1
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Liu S, Yu X, Xing Z, Ding P, Cui Y, Liu H. The Impact of Exposure to Iodine and Fluorine in Drinking Water on Thyroid Health and Intelligence in School-Age Children: A Cross-Sectional Investigation. Nutrients 2024; 16:2913. [PMID: 39275229 PMCID: PMC11397114 DOI: 10.3390/nu16172913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Iodine and fluorine, as halogen elements, are often coexisting in water environments, with nearly 200 million people suffering from fluorosis globally, and, in 11 countries and territories, adolescents have iodine intakes higher than that required for the prevention of iodine deficiency disorders. It has been suggested that excess iodine and/or fluorine can affect thyroid health and intellectual development, especially in children, but their combined effect has been less studied in this population. This study investigated 399 school-age children in Tianjin, China, collected drinking water samples from areas where the school-age children lived, and grouped the respondents according to iodine and fluorine levels. Thyroid health was measured using thyroid hormone levels, thyroid volume, and the presence of thyroid nodules; intelligence quotient (IQ) was assessed using the Raven's Progressive Matrices (CRT) test; and monoamine neurotransmitter levels were used to explore the potential relationship between thyroid health and intelligence. Multiple linear regression and restricted cubic spline (RCS) analyses showed that iodine and fluorine were positively correlated with thyroid volume and the incidence of thyroid nodules in school-age children, and negatively correlated with IQ; similar results were obtained in the secondary subgroups based on urinary iodine and urinary fluoride levels. Interaction analyses revealed a synergistic effect of iodine and fluorine. A pathway analysis showed that iodine and fluorine were negatively associated with the secretion of free triiodothyronine (FT3) and free tetraiodothyronine (FT4), which in turn were negatively associated with the secretion of thyroid-stimulating hormone (TSH). Iodine and fluorine may affect IQ in school-aged children through the above pathways that affect thyroid hormone secretion; of these, FT3 and TSH were negatively correlated with IQ, whereas FT4 was positively correlated with IQ. The relationship between thyroid hormones and monoamine neurotransmitters may involve the hypothalamic-pituitary-thyroid axis, with FT4 hormone concentrations positively correlating with dopamine (DA), norepinephrine (NE), and 5-hydroxytryptophan (5-HT) concentrations, and FT3 hormone concentrations positively correlating with DA concentrations. Monoamine neurotransmitters may play a mediating role in the effects of iodine and fluoride on intelligence in schoolchildren. However, this study has some limitations, as the data were derived from a cross-sectional study in Tianjin, China, and no attention was paid to the reciprocal effects of iodine and fluorine at different doses on thyroid health and intelligence in schoolchildren in other regions.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaomeng Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Tianjin Institute of Medicine Science, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Zhilei Xing
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Peisen Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yushan Cui
- Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Hongliang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
3
|
Özdilek Ü. Art Value Creation and Destruction. Integr Psychol Behav Sci 2023; 57:796-839. [PMID: 36593339 DOI: 10.1007/s12124-022-09748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
I present a theory of creative and destructive value state referring to abstract art. Value is a probabilistic state held as a mixture of its expectation and information forces that coexist in a give-and-take relationship. Expectations are driven by the disclosure of novel information about the value state of various events of desire. Each bit of accumulated information contributes to the improvement of perception up to a threshold level, beyond which begin conscious states. The desire to disclose a value state triggers a triadic system of evaluation which uses concepts, observables and approaches. While the triadic valuation mechanisms can be used to assess various commodities, the scope of this work is limited to the case of artworks, in particular abstract paintings. I assume that art value is basically mediated by the interplay between these value state mechanisms of creation and destruction. Expectations in artwork develop attraction by challenging its contemplator to evaluate (predict) its meaning. Once the relevant information, corresponding to its creative expectations, is acquired (and conditioned), emotional states of indifference, disinterest and desensitization develop.
Collapse
Affiliation(s)
- Ünsal Özdilek
- Business School, Department of Strategy, Social and Environmental Responsibility, University of Quebec, 315, Ste-Catherine Est, Québec, H3C 3P8, Montreal, Canada.
| |
Collapse
|
4
|
Yue JY, Song LP, Wang YT, Yang P, Ma Y, Tang B. Fluorescence/Colorimetry/Smartphone Triple-Mode Sensing of Dopamine by a COF-Based Peroxidase-Mimic Platform. Anal Chem 2022; 94:14419-14425. [PMID: 36194858 DOI: 10.1021/acs.analchem.2c03179] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple and accurate monitoring of urinary dopamine (DA) concentration is significant, which is helpful for the assessment or exclusion of catecholamine-producing tumors, such as pheochromocytoma and paraganglioma. Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform for DA determination was constructed using copper ion (Cu2+)-modified hydrazone-linked covalent organic frameworks (Cu-BTA-COF). Cu-BTA-COF with 21.67 wt % copper content exhibited peroxidase-mimic activity. After adding H2O2 and 1,3-dihydroxynaphthalene, the Cu-BTA-COF platform can sensitively and selectively detect DA in three modes with consistent results. In fluorescence/colorimetry/smartphone modes, the linear ranges of DA were 1-10, 0.2-40, and 1-10 μM, with related detection limits of 7.2, 8.6, and 23 nM, respectively. Moreover, the Cu-BTA-COF platform can be explored for DA determination in human urine samples with satisfactory recoveries (97.6-100.4%) in all the three modes, suggesting the potential practical application of the Cu-BTA-COF platform for DA detection in urine.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Tong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
5
|
Lambert CT, Sahu PK, Sturdy CB, Guillette LM. Among-individual differences in auditory and physical cognitive abilities in zebra finches. Learn Behav 2022; 50:389-404. [PMID: 35583601 PMCID: PMC9116276 DOI: 10.3758/s13420-022-00520-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Among-individual variation in performance on cognitive tasks is ubiquitous across species that have been examined, and understanding the evolution of cognitive abilities requires investigating among-individual variation because natural selection acts on individual differences. However, relatively little is known about the extent to which individual differences in cognition are determined by domain-specific compared with domain-general cognitive abilities. We examined individual differences in learning speed of zebra finches across seven different tasks to determine the extent of domain-specific versus domain-general learning abilities, as well as the relationship between learning speed and learning generalization. Thirty-two zebra finches completed a foraging board experiment that included visual and structural discriminations, and then these same birds went through an acoustic operant discrimination experiment that required discriminating between different natural categories of acoustic stimuli. We found evidence of domain-general learning abilities as birds' relative performance on the seven learning tasks was weakly repeatable and a principal components analysis found a first principal component that explained 36% of the variance in performance across tasks with all tasks loading unidirectionally on this component. However, the few significant correlations between tasks and high repeatability within each experiment suggest the potential for domain-specific abilities. Learning speed did not influence an individual's ability to generalize learning. These results suggest that zebra finch performance across visual, structural, and auditory learning relies upon some common mechanism; some might call this evidence of "general intelligence"(g), but it is also possible that this finding is due to other noncognitive mechanisms such as motivation.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Prateek K Sahu
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Christopher B Sturdy
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
6
|
Modlinska K, Chrzanowska A, Goncikowska K, Pisula W. Influence of excessive sucrose consumption on exploratory behaviour in rats - possible implications for the brain reward system. Behav Brain Res 2022; 436:114085. [DOI: 10.1016/j.bbr.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
|
7
|
Kattner AA. What makes tics tick? Insights into Tourette syndrome. Biomed J 2022; 45:219-226. [PMID: 35460927 PMCID: PMC9250088 DOI: 10.1016/j.bj.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
This issue of Biomedical Journal provides the reader with articles concerning the latest understanding of Tourette syndrome (TS), the relation to genetic predisposition, defects in the dopaminergic system, and related comorbidities which further complications like sleep disruption. Treatment approaches for TS, attention deficit hyperactivity disorder and developmental coordination disorder are discussed. The second section of this issue offers insights into inside out integrin activation and its link to T cell activation, demonstrates how polarity in immune cells allows adoption to specialized functions, and describes the endosomal signaling of internalized T cell receptors (TCRs). The link between mutations in TCR signaling and immunodeficiencies is elucidated, as well as the interactions of thymocyte-expressed molecule involved in selection in T cell development. Additionally, we learn about a potential biomarker for colorectal cancer, screening tools for determining frailty in older adults, surgical approaches in spinal metastases, the influence of autophagy on mating behavior, and the effect of nitrite administration on SNARE proteins associated with insulin secretion. Finally, parameters for surgery in breast cancer are discussed, as well as gender and age dependent pain perception in a lysosomal storage disease, and the use of laser meridian massage in opioid use disorder. Three letters complement this issue, one concerning neuroimaging in pediatric COVID-19 patients, and two discussing the role of cancer antigen-125 and renal impairment in ovarian cancer patients.
Collapse
|
8
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
9
|
Cognitive and behavioral modernity in Homo erectus: skull globularity and hominin brain evolution. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.2478/anre-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
In this article we provide evidence that evolutionary pressures altered the cranial base and the mastoid region of the temporal bone more than the calvaria in the transition from H. erectus to H. sapiens. This process seems to have resulted in the evolution of more globular skull shape – but not as a result of expansion of the brain in the parietal regions but of reduction of the cranial base and the mastoid region relative to the parietals. Consequently, we argue that expansion of the parietals seems to be unrelated to brain evolution, but is more a by-product of reduction in other regions of the skull, reduction that may be related to dietary factors. Additionally, these findings suggest that cognitive and behavioural modernity may not necessarily be dependent on brain shape. Also, it cannot be attributed to the change in brain size because H. erectus and modern human cranial capacities overlap substantially. Consequently, we suggest H. erectus possessed the full suite of cognitive adaptations characteristic of modern humans without possessing a globular skull with flared parietals. Our results also support the theory that paedomorphic morphogenesis of the skull was important in the transition from H. erectus to H. sapiens and that such changes may be related to both dietary factors and social evolution.
Collapse
|
10
|
Keller M, Brennenstuhl H, Kuseyri Hübschmann O, Manti F, Julia Palacios NA, Friedman J, Yıldız Y, Koht JA, Wong SN, Zafeiriou DI, López-Laso E, Pons R, Kulhánek J, Jeltsch K, Serrano-Lomelin J, Garbade SF, Opladen T, Goez H, Burlina A, Cortès-Saladelafont E, Fernández Ramos JA, García-Cazorla A, Hoffmann GF, Kiat Hong ST, Honzík T, Kavecan I, Kurian MA, Leuzzi V, Lücke T, Manzoni F, Mastrangelo M, Mercimek-Andrews S, Mir P, Oppebøen M, Pearson TS, Sivri HS, Steel D, Stevanović G, Fung CW. Assessment of intellectual impairment, health-related quality of life, and behavioral phenotype in patients with neurotransmitter related disorders: Data from the iNTD registry. J Inherit Metab Dis 2021; 44:1489-1502. [PMID: 34245036 DOI: 10.1002/jimd.12416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Inherited disorders of neurotransmitter metabolism are a group of rare diseases, which are caused by impaired synthesis, transport, or degradation of neurotransmitters or cofactors and result in various degrees of delayed or impaired psychomotor development. To assess the effect of neurotransmitter deficiencies on intelligence, quality of life, and behavior, the data of 148 patients in the registry of the International Working Group on Neurotransmitter Related Disorders (iNTD) was evaluated using results from standardized age-adjusted tests and questionnaires. Patients with a primary disorder of monoamine metabolism had lower IQ scores (mean IQ 58, range 40-100) within the range of cognitive impairment (<70) compared to patients with a BH4 deficiency (mean IQ 84, range 40-129). Short attention span and distractibility were most frequently mentioned by parents, while patients reported most frequently anxiety and distractibility when asked for behavioral traits. In individuals with succinic semialdehyde dehydrogenase deficiency, self-stimulatory behaviors were commonly reported by parents, whereas in patients with dopamine transporter deficiency, DNAJC12 deficiency, and monoamine oxidase A deficiency, self-injurious or mutilating behaviors have commonly been observed. Phobic fears were increased in patients with 6-pyruvoyltetrahydropterin synthase deficiency, while individuals with sepiapterin reductase deficiency frequently experienced communication and sleep difficulties. Patients with BH4 deficiencies achieved significantly higher quality of life as compared to other groups. This analysis of the iNTD registry data highlights: (a) difference in IQ and subdomains of quality of life between BH4 deficiencies and primary neurotransmitter-related disorders and (b) previously underreported behavioral traits.
Collapse
Affiliation(s)
- Mareike Keller
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Natalia Alexandra Julia Palacios
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Jennifer Friedman
- UCSD Departments of Neuroscience and Pediatrics; Rady Children's Hospital Division of Neurology, Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Yılmaz Yıldız
- Hacettepe University, Faculty of Medicine, Department of Pediatrics, Section of Pediatric Metabolism, Ankara, Turkey
| | | | - Suet-Na Wong
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Dimitrios I Zafeiriou
- First Department of Pediatrics Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eduardo López-Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, IMIBIC and CIBERER, Córdoba, Spain
| | - Roser Pons
- First Department of Pediatrics of the University of Athens, Aghia Sofia Hospital, Athens, Greece
| | - Jan Kulhánek
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kathrin Jeltsch
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jesus Serrano-Lomelin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
- Dietmar-Hopp Metabolic Center, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Helly Goez
- Department of Pediatrics, University of Alberta, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Alberto Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Dipartimento della Salute della Donna e del Bambino, Azienda Ospedaliera Universitaria di Padova - Campus Biomedico Pietro d'Abano, Padova, Italy
| | - Elisenda Cortès-Saladelafont
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
- Inborn Errors of Metabolism and Child Neurology Unit, Department of Pediatrics, Hospital Germans Trias i Pujol, Badalona and Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Angeles García-Cazorla
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Stacey Tay Kiat Hong
- KTP-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Kavecan
- Faculty of Medicine, University of Novi Sad, Institute for Children and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street-Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Thomas Lücke
- University Children's Hospital, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Francesca Manzoni
- U.O.C. Malattie Metaboliche Ereditarie, Dipartimento della Salute della Donna e del Bambino, Azienda Ospedaliera Universitaria di Padova - Campus Biomedico Pietro d'Abano, Padova, Italy
| | - Mario Mastrangelo
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Women and Children's Health Research Institute, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Unidad de Gestión Clínica de Neurociencias Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mari Oppebøen
- Children's Department Division of Child Neurology Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - H Serap Sivri
- Hacettepe University, Faculty of Medicine, Department of Pediatrics, Section of Pediatric Metabolism, Ankara, Turkey
| | - Dora Steel
- Developmental Neurosciences, UCL Great Ormond Street-Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Galina Stevanović
- Clinic of Neurology and Psychiatry for Children and Youth, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Cheuk-Wing Fung
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Hirano S. Clinical implications for dopaminergic and functional neuroimage research in cognitive symptoms of Parkinson's disease. Mol Med 2021; 27:40. [PMID: 33858320 PMCID: PMC8048076 DOI: 10.1186/s10020-021-00301-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Evidence from dopaminergic image and cerebral blood flow/metabolism images have shed light on symptomatology of cognitive aspects in brain physiology of healthy human as well as patients with Parkinson's disease. Cognitive impairment in Parkinson's disease is characterized by executive, visuospatial, attentional disturbances. Dopaminergic system includes triadic parallel pathways. The mesostriatal pathway consist of posterolateral putamen and motor areas, the mesocortical pathway of dorsal caudate nucleus and dorsolateral prefrontal cortex, and the mesolimbic pathway of ventral striatum, anterior cingulate cortex. The mesocortical pathway is responsible for the executive function which may change by administration of dopaminergic medication. The mesolimbic pathway is associated with motivation and reward prediction which may result in depression or apathy when dopamine level was suboptimal, impulse control disorder and punding when dopamine was over the optimal level. Abnormal brain metabolism/perfusion related to cognitive impairment in Parkinson's disease are relatively reduced activity located in frontal and parietal association areas and relatively increased activity in the cerebellum. In the anterior brain, the mesocortical pathway, is responsible for verbal memory and executive function, which originates with caudate dopaminergic system and account for mild cognitive impairment of Parkinson's disease. The posterior brain system which includes the parietal, temporal, and occipital cortices, is responsible for the memory and visuospatial function, and related to cholinergic dysfunction and possibly glucocerebrosidase gene variants, relating to dementia in Parkinson's disease. The role of cerebellum in Parkinson's disease remains unclear but emerging evidence suggests that it may relate to the sequencing detection and affective symptoms. The dual syndrome hypothesis is helpful for understanding the mechanism of cognitive impairment in Parkinson's disease and optimal symptom management.
Collapse
Affiliation(s)
- Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
12
|
Zhao L, Yu C, Lv J, Cui Y, Wang Y, Hou C, Yu J, Guo B, Liu H, Li L. Fluoride exposure, dopamine relative gene polymorphism and intelligence: A cross-sectional study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111826. [PMID: 33360592 DOI: 10.1016/j.ecoenv.2020.111826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive fluoride exposure is related to adverse health outcomes, but whether dopamine (DA) relative genes are involved in the health effect of low-moderate fluoride exposure on children's intelligence remain unclear. OBJECTIVES We conducted a cross-sectional study to explore the role of DA relative genes in the health effect of low-moderate fluoride exposure in drinking water. METHODS We recruited 567 resident children, aged 6-11 years old, randomly from endemic and non-endemic fluorosis areas in Tianjin, China. Spot urine samples were tested for urinary fluoride concentration, combined Raven`s test was used for intelligence quotient test. Fasting venous blood were collected to analyze ANKK1 Taq1A (rs1800497), COMT Val158Met (rs4680), DAT1 40 bp VNTR and MAOA uVNTR. Multivariable linear regression models were used to assess associations between fluoride exposure and IQ scores. We applied multiplicative and additive models to appraise single gene-environment interaction. Generalized multifactor dimensionality reduction (GMDR) was used to evaluate high-dimensional interactions of gene-gene and gene-environment. RESULTS In adjusted model, fluoride exposure was inversely associated with IQ scores (β = -5.957, 95% CI: -9.712, -2.202). The mean IQ scores of children with high-activity MAOA genotype was significantly lower than IQ scores of those with low-activity (P = 0.006) or female heterozygote (P = 0.016) genotype. We detected effect modification by four DA relative genes (ANKK1, COMT, DAT1 and MAOA) on the association between UF and IQ scores. We also found a high-dimensional gene-environment interaction among UF, ANKK1, COMT and MAOA on the effect of IQ (testing balanced accuracy = 0.5302, CV consistency: 10/10, P = 0.0107). CONCLUSIONS Our study suggests DA relative genes may modify the association between fluoride and intelligence, and a potential interaction among fluoride exposure and DA relative genes on IQ.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, PR China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, PR China; Peking University Institute of Environmental Medicine, Beijing 100191, PR China
| | - Yushan Cui
- Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, PR China
| | - Yang Wang
- Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, PR China
| | - Changchun Hou
- Institute of Environment and Health, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, PR China
| | - Jingwen Yu
- School of public health, Tianjin Medical University, Tianjin 300070, PR China
| | - Baihui Guo
- School of public health, Tianjin Medical University, Tianjin 300070, PR China
| | - Hongliang Liu
- School of public health, Tianjin Medical University, Tianjin 300070, PR China; Tianjin Municipal Bureau of Health Inspection, Tianjin 300070, PR China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
13
|
Reduced Interhemispheric Coherence after Cerebellar Vermis Output Perturbation. Brain Sci 2020; 10:brainsci10090621. [PMID: 32911623 PMCID: PMC7563959 DOI: 10.3390/brainsci10090621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Motor coordination and motor learning are well-known roles of the cerebellum. Recent evidence also supports the contribution of the cerebellum to the oscillatory activity of brain networks involved in a wide range of disorders. Kainate, a potent analog of the excitatory neurotransmitter glutamate, can be used to induce dystonia, a neurological movement disorder syndrome consisting of sustained or repetitive involuntary muscle contractions, when applied on the surface of the cerebellum. This research aims to study the interhemispheric cortical communication between the primary motor cortices after repeated kainate application on cerebellar vermis for five consecutive days, in mice. We recorded left and right primary motor cortices electrocorticograms and neck muscle electromyograms, and quantified the motor behavior abnormalities. The results indicated a reduced coherence between left and right motor cortices in low-frequency bands. In addition, we observed a phenomenon of long-lasting adaptation with a modification of the baseline interhemispheric coherence. Our research provides evidence that the cerebellum can control the flow of information along the cerebello-thalamo-cortical neural pathways and can influence interhemispheric communication. This phenomenon could function as a compensatory mechanism for impaired regional networks.
Collapse
|
14
|
Lovejoy DA, Hogg DW. Information Processing in Affective Disorders: Did an Ancient Peptide Regulating Intercellular Metabolism Become Co‐Opted for Noxious Stress Sensing? Bioessays 2020; 42:e2000039. [DOI: 10.1002/bies.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| | - David W. Hogg
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| |
Collapse
|
15
|
Odai T, Terauchi M, Suzuki R, Kato K, Hirose A, Miyasaka N. Severity of subjective forgetfulness is associated with high dietary intake of copper in Japanese senior women: A cross-sectional study. Food Sci Nutr 2020; 8:4422-4431. [PMID: 32884722 PMCID: PMC7455963 DOI: 10.1002/fsn3.1740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 06/06/2020] [Indexed: 01/31/2023] Open
Abstract
This study investigated the relationship between subjective forgetfulness and the dietary intake of various nutrients in middle-aged and senior women. A cross-sectional study of the first-visit records of 245 Japanese women aged 40 or over was performed. The severity of subjective forgetfulness was classified according to the Menopausal Health-Related Quality of Life Questionnaire: none and mild ("unforgetful") or moderate and severe ("forgetful"). Dietary consumption of nutrients was estimated using the brief-type self-administered diet history questionnaire. The associations between the severity of subjective forgetfulness and intake of 43 major nutrients were evaluated using multivariate logistic regression analysis separately performed for two age groups: middle-aged (40-54 years, N = 166) and senior (55 years or over, N = 79). No nutrients were found to be significantly associated with subjective forgetfulness in the middle-aged group. In senior women, a significant positive relationship between the intake of copper and forgetfulness was found (adjusted odds ratio per 10 mg/kJ increase in copper intake: 1.25; 95% confidence interval: 1.08-1.50). Thus, high copper intake is positively associated with the severity of forgetfulness in Japanese senior women. Reducing copper consumption could help improve this symptom in this population.
Collapse
Affiliation(s)
- Tamami Odai
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Masakazu Terauchi
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Risa Suzuki
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Kiyoko Kato
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Asuka Hirose
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Naoyuki Miyasaka
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| |
Collapse
|
16
|
Kupnicka P, Kojder K, Metryka E, Kapczuk P, Jeżewski D, Gutowska I, Goschorska M, Chlubek D, Baranowska-Bosiacka I. Morphine-element interactions - The influence of selected chemical elements on neural pathways associated with addiction. J Trace Elem Med Biol 2020; 60:126495. [PMID: 32179426 DOI: 10.1016/j.jtemb.2020.126495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a pressing social problem worldwide and opioid dependence can be considered the strongest and most difficult addiction to treat. Mesolimbic and mesocortical dopaminergic pathways play an important role in modulation of cognitive processes and decision making and, therefore, changes in dopamine metabolism are considered the central basis for the development of dependence. Disturbances caused by excesses or deficiency of certain elements have a significant impact on the functioning of the central nervous system (CNS) both in physiological conditions and in pathology and can affect the cerebral reward system and therefore, may modulate processes associated with the development of addiction. In this paper we review the mechanisms of interactions between morphine and zinc, manganese, chromium, cadmium, lead, fluoride, their impact on neural pathways associated with addiction, and on antinociception and morphine tolerance and dependence.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitive Science, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| |
Collapse
|
17
|
Cui Y, Yu J, Zhang B, Guo B, Gao T, Liu H. The relationships between thyroid-stimulating hormone and/or dopamine levels in peripheral blood and IQ in children with different urinary iodine concentrations. Neurosci Lett 2020; 729:134981. [PMID: 32344109 DOI: 10.1016/j.neulet.2020.134981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/25/2022]
Abstract
Environmental iodine deficiency or excess can lead to inappropriate iodine nutrition in the population. Little research has been performed to determine whether changes in thyroid-stimulating hormone (TSH) and/or dopamine (DA) concentrations in peripheral blood are involved in intellectual impairment caused by inappropriate iodine nutrition. 498 children aged 7-12 from areas with different water iodine concentrations were included in the study. Children's intelligence and levels of urinary iodine and fluoride, TSH, free triiodothyronine (FT3), free thyroxine (FT4), and DA were evaluated. The relationship between TSH and/or DA levels and intelligence quotient (IQ) in all participants and in the population with different urinary iodine concentrations (UIC) was evaluated by multivariate regression analysis. The proportion of people with low average and lower intelligence in UIC ≥ 300 μg/L group was significantly higher than that in control group but only a positive correlation was found between DA and IQ in the population with UIC < 100 μg/L (bootstrapped estimation P = 0.032). TSH and/or DA in peripheral blood may be not involved in the progressive decline in intelligence caused by iodine excess but DA had positive correlation with intelligence in iodine deficiency group, and no relationship between TSH concentration and IQ was found in the general population or in different UIC groups.
Collapse
Affiliation(s)
- Yushan Cui
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Jingwen Yu
- School of public health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Bin Zhang
- China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 14100061, PR China
| | - Baihui Guo
- School of public health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Tongning Gao
- School of public health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Hongliang Liu
- School of public health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Municipal Bureau of Health Inspection, 94 Guizhou Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
18
|
Li H, Hirano S, Furukawa S, Nakano Y, Kojima K, Ishikawa A, Tai H, Horikoshi T, Iimori T, Uno T, Matsuda H, Kuwabara S. The Relationship Between the Striatal Dopaminergic Neuronal and Cognitive Function With Aging. Front Aging Neurosci 2020; 12:41. [PMID: 32184717 PMCID: PMC7058549 DOI: 10.3389/fnagi.2020.00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 12/03/2022] Open
Abstract
Both cognitive function and striatal dopamine function decline by normal aging. However, the relationship among these three factors remains unclear. The aim of this study was to elucidate the association among age-related changes in the striatal dopamine transporter (DAT) and cognitive function in healthy subjects. The 30 healthy volunteers were enrolled in this research, the age ranged from 41 to 82 (64.5 ± 11.5, mean ± SD). All subjects were scanned with both T1-weighted magnetic resonance imaging (MRI) and 123I-FP-CIT single-photon emission computed tomography (SPECT) images. The Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) was used to evaluate cognitive function. Six spherical regions of interest (ROI) using 10 mm in diameter on the caudate nucleus, anterior putamen and posterior putamen were manually drawn on MRI image which was applied onto SPECT image. The relationship between striatal occipital ratio (SOR) values and WAIS-III subscore were analyzed by multiple regression analysis. Subscores which was significant were further analyzed by path analyses. Full intelligence quotient (IQ), verbal IQ, verbal comprehension were all positively correlated with age-adjusted striatal DAT binding (P < 0.01). Multiple regression analyses revealed that the coding digit symbol correlated with all striatal regions except for the left caudate (P < 0.04). Picture completion and right caudate, similarities and left caudate also showed a positive correlation (P < 0.04). Path analysis found that the right caudate and picture completion; the left caudate and similarities were correlated independently from age, whereas the models of coding digit symbol were not significant. These results suggest that age-based individual diversity of striatal DAT binding was associated with verbal function, and the caudate nucleus plays an important role in this association.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shogo Furukawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Yoshikazu Nakano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuho Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
| | - Ai Ishikawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, JR Tokyo General Hospital, Tokyo, Japan
| | - Hong Tai
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuro Horikoshi
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Iimori
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Saniotis A, Grantham JP, Kumaratilake J, Henneberg M. Neuro-hormonal Regulation Is a Better Indicator of Human Cognitive Abilities Than Brain Anatomy: The Need for a New Paradigm. Front Neuroanat 2020; 13:101. [PMID: 31998082 PMCID: PMC6962128 DOI: 10.3389/fnana.2019.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arthur Saniotis
- Department of Medical Laboratory Science, Knowledge University, Erbil, Iraq
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Arthur Saniotis
| | - James P. Grantham
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit (BACARU), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Bieliński M, Lesiewska N, Junik R, Kamińska A, Tretyn A, Borkowska A. Dopaminergic Genes Polymorphisms and Prefrontal Cortex Efficiency Among Obese People - Whether Gender is a Differentiating Factor? Curr Mol Med 2019; 19:405-418. [PMID: 31032750 DOI: 10.2174/1566524019666190424143653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is a chronic condition associated with poorer cognitive functioning. Wisconsin Card Sorting Test (WCST) is a useful tool for evaluating executive functions. In this study, we assessed the association between dopaminergic gene polymorphisms: DAT1 (SLC6A3), COMTVal158Met, DRD4 (48-bp variable number of tandem repeats - VNTR) and WCST parameters to investigate the functions of the frontal lobes in obese individuals. OBJECTIVE To find the significant correlations between polymorphisms of DAT1, COMTVal158Met, DRD4 and executive functions in obese subjects. METHODS The analysis of the frequency of individual alleles was performed in 248 obese patients (179 women, 69 men). Evaluation of the prefrontal cortex function (operating memory and executive functions) was measured with the Wisconsin Card Sorting Test (WCST). Separate analyzes were performed in age subgroups to determine different activities and regulation of genes in younger and older participants. RESULTS Scores of WCST parameters were different in the subgroups of women and men and in the age subgroups. Regarding the COMT gene, patients with A/A and G/A polymorphisms showed significantly better WCST results in WCST_P, WCST_CC and WCST_1st. Regarding DAT1 men with L/L and L/S made less non-perseverative errors, which was statistically significant. In DRD4, significantly better WCST_1st results were found only in older women with S allele. CONCLUSION Obtained results indicate the involvement of dopaminergic transmission in the regulation of prefrontal cortex function. Data analysis indicates that prefrontal cortex function may ensue, from different elements such as genetic factors, metabolic aspects of obesity, and hormonal activity (estrogen).
Collapse
Affiliation(s)
- Maciej Bieliński
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Natalia Lesiewska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Anna Kamińska
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Andrzej Tretyn
- Department of Biotechnology, Nicolaus Copernicus University in Torun, Poland
| | - Alina Borkowska
- Chair and Department of Clinical Neuropsychology, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
21
|
Cui Y, Zhang B, Ma J, Wang Y, Zhao L, Hou C, Yu J, Zhao Y, Zhang Z, Nie J, Gao T, Zhou G, Liu H. Dopamine receptor D2 gene polymorphism, urine fluoride, and intelligence impairment of children in China: A school-based cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:270-277. [PMID: 30205328 DOI: 10.1016/j.ecoenv.2018.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE We aimed to study the association of urine fluoride with intelligence quotient (IQ) in children with a careful consideration of up to 30 potential confounding factors as well as possible heterogeneity of the relation between urine fluoride levels and IQ scores across children with different dopamine receptor-2 (DRD2) Taq 1A genotypes (CC, CT, and TT). METHODS A school-based cross-sectional study design was applied. A total of 323 children (2014-2015, 7-12 years old) were enrolled from four schools in both historical endemic and non-endemic areas of fluorosis in Tianjin of China using a cluster sampling method. Urine fluoride levels and age-specific IQ scores in children were measured at the enrollment. Polymerase chain reaction-restriction fragment length polymorphism methods were used to genotype DRD2 Taq 1A polymorphism with genomic DNA isolated from whole blood collected at the enrollment. Multiple linear regression models were applied to evaluate the relationship between urine fluoride levels and IQ scores overall and within the DRD2 Taq 1A SNP = CC/CT and TT subgroups. Model robustness was tested through bootstrap, sensitivity analysis, and cross-validation techniques. A safety threshold of urine fluoride levels for IQ impairment was determined in the subgroup TT. RESULTS In overall participants, the DRD2 Taq 1A polymorphism itself was not related to IQ scores in children who had a high level of urine fluoride. In the CC/CT subgroup, urine fluoride levels and IQ scores in children were unrelated (adjusted β (95% confidence interval (CI)) = - 1.59 (- 4.24, 1.05), p = 0.236). Among the participants carrying the TT genotype, there was a strong and robust negative linear relationship between log-urine fluoride and IQ scores in children (adjusted β (95% CI) = - 12.31 (- 18.69, - 5.94), p < 0.001). Urine fluoride levels had a stronger association with IQ in children carrying the TT genotype (adjusted β = - 12.31, bootstrapped standard error (SE) = 1.28), compared to that in overall participants (adjusted β = - 2.47, bootstrapped SE = 3.75) (Z = 2.483 and bootstrapped p = 0.007). The safety threshold of urine fluoride levels in the subgroup TT was 1.73 mg/L (95% CI = (1.51, 1.97) (mg/L)). CONCLUSIONS There is heterogeneity in the relation between urine fluoride and IQ across children carrying different DRD2 Taq 1A genotypes. Large-scale epidemiological studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yushan Cui
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District,Tianjin 300011, PR China
| | - Bin Zhang
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jing Ma
- Tianjin Cardiovascular Institute, Tianjin Chest Hospital, 261 Taierzhuang south road, Jinnan District, Tianjin 300050, PR China
| | - Yang Wang
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District,Tianjin 300011, PR China
| | - Liang Zhao
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District,Tianjin 300011, PR China
| | - Changchun Hou
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District,Tianjin 300011, PR China
| | - Jingwen Yu
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yang Zhao
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Zushan Zhang
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Junyan Nie
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Tongning Gao
- School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Guoli Zhou
- Biomedical Research Informatics Core (BRIC), Clinical and Translational Sciences Institute (CTSI), Michigan State University, 909 Fee Road, East Lansing, MI 48824, USA.
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District,Tianjin 300011, PR China; School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
22
|
Sertraline for Major Depression During the Year Following Traumatic Brain Injury: A Randomized Controlled Trial. J Head Trauma Rehabil 2018; 32:332-342. [PMID: 28520672 DOI: 10.1097/htr.0000000000000322] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is common and associated with impaired functioning after traumatic brain injury (TBI). Few placebo-controlled antidepressant trials exist in this population. We evaluated the efficacy and tolerability of sertraline for MDD within 1 year of sustaining a TBI. SETTING Level I trauma center. PARTICIPANTS Adults with MDD within 1 year of hospitalization for complicated mild to severe TBI. DESIGN Randomized, double-blind, placebo-controlled trial. MAIN MEASURES Twelve-week treatment response on the 17-item Hamilton Depression Rating Scale. We also assessed symptom improvement and remission. RESULTS We randomized 62 participants: 32% sustained a severe TBI, 68% had significant anxiety, 63% had a history of prior MDD, and 69% had a history of alcohol or drug dependence. Depression significantly improved from baseline to 12 weeks in both treatment groups (P < .001). There were no significant differences between the sertraline and placebo groups over 12 weeks on depression severity, response, or remission. The sertraline group had significant improvement on speed of information processing compared with the placebo group (P < .006). CONCLUSION Sertraline monotherapy was not superior to placebo for MDD in people with post-acute complicated mild to severe TBI. Research is needed on the effectiveness of interventions that also address the significant psychosocial needs of this population.
Collapse
|
23
|
Xu Q, Fu J, Liu F, Qin W, Liu B, Jiang T, Yu C. Left Parietal Functional Connectivity Mediates the Association Between COMT rs4633 and Verbal Intelligence in Healthy Adults. Front Neurosci 2018; 12:233. [PMID: 29692704 PMCID: PMC5902573 DOI: 10.3389/fnins.2018.00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/23/2018] [Indexed: 01/24/2023] Open
Abstract
In Chinese Han population, Catechol-O-methyltransferase gene (COMT) rs4633 is found to be associated with impaired cognitive process. We aimed to investigate the association between COMT rs4633 and verbal intelligence and the underlying neural mechanisms in Chinese Han healthy young adults. In 256 Chinese Han healthy young adults, we explored the modulatory effects of COMT rs4633 on verbal intelligence quotient (VIQ) and functional connectivity density (FCD) of the brain and the mediation effect of FCD on the association between COMT and VIQ. We further investigated the association between the expression patterns of dopamine receptor genes and the effect of COMT on FCD in the human brain. COMT rs4633 TT homozygotes exhibited lower VIQ than CC homozygotes and TC heterozygotes, higher long-range FCD (lrFCD) than CC homozygotes and TC heterozygotes in the left superior frontal gyrus. TT homozygotes and TC heterozygotes showed higher lrFCD than CC homozygotes in the left inferior parietal lobule. The lrFCD differences across genotypic subgroups were negatively associated with the expression of DRD2 and DRD3 genes. The left parietal lrFCD mediated the association between COMT rs4633 and VIQ. These findings provide a biological pathway that COMT rs4633 affects verbal intelligence via modulating the lrFCD of the left inferior parietal lobule.
Collapse
Affiliation(s)
- Qiang Xu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Paprocki R, Lenskiy A. What Does Eye-Blink Rate Variability Dynamics Tell Us About Cognitive Performance? Front Hum Neurosci 2017; 11:620. [PMID: 29311876 PMCID: PMC5742176 DOI: 10.3389/fnhum.2017.00620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 02/03/2023] Open
Abstract
Cognitive performance is defined as the ability to utilize knowledge, attention, memory, and working memory. In this study, we briefly discuss various markers that have been proposed to predict cognitive performance. Next, we develop a novel approach to characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our findings are based on a sample of 24 subjects. The subjects were given a 5-min resting period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1 and Fp2 electrodes. We found that scale exponents estimated for blink rate variability during rest were correlated with subjects' performance on the subsequent IQ test. This surprising phenomenon could be explained by the person to person variation in concentrations of dopamine in PFC and accumulation of GABA in the visual cortex, as both neurotransmitters play a key role in cognitive processes and affect blinking. This study demonstrates the possibility that blink rate variability dynamics at rest carry information about cognitive performance and can be employed in the assessment of cognitive abilities without taking a test.
Collapse
Affiliation(s)
- Rafal Paprocki
- Korea University of Technology and Education, Cheonan, South Korea
| | - Artem Lenskiy
- Korea University of Technology and Education, Cheonan, South Korea
| |
Collapse
|
26
|
Geller S, Wilhelm O, Wacker J, Hamm A, Hildebrandt A. Associations of the COMT Val158Met polymorphism with working memory and intelligence – A review and meta-analysis. INTELLIGENCE 2017. [DOI: 10.1016/j.intell.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Rühli F, van Schaik K, Henneberg M. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism. Physiology (Bethesda) 2017; 31:392-397. [PMID: 27708045 DOI: 10.1152/physiol.00013.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease.
Collapse
Affiliation(s)
- Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland;
| | - Katherine van Schaik
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland; Harvard Medical School and Harvard Department of the Classics, Harvard University, Cambridge, Massachusetts; and
| | - Maciej Henneberg
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
28
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Karim AKMR, Proulx MJ, Likova LT. Anticlockwise or clockwise? A dynamic Perception-Action-Laterality model for directionality bias in visuospatial functioning. Neurosci Biobehav Rev 2016; 68:669-693. [PMID: 27350096 DOI: 10.1016/j.neubiorev.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
Orientation bias and directionality bias are two fundamental functional characteristics of the visual system. Reviewing the relevant literature in visual psychophysics and visual neuroscience we propose here a three-stage model of directionality bias in visuospatial functioning. We call this model the 'Perception-Action-Laterality' (PAL) hypothesis. We analyzed the research findings for a wide range of visuospatial tasks, showing that there are two major directionality trends in perceptual preference: clockwise versus anticlockwise. It appears these preferences are combinatorial, such that a majority of people fall in the first category demonstrating a preference for stimuli/objects arranged from left-to-right rather than from right-to-left, while people in the second category show an opposite trend. These perceptual biases can guide sensorimotor integration and action, creating two corresponding turner groups in the population. In support of PAL, we propose another model explaining the origins of the biases - how the neurogenetic factors and the cultural factors interact in a biased competition framework to determine the direction and extent of biases. This dynamic model can explain not only the two major categories of biases in terms of direction and strength, but also the unbiased, unreliably biased or mildly biased cases in visuosptial functioning.
Collapse
Affiliation(s)
- A K M Rezaul Karim
- Envision Research Institute, 610 N. Main St, Wichita, KS 67203, USA; The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St, San Francisco, CA 94115, USA; Department of Psychology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK.
| | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St, San Francisco, CA 94115, USA.
| |
Collapse
|
30
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
31
|
Yun I, Lee J, Kim SG. Dopaminergic Polymorphisms, Academic Achievement, and Violent Delinquency. INTERNATIONAL JOURNAL OF OFFENDER THERAPY AND COMPARATIVE CRIMINOLOGY 2015; 59:1409-1428. [PMID: 25326467 DOI: 10.1177/0306624x14554381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent research in the field of educational psychology points to the salience of self-control in accounting for the variance in students' report card grades. At the same time, a novel empirical study from molecular genetics drawing on the National Longitudinal Study of Adolescent Health (Add Health) data has revealed that polymorphisms in three dopaminergic genes (dopamine transporter [DAT1], dopamine D2 receptor [DRD2], and dopamine D4 receptor [DRD4]) are also linked to adolescents' grade point averages (GPAs). Juxtaposing these two lines of research, the current study reanalyzed the Add Health genetic subsample to assess the relative effects of these dopaminergic genes and self-control on GPAs. The results showed that the effects of the latter were far stronger than those of the former. The interaction effects between the dopaminergic genes and a set of environmental factors on academic performance were also examined, producing findings that are aligned with the "social push hypothesis" in behavioral genetics. Finally, based on the criminological literature on the link between academic performance and delinquency, we tested whether dopaminergic effects on violent delinquency were mediated by GPAs. The results demonstrated that academic performance fully mediated the linkage between these genes and violent delinquency.
Collapse
Affiliation(s)
| | - Julak Lee
- Kyonggi University, Suwon-si, South Korea
| | | |
Collapse
|
32
|
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s, resulting in severe disability in some 150 to 200 million people per annum. In addition to mood and behavioural problems, cognition-particularly memory, attention and executive function-are commonly impaired by TBI. Cognitive problems following TBI are one of the most important factors in determining people's subjective well-being and their quality of life. Drugs are widely used in an attempt to improve cognitive functions. Whilst cholinergic agents in TBI have been reviewed, there has not yet been a systematic review or meta-analysis of the effect on chronic cognitive problems of all centrally acting pharmacological agents. OBJECTIVES To assess the effects of centrally acting pharmacological agents for treatment of chronic cognitive impairment subsequent to traumatic brain injury in adults. SEARCH METHODS We searched ALOIS-the Cochrane Dementia and Cognitive Improvement Group's Specialised Register-on 16 November 2013, 23 February 2013, 20 January 2014, and 30 December 2014 using the terms: traumatic OR TBI OR "brain injury" OR "brain injuries" OR TBIs OR "axonal injury" OR "axonal injuries". ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources. Supplementary searches were also performed in MEDLINE, EMBASE, PsycINFO, The Cochrane Library, CINAHL, LILACs, ClinicalTrials.gov, the World Health Organization (WHO) Portal (ICTRP) and Web of Science with conference proceedings. SELECTION CRITERIA We included randomised controlled trials (RCTs) assessing the effectiveness of any one centrally acting pharmacological agent that affects one or more of the main neurotransmitter systems in people with chronic traumatic brain injury; and there had to be a minimum of 12 months between the injury and entry into the trial. DATA COLLECTION AND ANALYSIS Two review authors examined titles and abstracts of citations obtained from the search. Relevant articles were retrieved for further assessment. A bibliographic search of relevant papers was conducted. We extracted data using a standardised tool, which included data on the incidence of adverse effects. Where necessary we requested additional unpublished data from study authors. Risk of bias was assessed by a single author. MAIN RESULTS Only four studies met the criteria for inclusion, with a total of 274 participants. Four pharmacological agents were investigated: modafinil (51 participants); (-)-OSU6162, a monoamine stabiliser (12 participants of which six had a TBI); atomoxetine (60 participants); and rivastigmine (157 participants). A meta-analysis could not be performed due to the small number and heterogeneity of the studies.All studies examined cognitive performance, with the majority of the psychometric sub-tests showing no difference between treatment and placebo (n = 274, very low quality evidence). For (-)-OSU6162 modest superiority over placebo was demonstrated on three measures, but markedly inferior performance on another. Rivastigmine was better than placebo on one primary measure, and a single cognitive outcome in a secondary analysis of a subgroup with more severe memory impairment at baseline. The study of modafinil assessed clinical global improvement (n = 51, low quality evidence), and did not find any difference between treatment and placebo. Safety, as measured by adverse events, was reported by all studies (n = 274, very low quality evidence), with significantly more nausea reported by participants who received rivastigmine compared to placebo. There were no other differences in safety between treatment and placebo. No studies reported any deaths. AUTHORS' CONCLUSIONS There is insufficient evidence to determine whether pharmacological treatment is effective in chronic cognitive impairment in TBI. Whilst there is a positive finding for rivastigmine on one primary measure, all other primary measures were not better than placebo. The positive findings for (-)-OSU6162 are interpreted cautiously as the study was small (n = 6). For modafinil and atomoxetine no positive effects were found. All four drugs appear to be relatively well tolerated, although evidence is sparse.
Collapse
Affiliation(s)
- Dominic Dougall
- East London NHS Foundation TrustNewham Centre for Mental HealthGlen RoadCherry Tree WayLondonUKE13 8SP
| | - Norman Poole
- East London NHS Foundation TrustDepartment of Psychological Medicine, Royal London Hospital3rd Floor, Out‐patients DeptStepney WayLondonUKE1 1BB
| | - Niruj Agrawal
- St George's HospitalDepartment of NeuropsychiatryClare HouseBlackshaw RoadLondonUKSW17 0QT
| | | |
Collapse
|
33
|
Landers JG, Esch T. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation. Med Hypotheses 2015; 85:905-9. [PMID: 26474929 DOI: 10.1016/j.mehy.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by very frequent and intense practice and extra stress from public scrutiny, would potentially have their negative feedback system overwhelmed, were it not that many of them carry the C allele of the NOS3-786T/C polymorphism. Then, even very high DA would not result in so much NO as to shut the system down. We add some evolutionary speculations.
Collapse
Affiliation(s)
| | - Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Coburg, Germany; Institute for General Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany; Neuroscience Research Institute, State University of New York, College at Old Westbury, New York, USA
| |
Collapse
|
34
|
Chronic and recreational use of cocaine is associated with a vulnerability to semantic interference. Psychopharmacology (Berl) 2015; 232:1717-26. [PMID: 25413897 DOI: 10.1007/s00213-014-3806-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE Language production requires that speakers effectively recruit inhibitory control to successfully produce speech. The use of cocaine is associated with impairments in cognitive control processes in the non-verbal domain, but the impact of chronic and recreational use of cocaine on these processes during language production remains undetermined. OBJECTIVES This study aims to observe the possible impairment of inhibitory control in language production among chronic and recreational cocaine polydrug users. METHOD Two experiments were carried out on chronic (experiment 1) and recreational (experiment 2) cocaine polydrug users performing a blocked-cycled naming task, yielding an index of semantic interference. Participants were matched for sex, age, and intelligence (Raven's Standard Progressive Matrices) with cocaine-free controls, and their performance was compared on the blocked-cycled naming task. RESULTS Chronic and recreational users showed significantly larger semantic interference effects than cocaine-free controls, thereby indicating a deficit in the ability to inhibit interfering information. CONCLUSION Evidence indicates a relationship between the consumption of cocaine, even at recreational levels, and the inhibitory processes that suppress the overactive lexical representations in the semantic context. This deficit may be critical in adapting and responding to many real-life situations where an efficient self-monitoring system is necessary for the prevention of errors.
Collapse
|
35
|
Saniotis A, Henneberg M, Kumaratilake J, Grantham JP. "Messing with the mind": evolutionary challenges to human brain augmentation. Front Syst Neurosci 2014; 8:152. [PMID: 25324734 PMCID: PMC4179735 DOI: 10.3389/fnsys.2014.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/04/2014] [Indexed: 11/13/2022] Open
Abstract
The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce “augmented” brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.
Collapse
Affiliation(s)
- Arthur Saniotis
- Biological Anthropology and Comparative Anatomy Unit, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia ; Centre for Evolutionary Medicine, University of Zürich Zürich, Switzerland
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia ; Centre for Evolutionary Medicine, University of Zürich Zürich, Switzerland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Unit, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - James P Grantham
- Biological Anthropology and Comparative Anatomy Unit, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
36
|
Chiniforoshan H, Tabrizi L, Pourrahim N. A new Ag-nanoparticle with 4-nitro phenylcyanamide ligand: synthesis characterization and application to the detection of dibucaine, naphazoline, dopamine, and acetaminophen. J APPL ELECTROCHEM 2014. [DOI: 10.1007/s10800-014-0758-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Ali MM, Amialchuk A, Heller LR. The influence of physical activity on cigarette smoking among adolescents: evidence from Add Health. Nicotine Tob Res 2014; 17:539-45. [PMID: 25187062 DOI: 10.1093/ntr/ntu171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/19/2014] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This article explored the relationship between physical activity and smoking behavior among adolescents using rich longitudinal survey data from a nationally representative sample of adolescents. METHODS Several endogeneity-corrected models were estimated to ascertain the effect of exercise on both the probability of being a smoker and the intensity of cigarette smoking. RESULTS The analysis indicated that 1 additional weekly occurrence of exercise led to a 0.3% decline in the probability of being a smoker and led to a 4.1% reduction in the number of cigarettes smoked by a smoker during a month, a result that was robust to stratification by gender and race/ethnicity. Consistent with the national guidelines, frequencies of physical activity of at least 7 times per week appeared to exhibit the biggest benefits in terms of reduction in smoking for both genders and across races/ethnicities. CONCLUSIONS Reduction in health-damaging smoking behavior among adolescents could be an additional benefit of being physically active. This research documented a new pathway by which even moderate increases in physical activity could result in improved health outcomes by reducing smoking.
Collapse
Affiliation(s)
- Mir M Ali
- Analysis and Services Research Branch, Substance Abuse and Mental Health Services Administration, Rockville, MD
| | | | - Lauren R Heller
- Department of Economics, Campbell School of Business, Berry College, Mount Berry, GA
| |
Collapse
|
38
|
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One 2013; 8:e71741. [PMID: 23940784 PMCID: PMC3734303 DOI: 10.1371/journal.pone.0071741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.
Collapse
|
39
|
Hoffmann M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN NEUROLOGY 2013; 2013:892459. [PMID: 23577266 PMCID: PMC3612492 DOI: 10.1155/2013/892459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/19/2012] [Indexed: 12/27/2022]
Abstract
Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy.
Collapse
Affiliation(s)
- Michael Hoffmann
- Director Stroke and Cognitive Neurology Programs, James A. Haley Veterans' Hospital, 13000 Bruce B. Down's Boulevard, Tampa, FL 33612, USA
- Cognitive Neurologist and Director SciBrain, Roskamp Neurosciences Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| |
Collapse
|
40
|
When do people cooperate? The neuroeconomics of prosocial decision making. Brain Cogn 2012; 81:95-117. [PMID: 23174433 DOI: 10.1016/j.bandc.2012.09.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 08/27/2012] [Accepted: 09/10/2012] [Indexed: 11/20/2022]
Abstract
Understanding the roots of prosocial behavior is an interdisciplinary research endeavor that has generated an abundance of empirical data across many disciplines. This review integrates research findings from different fields into a novel theoretical framework that can account for when prosocial behavior is likely to occur. Specifically, we propose that the motivation to cooperate (or not), generated by the reward system in the brain (extending from the striatum to the ventromedial prefrontal cortex), is modulated by two neural networks: a cognitive control system (centered on the lateral prefrontal cortex) that processes extrinsic cooperative incentives, and/or a social cognition system (including the temporo-parietal junction, the medial prefrontal cortex and the amygdala) that processes trust and/or threat signals. The independent modulatory influence of incentives and trust on the decision to cooperate is substantiated by a growing body of neuroimaging data and reconciles the apparent paradox between economic versus social rationality in the literature, suggesting that we are in fact wired for both. Furthermore, the theoretical framework can account for substantial behavioral heterogeneity in prosocial behavior. Based on the existing data, we postulate that self-regarding individuals (who are more likely to adopt an economically rational strategy) are more responsive to extrinsic cooperative incentives and therefore rely relatively more on cognitive control to make (un)cooperative decisions, whereas other-regarding individuals (who are more likely to adopt a socially rational strategy) are more sensitive to trust signals to avoid betrayal and recruit relatively more brain activity in the social cognition system. Several additional hypotheses with respect to the neural roots of social preferences are derived from the model and suggested for future research.
Collapse
|
41
|
Raghanti MA, Conley T, Sudduth J, Erwin JM, Stimpson CD, Hof PR, Sherwood CC. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates. Am J Primatol 2012; 75:415-24. [PMID: 23042407 DOI: 10.1002/ajp.22082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022]
Abstract
We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Emonds G, Declerck CH, Boone C, Vandervliet EJM, Parizel PM. The cognitive demands on cooperation in social dilemmas: An fMRI study. Soc Neurosci 2012; 7:494-509. [DOI: 10.1080/17470919.2012.655426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Schwartz JA, Beaver KM. Examining the effects of dopamine genes on verbal IQ within and between families. J Neural Transm (Vienna) 2012; 120:477-86. [DOI: 10.1007/s00702-012-0881-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
|
44
|
Wabaidur SM, Alothman ZA, Naushad M. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 93:331-334. [PMID: 22484841 DOI: 10.1016/j.saa.2012.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/04/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10(-7)M with limit of detection 1.0 × 10(-8)M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10(-5)M of dopamine.
Collapse
Affiliation(s)
- Saikh Mohammad Wabaidur
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
45
|
Kruger JL, Patzke N, Fuxe K, Bennett NC, Manger PR. Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the African pygmy mouse (Mus minutoides): organizational complexity is preserved in small brains. J Chem Neuroanat 2012; 44:45-56. [PMID: 22554581 DOI: 10.1016/j.jchemneu.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/16/2022]
Abstract
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brain of the African pygmy mouse (Mus minutoides). The African pygmy mice studied had a brain mass of around 275 mg, making these the smallest rodent brains to date in which these neural systems have been investigated. In contrast to the assumption that in this small brain there would be fewer subdivisions of these neural systems, we found that all nuclei generally observed for these systems in other rodent brains were also present in the brain of the African pygmy mouse. As with other rodents previously studied in the subfamily Murinae, we observed the presence of cortical cholinergic neurons and a compactly organized locus coeruleus. These two features of these systems have not been observed in the non-Murinae rodents studied to date. Thus, the African pygmy mouse displays what might be considered a typical Murinae brain organization, and despite its small size, the brain does not appear to be any less complexly organized than other rodent brains, even those that are over 100 times larger such as the Cape porcupine brain. The results are consistent with the notion that changes in brain size do not affect the evolution of nuclear organization of complex neural systems. Thus, species belonging to the same order generally have the same number and complement of the subdivisions, or nuclei, of specific neural systems despite differences in brain size, phenotype or time since evolutionary divergence.
Collapse
Affiliation(s)
- Jean-Leigh Kruger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
46
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
47
|
Pincombe JL, Luciano M, Martin NG, Wright MJ. Heritability of NEO PI-R Extraversion Facets and Their Relationship With IQ. Twin Res Hum Genet 2012; 10:462-9. [PMID: 17564504 DOI: 10.1375/twin.10.3.462] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIn recent years, there has been a renewed interest in the relationship between intelligence and personality. Extraversion, in particular, has been suggested to influence intelligence, but the direction of this relationship has been controversial (Wolf & Ackerman, 2005). In a young adult sample, the NEO PI-R was completed by 103 pairs of monozygotic twins, 181 pairs of dizygotic twins and 210 of their nontwin siblings. IQ data (Multidimensional Aptitude Battery) were available for approximately three quarters of this sample, and were collected at 16 years as part of an ongoing study of cognition conducted by the Queensland Institute of Medical Research. All extraversion facets were significantly influenced by genes with both additive and nonadditive genetic effects being important (heritabilities ranged from .25 for activity to .54 for warmth). While a significant correlation between the extraversion domain score and IQ was not found, the extraversion facet of excitement-seeking (E5) was significantly negatively correlated with both verbal (r= −.15) and performance (r= −.11) IQ scores. The facet of gregariousness was significantly correlated with verbal IQ only (r= −.09). The relationship between excitement-seeking and IQ was further shown to be solely due to additive genetic influences. These common genetic effects may stem from a dependence on brain dopamine, a neurotransmitter that has been implicated in both personality and cognition.
Collapse
Affiliation(s)
- Jennifer L Pincombe
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | |
Collapse
|
48
|
Zmigrod S, de Sonneville LMJ, Colzato LS, Swaab H, Hommel B. Cognitive control of feature bindings: evidence from children with autistic spectrum disorder. PSYCHOLOGICAL RESEARCH 2011; 77:147-54. [PMID: 22143902 PMCID: PMC3574561 DOI: 10.1007/s00426-011-0399-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 11/23/2011] [Indexed: 11/28/2022]
Abstract
Understanding how the brain integrates features from different domains that are processed in distinct cortical regions calls for the examination of integration processes. Recent studies of feature-repetition effects demonstrated interactions across perceptual features and action-related features: repeating only some features of the perception–action episode hinders performance. These partial-repetition costs point to the existence of temporary memory traces (event files). However, the principles and the constraints that govern the management of such traces are still unclear. Here, we investigated whether children with autistic spectrum disorder (ASD) differ from typically developing children in managing episodic memory traces. The results show that both groups integrate stimulus features along with action features, but children with ASD exhibit larger partial-repetition costs, suggesting lesser control and flexibility in updating episodic memory traces. The findings are discussed in the light of evidence for a central role of the dopaminergic system in cognitive integration, ASD, and cognitive control.
Collapse
Affiliation(s)
- Sharon Zmigrod
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Kambarova DK, Golubev AG. Biochemical and genetic aspects of pathogenesis of schizophrenia. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011050021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
The dopamine hypothesis of social support. Med Hypotheses 2011; 77:753-5. [DOI: 10.1016/j.mehy.2011.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 01/12/2023]
|