoxic activity of Indian black scorpion (Heterometrus bengalensis) venom was explored on human leukemic U937 and K562 cells. Scorpion venom induced U937 and K562 cell growth inhibition and the IC(50) value calculated to be 41.5 microg/ml (U937) and 88.3 microg/ml (K562). The scorpion venom showed characteristic features of apoptosis such as membrane blebbing, chromatin condensation and DNA degradation in both the cells as evidenced by confocal, fluorescence, scanning electron microscopy. Scorpion venom (IC(50) dose, 48 h) induced DNA fragmentation as evidenced by comet formation. Flow-cytometric assay revealed a significant amount of apoptotic cells (early and late) due to scorpion venom treatment. The venom induced cell cycle arrest was observed with maximum cell accumulation at sub-G(1) phase. Thus, the Indian scorpion (H. bengalensis) venom possessed antiproliferative, cytotoxic and apoptogenic activity against human leukemic cells.
Collapse
Affiliation(s)
- Shubho Das Gupta
- Drug Development Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Debnath A, Chatterjee U, Das M, Vedasiromoni JR, Gomes A. Venom of Indian monocellate cobra and Russell's viper show anticancer activity in experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:681-4. [PMID: 17258413 DOI: 10.1016/j.jep.2006.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 05/13/2023]
Abstract
Indian monocellate cobra (Naja kaouthia) and Russell's viper (Vipera russelli) are common snakes of the East Indian sub-peninsula. The anticarcinogenic activities of their crude venoms were studied on carcinoma, sarcoma and leukemia models. Sub-lethal doses of venoms showed cytotoxicity on Ehrlich ascites carcinoma (EAC) cells in vivo. The venoms increased lifespan of EAC mice and strengthened the impaired host antioxidant system. Sarcoma formation in mice (3-methylcholanthrene induced) after venom treatment was significantly less (p < 0.005). Histopathological examination of tumors showed tissue necrosis. The venoms displayed potent cytotoxic and apoptogenic effect on human leukemic cells (U937/K562). The venoms reduced cell proliferation rate (p < 0.005) and produced morphological alterations indicative of apoptosis induction. Different degree and nature of anticarcinogenic property of cobra and viper venoms may be attributed to the difference in their constituents.
Collapse
Affiliation(s)
- Anindita Debnath
- Drug Development Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
34
|
Nannelli A, Messina A, Marini S, Trasciatti S, Longo V, Gervasi PG. Effects of the anticancer dehydrotarplatin on cytochrome P450 and antioxidant enzymes in male rat tissues. Arch Toxicol 2007; 81:479-87. [PMID: 17364183 DOI: 10.1007/s00204-007-0184-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
The effect of dehydrotarplatin (DTP), a new antineoplastic drug analogous to cisplatin, and its metabolite (Triacid) on the hepatic, renal and testicular CYP and antioxidant enzymes of male rats was investigated. The rats were treated i.p. with a single dose of DTP (25 mg kg(-1) day(-1)) or Triacid (17.5 mg kg(-1) day(-1)) and analysed 3 or 7 days post treatment. Three days after treatment, both drugs reduced body and liver weights, which partially recovered the control level after 7 days. DTP and, to a less extent, Triacid caused a depletion of plasmatic testosterone content and a down regulation in the liver of androgen dependent male specific CYP 2C11, but not of CYP 1A and 2E1, as determined by a significant decrease of 2alpha- and 16alpha-testosterone hydroxylase activities (markers for CYP 2C11) and of apoprotein immunoreactive with anti-rat CYP 2C11 antibodies. However, the activity of testicular 17alpha-progesterone hydroxylase, a key reaction in steroidogenesis, was not altered by these drugs. The DTP and Triacid administration did not cause any alteration of the plasmatic urea nitrogen and creatinine, known as markers of kidney toxicity. However, treatment with DTP, not Triacid, either 3 and 7 days post treatment, caused in the kidney microsomes a significant increase of the total CYP content, the CYP 4A-dependent (omega)- and (omega - 1)-lauric acid hydroxylase activities and apoprotein immunoreactive with anti-rat CYP 4A1. The present study also examined the enzymatic antioxidant status of kidney and liver. Neither DTP nor Triacid administration induced, with respect to control values, any alteration of hepatic and renal glutathione reductase, glutathione S-transferase, catalase, superoxide dismutase activities, hepatic GSH level and renal microsomal lipid peroxidation level. Among the antioxidant enzymes assayed, only the renal activity of glutathione peroxidase was significantly increased after DTP but not Triacid treatment. These results indicate that DTP at a dose of 25 mg/kg and Triacid cause a feminization of the CYP enzymes in male rat liver similar to that reported for cisplatin when administered at a low dose (5 mg/kg). However, unlike cisplatin, DTP and its metabolite were unable to enhance BUN and creatinine and cause any depression of CYP activities and antioxidant enzymes in the kidney, suggesting that DTP may have low or even no potential in inducing nephrotoxicity.
Collapse
Affiliation(s)
- Annalisa Nannelli
- Istituto di Fisiologia Clinica, Area della Ricerca CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Zhu H, Cao Z, Zhang L, Trush MA, Li Y. Glutathione and glutathione-linked enzymes in normal human aortic smooth muscle cells: chemical inducibility and protection against reactive oxygen and nitrogen species-induced injury. Mol Cell Biochem 2007; 301:47-59. [PMID: 17206382 DOI: 10.1007/s11010-006-9396-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 12/06/2006] [Indexed: 02/07/2023]
Abstract
Substantial evidence suggests a crucial role for glutathione (GSH) and GSH-linked enzymes in protecting against oxidative vascular disorders. However, studies on the chemical inducibility of these antioxidant defenses and their protective effects on oxidant injury in normal human vascular cells are currently lacking. Accordingly, this study was undertaken to investigate the inducibility of GSH, glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) by the chemoprotective agent, 3H-1,2-dithiole-3-thione (D3T) in cultured normal human aortic smooth muscle cells (HASMCs). HASMCs expressed measurable levels/activities of GSH, GR, GPx, and GST. Incubation of HASMCs with low micromolar concentrations of D3T resulted in a marked elevation in total cellular GSH content and GR activity. The protein and mRNA expression of gamma-glutamylcysteine ligase (GCL) and GR were also upregulated by D3T. In addition, D3T caused significant increases in mitochondrial GSH content and GR activity. In contrast, neither cellular GPx nor GST activity was altered after D3T treatment. Pretreatment of HASMCs with D3T afforded remarkable protection against reactive oxygen and nitrogen species (ROS/RNS)-mediated cell injury. Depletion of cellular GSH by pretreatment with buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis led to marked potentiation of the ROS/RNS-induced cell injury. Moreover, co-treatment of HASMCs with BSO was found to completely abolish the D3T-mediated GSH elevation, and remarkably reverse D3T cytoprotection against the ROS/RNS-elicited injury. Taken together, this study demonstrates that both GSH/GCL and GR in normal HASMCs are inducible by D3T, and that upregulation of GSH biosynthesis appears to be the predominant mechanism underlying D3T-mediated cytoprotection against ROS/RNS-elicited injury to human vascular smooth muscle cells.
Collapse
Affiliation(s)
- Hong Zhu
- Davis Heart and Lung Research Institute, and Department of Internal Medicine and Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
36
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. Isolation of ellagic acid from the aqueous extract of the roots of Decalepis hamiltonii: Antioxidant activity and cytoprotective effect. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Conklin D, Prough R, Bhatanagar A. Aldehyde metabolism in the cardiovascular system. MOLECULAR BIOSYSTEMS 2006; 3:136-50. [PMID: 17245493 DOI: 10.1039/b612702a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Conklin
- Institute of Molecular Cardiology, Louisville, KY 40292, USA
| | | | | |
Collapse
|
38
|
Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004; 489:39-48. [PMID: 15063153 DOI: 10.1016/j.ejphar.2004.02.031] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 02/10/2004] [Accepted: 02/20/2004] [Indexed: 01/27/2023]
Abstract
Resveratrol is known to be protective against oxidative cardiovascular disorders. However, the underlying mechanisms remain unclear. This study was undertaken to determine if resveratrol could increase endogenous antioxidants and phase 2 enzymes in cardiomyocytes, and if such increased cellular defenses could provide protection against oxidative and electrophilic cell injury. Incubation of cardiac H9C2 cells with low micromolar resveratrol resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. To investigate the protective effects of the resveratrol-induced cellular defenses on oxidative and electrophilic cell injury, H9C2 cells were first incubated with resveratrol, and then exposed to xanthine oxidase (XO)/xanthine, 4-hydroxy-2-nonenal or doxorubicin. We observed that resveratrol pretreatment afforded a marked protection against the above agent-mediated cytotoxicity in H9C2 cells. Moreover, the resveratrol pretreatment led to a great reduction in XO/xanthine-induced intracellular accumulation of ROS. Taken together, this study demonstrates that resveratrol induces antioxidants and phase 2 enzymes in cardiomyocytes, which is accompanied by increased resistance to oxidative and electrophilic cell injury.
Collapse
Affiliation(s)
- Zhuoxiao Cao
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | | |
Collapse
|
39
|
Cao Z, Tsang M, Zhao H, Li Y. Induction of endogenous antioxidants and phase 2 enzymes by alpha-lipoic acid in rat cardiac H9C2 cells: protection against oxidative injury. Biochem Biophys Res Commun 2003; 310:979-85. [PMID: 14550301 DOI: 10.1016/j.bbrc.2003.09.110] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alpha-lipoic acid (LA) has recently been reported to exert protective effects on various forms of oxidative cardiac disorders. However, the mechanisms underlying LA-mediated cardioprotection remain to be investigated. This study was undertaken to determine whether LA treatment could increase endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes, and whether such increased cellular defenses could afford protection against oxidative cardiac cell injury. Incubation of rat cardiac H9C2 cells with low micromolar concentrations of LA resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. These include catalase, reduced glutathione, glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase-1 (NOQ1). Induction of catalase and NOQ1 was most dramatic among the above LA-inducible antioxidants and phase 2 enzymes. To further investigate the protective effects of the LA-induced cellular defenses on oxidative cardiac cell injury, H9C2 cells were pretreated with LA (25-100 microM) for 72h and then exposed to xanthine oxidase (XO)/xanthine, a system that generates reactive oxygen species (ROS), for another 24h. We observed that LA pretreatment of H9C2 cells led to a marked protection against XO/xanthine-mediated cytotoxicity, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. The cytoprotective effects also exhibited a LA concentration-dependent fashion. Moreover, the LA pretreatment resulted in a great inhibition of intracellular accumulation of ROS in H9C2 cells following incubation with XO/xanthine. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes can be induced by LA at low micromolar concentrations, and that the LA-mediated elevation of cellular defenses is accompanied by a markedly increased resistance to ROS-elicited cardiac cell injury. The results of this study have important implications for the cardioprotective effects of LA.
Collapse
Affiliation(s)
- Zhuoxiao Cao
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Jamaica, NY 11439, USA
| | | | | | | |
Collapse
|