1
|
Meshaal SS, El Hawary RE, Abd Elaziz DS, Eldash A, Darwish R, Erfan A, Lotfy S, Saad MM, Chohayeb EA, Nagy MS, Alkady R, Boutros JA, Galal NM, Elmarsafy AM. Clinical and immunological features of four patients with activation-induced cytidine deaminase deficiency: Renal amyloidosis and other presentations. Ann Hum Genet 2025; 89:47-53. [PMID: 39513285 DOI: 10.1111/ahg.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Activation-induced cytidine deaminase (AID) deficiency is a rare autosomal recessive inborn error of immunity (IEI) characterized by increased susceptibility to infections, autoimmunity, and/or autoinflammation. AID plays an important role in immunoglobulin class switching and somatic hypermutation. AID deficiency patients have very low or absent levels of IgG, IgA, and IgE, while IgM level is elevated. The disease is designated as type 2 hyperimmunoglobulin M syndrome (HIGM-2). To date, around 130 patients with HIGM-2 have been reported, none from Egypt. METHODS Four patients from three different consanguineous families with elevated serum IgM and low IgG and IgA were included in the study. After the exclusion of CD40 and/or CD40L deficiency by flow cytometry, patients' samples were tested by a panel covering 452 genes (four bases PID-Pro) on the Illumina Miseq platform. RESULTS All patients suffered repeated infections since childhood. Patients 1-3 had inflammatory bowel disease-like (IBD-like) symptoms, while patient 4 did not have autoimmune manifestations. Patient 1 is the first HIGM-2 patient to be reported to have renal amyloidosis as part of the autoinflammation. Patients 1-3 had the same pathogenic variant (NM_020661.4 (AID):c.406del, p.Ile136Ter), while patient 4 had another pathogenic variant (NM_020661.4 (AID):c.374G > A, p.Gly125Glu). The variant p.Ile136Ter was not reported before in any of the documented HIGM-2 patients. CONCLUSION HIGM-2 is a rare IEI that can be overlooked; hence, patients' diagnosis is delayed. Autoimmune and autoinflammatory manifestations develop later in the disease course leading to significant morbidities. The diagnosis can be suspected after exclusion of CD40/CD40L deficiencies by flow cytometry, and the diagnosis can be confirmed by genetic testing.
Collapse
Affiliation(s)
- Safa S Meshaal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab E El Hawary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia S Abd Elaziz
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Darwish
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Erfan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai M Saad
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A Chohayeb
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed S Nagy
- Endemic Hepatology, Gastroenterology, and Infectious Diseases Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Radwa Alkady
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nermeen M Galal
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha M Elmarsafy
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Della Mina E, Jackson KJL, Crawford AJI, Faulks ML, Pathmanandavel K, Acquarola N, O'Sullivan M, Kerre T, Naesens L, Claes K, Goodnow CC, Haerynck F, Kracker S, Meyts I, D'Orsogna LJ, Ma CS, Tangye SG. A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome. J Clin Immunol 2024; 44:66. [PMID: 38363477 PMCID: PMC10873450 DOI: 10.1007/s10875-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.
Collapse
Affiliation(s)
- Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Katherine J L Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Alexander J I Crawford
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Megan L Faulks
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Nicolino Acquarola
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| | - Tessa Kerre
- Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Filomeen Haerynck
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
4
|
Somatic hypermutation defects in two adult hyper immunoglobulin M patients. Immunol Res 2022; 70:811-816. [PMID: 35879489 DOI: 10.1007/s12026-022-09310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Hyper immunoglobulin M (HIGM) syndrome is a rare disorder of the immune system with impaired antibody functions. The clinical picture of the patients varies according to the underlying genetic variation. In this study, we identified two novel variants in AID and UNG genes, which are associated with autosomal recessive type HIGM, by targeted next-generation sequencing (NGS) panel. A biallelic 11 base pair deletion (c.278_288delATGTGGCCGAC) in the coding sequence of activation-induced cytidine deaminase (AID) gene was identified in a 36-year-old patient. Biallelic two base pair insertion in exon 7 of uracil nucleoside glycosylase (UNG) gene (c.924_925insGG) was identified in a 40-year-old patient. Both variants were confirmed by Sanger sequencing. HIGM, like many of the other primary immunodeficiencies, is a rare and difficult-to-diagnose entity with heterogeneous clinical phenotypes. It should be suspected in patients with a history of early-onset recurrent respiratory infections, enlarged lymph nodes, and autoimmune disorders. There might be a delay in diagnosis until adulthood especially in subtle cases or if HIGM is not included in the differential diagnosis due lacking of awareness. In this regard, genetic testing with NGS-based diagnostic panels provide a rapid and reasonable tool for the molecular diagnosis of patients with immunodeficiencies and hence, decrease the time to diagnose and prevent infection-related complications associated with increased morbidity and mortality.
Collapse
|
5
|
Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Front Immunol 2022; 13:834889. [PMID: 35432317 PMCID: PMC9010869 DOI: 10.3389/fimmu.2022.834889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
An effective humoral immune response necessitates the generation of diverse and high-affinity antibodies to neutralize pathogens and their products. To generate this assorted immune repertoire, DNA damage is introduced at specific regions of the genome. Purposeful genotoxic insults are needed for the successful completion of multiple immunological diversity processes: V(D)J recombination, class-switch recombination, and somatic hypermutation. These three processes, in concert, yield a broad but highly specific immune response. This review highlights the importance of DNA repair mechanisms involved in each of these processes and the catastrophic diseases that arise from DNA repair deficiencies impacting immune system function. These DNA repair disorders underline not only the importance of maintaining genomic integrity for preventing disease but also for robust adaptive immunity.
Collapse
|
6
|
Lougaris V, Plebani A. Predominantly Antibody Deficiencies. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:482-496. [DOI: 10.1016/b978-0-12-818731-9.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Chen X, Liu F, Yuan L, Zhang M, Chen K, Wu Y. Novel mutations in hyper-IgM syndrome type 2 and X-linked agammaglobulinemia detected in three patients with primary immunodeficiency disease. Mol Genet Genomic Med 2020; 9:e1552. [PMID: 33377626 PMCID: PMC7963428 DOI: 10.1002/mgg3.1552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/01/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ambiguous or atypical phenotypes can make a definite diagnosis of primary immunodeficiency diseases based on biochemical indices alone challenging. Further, mortality in early life because of infections in patients with these conditions supports the use of genetic tests to facilitate rapid and accurate diagnoses. Methods Genetic and clinical analyses of three unrelated Chinese children with clinical manifestations of recurrent infections, who were considered to have primary immunodeficiency diseases, were conducted. Patient clinical features and serum immunological indices were recorded. Next‐generation sequencing was used to screen for suspected pathogenic variants. Family co‐segregation and in silico analysis were conducted to evaluate the pathogenicity of identified variants, following the American College of Medical Genetics and Genomics guidance. Results All three patients were found to have predominant antibody defects. Sequencing analysis revealed that one had two compound heterozygous variants, c.255C>A and c.295C>T, in the autosomal gene, activation‐induced cytidine deaminase (AICDA). The other two patients were each hemizygous for the variants c.1185G>A and c.82C>T in the Bruton's tyrosine kinase (BTK) gene on the X chromosome. In silico analysis revealed that identified substituted amino acids were highly conserved and predicted to cause structural and functional damage to the proteins. Conclusion Four pathogenic variants in AICDA and BTK were confirmed to cause different forms of hyper‐IgM syndrome type 2 (HIGM2) and X‐linked agammaglobulinemia (XLA); two were novel mutations that have never been reported previously. This is the first report of HIGM2 caused by AICDA deficiency in a patient from the Chinese mainland.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Fangfang Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Yuan
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Meng Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Renner ED, Krätz CE, Orange JS, Hagl B, Rylaarsdam S, Notheis G, Durandy A, Torgerson TR, Ochs HD. Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clin Immunol 2020; 222:108638. [PMID: 33276124 DOI: 10.1016/j.clim.2020.108638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.
Collapse
Affiliation(s)
- Ellen D Renner
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Carolin E Krätz
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Jordan S Orange
- Columbia University, Department of Pediatrics, New York, United States of America
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Stacey Rylaarsdam
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Gundula Notheis
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Anne Durandy
- Laboratory of Human Lymphohaematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
9
|
Mendoza J, Quinn J, Infante A, Nath P, Amornruk N. A novel activation-induced cytidine deaminase mutation in an adult with hyper-immunoglobulin M syndrome. Ann Allergy Asthma Immunol 2020; 126:199-200. [PMID: 33127529 DOI: 10.1016/j.anai.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jun Mendoza
- Wilford Hall Allergy Clinic, Lackland Air Force Base, Texas.
| | - James Quinn
- Wilford Hall Allergy Clinic, Lackland Air Force Base, Texas
| | - Anthony Infante
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Priya Nath
- 633(rd) Medical Group, Langley Air Force Base Hospital, Hampton, Virginia
| | | |
Collapse
|
10
|
Fadlallah J, Chentout L, Boisson B, Pouliet A, Masson C, Morin F, Durandy A, Casanova JL, Oksenhendler E, Kracker S. From Dysgammaglobulinemia to Autosomal-Dominant Activation-Induced Cytidine Deaminase Deficiency: Unraveling an Inherited Immunodeficiency after 50 Years. J Pediatr 2020; 223:207-211.e1. [PMID: 32423680 DOI: 10.1016/j.jpeds.2020.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 01/16/2023]
Abstract
The genetic investigation of a family presenting with a dominant form of hyper IgM syndrome published in 1963 and 1975 revealed a R190X nonsense mutation in activation-induced cytidine deaminase. This report illustrates the progress made over 6 decades in the characterization of primary immunodeficiencies, from immunochemistry to whole-exome sequencing.
Collapse
Affiliation(s)
- Jehane Fadlallah
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, and Paris Diderot University, Paris, France.
| | - Loic Chentout
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY
| | - Aurore Pouliet
- Genomics Core Facility, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Cecile Masson
- Bioinformatics Facility, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Florence Morin
- Immunology and Histocompatibility Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Rockefeller University and Rockefeller University Hospital, New York, NY; Pediatric Immunology and Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, and Paris Diderot University, Paris, France
| | - Sven Kracker
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| |
Collapse
|
11
|
Moazzami B, Yazdani R, Azizi G, Kiaei F, Tafakori M, Modaresi M, Shirzadi R, Mahdaviani SA, Sohani M, Abolhassani H, Aghamohammadi A. Respiratory Complications in Patients with Hyper IgM Syndrome. J Clin Immunol 2019; 39:557-568. [DOI: 10.1007/s10875-019-00650-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
|
12
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
13
|
Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol 2018; 80:351-362. [PMID: 30359632 DOI: 10.1016/j.humimm.2018.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Primary B-cell immunodeficiencies refer to diseases resulting from impaired antibody production due to either molecular defects intrinsic to B-cells or a failure of interaction between B-cells and T-cells. Patients typically have recurrent infections and can vary with presentation and complications depending upon where the defect has occurred in B-cell development or the degree of functional impairment. In this review, we describe B-cell specific immune defects categorized by presence or absence of peripheral B-cells, immunoglobulins isotypes and evidence of antibody impairment.
Collapse
Affiliation(s)
- Tukisa Smith
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States; The Rockefeller University, Laboratory of Biochemical Genetics and Metabolism, 1230 York Avenue, Box 179, New York, NY 10065, United States.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States.
| |
Collapse
|
14
|
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 2018. [PMID: 29535729 PMCID: PMC5834911 DOI: 10.3389/fimmu.2018.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone modifications, DNA methylation status, and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter the chromatin landscape and, together with DNA primary and tertiary structures, they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on single-stranded DNA to create U:G mismatches. It has been shown that alternate chromatin modifications, in concert with ncRNAs and potentially DNA methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of these distinct modifications and discuss how they contribute to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how misregulation of epigenomic regulation during DNA repair can compromise antibody development and lead to a number of immunological syndromes and cancer.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael J Dillon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Richard Chahwan
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Tsujita Y, Imai K, Honma K, Kamae C, Horiuchi T, Nonoyama S. A Severe Anaphylactic Reaction Associated with IgM-Class Anti-Human IgG Antibodies in a Hyper-IgM Syndrome Type 2 Patient. J Clin Immunol 2017; 38:144-148. [DOI: 10.1007/s10875-017-0466-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
|
16
|
Meng X, Yang B, Suen WC. Prospects for modulating the CD40/CD40L pathway in the therapy of the hyper-IgM syndrome. Innate Immun 2017; 24:4-10. [PMID: 29132233 DOI: 10.1177/1753425917739681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of the CD40/CD40L pathway in B-cell proliferation, immunoglobulin (Ig) isotype switching and germinal center formation has been studied and described extensively in previous literature. Interruption of the CD40/CD40L signal causes hyper-IgM (HIGM) syndrome, which has been classified and recognized as a group of rare inherited immune deficiency disorders. Defects in CD40 and CD40L interactions or in downstream signaling molecules, including activation-induced cytidine deaminase, uracyl-DNA-glycosylase, NF-κB and DNA repair enzymes, result in an increased level of serum IgM and a significantly decreased or absent level of IgA, IgG and IgE that is accompanied by severe recurrent infections and autoimmune diseases. Many genetic defects in HIGM have been identified and, as a result, it is possible for patients to be definitively diagnosed by gene sequencing and to delineate the immunological features of the patients. Modifying the CD40/CD40L signaling pathway may offer the possibility of restoring the normal serum Ab production and curing the immunodeficiency. Hematopoietic stem cell transplantation has achieved a high rate of success using a sibling donor. In addition, successful examples of treating other immunodeficiencies using gene therapy indicated that there was a possibility of eradicating HIGM with this approach. In this review, we summarize the current drugs and a variety of therapeutic approaches for the treatment of the HIGM syndrome by interfering with the defective CD40/CD40L pathway.
Collapse
Affiliation(s)
- Xiangxue Meng
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| | - Bin Yang
- 2 Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, PR China
| | - Wen-Chen Suen
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| |
Collapse
|
17
|
Primary Immune Deficiencies in the Adult: A Previously Underrecognized Common Condition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1101-1107. [PMID: 27836059 DOI: 10.1016/j.jaip.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
The large majority of classified primary immune deficiency (PID) diseases present in childhood. Yet, most patients with PID are adults, with a large proportion experiencing onset of symptoms beyond their childhood years. Most of these are diagnosed predominantly with antibody defects, but cellular and other disorders are increasingly being identified in older patients as well. Moreover, advances in clinical immunology are allowing pediatric patients, even those with severe disease, to reach adulthood. Because of differences in the physiology and pathophysiology of children and adults, the presentation, diagnosis, and management of a complex chronic disease could differ significantly between these patient populations and therefore require modifications in approach.
Collapse
|
18
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
19
|
Ouair H, Benhsaien I, Jeddane L, El Bakkouri J, Elhafidi N, Rada N, Najib J, Ailal F, Alj HS, Bousfiha AA. [Clinical and immunological profile of 15 Moroccan patients with Hyper IgM syndrome]. Pan Afr Med J 2017; 26:212. [PMID: 28690727 PMCID: PMC5491719 DOI: 10.11604/pamj.2017.26.212.10081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Le Syndrome hyper IgM est un déficit immunitaire héréditaire bien connu, décrit pour la première fois en 1961. Il est causé par un défaut au niveau des lymphocytes B, caractérisé par un taux sérique normal ou élevé des IgM et un taux bas ou nul des IgG, IgA, IgE résultant d'une déficience de la commutation isotypique. Ses manifestations cliniques sont dominées par les infections à répétition, surtout du tube digestif, de la sphère ORL et des poumons. Le syndrome est causé par un défaut de commutation de classe d'immunoglobuline dans les cellules B, et une diminution de la capacité des monocytes à induire la prolifération des lymphocytes T. Le résultat net de tous ces défauts est la susceptibilité accrue aux infections opportunistes à Pneumocystis jiroveci, Cryptosporidium spp et d'autres organismes intracellulaires, ainsi qu'une fréquence élevée d'infections bactériennes et virales. L'intérêt de ce projet est d'illustrer l'importance de la compréhension des mécanismes physiopathologiques associés à cette susceptibilité accrue aux infections, ce qui permettra une meilleure prise en charge diagnostique et thérapeutique des patients atteint du Syndrome hyper IgM (SHIM).
Collapse
Affiliation(s)
- Hind Ouair
- Laboratoire de Biologie et Santé, Unité de recherche Associée au CNRST-URAC 34, Faculté des Sciences Ben M'Sik, Université Hassan II Mohammedia, Casablanca, Maroc
| | - Ibtihal Benhsaien
- Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculté de Médecine et Pharmacie, Université Hassan II, Casablanca, Maroc
| | - Leila Jeddane
- Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculté de Médecine et Pharmacie, Université Hassan II, Casablanca, Maroc
| | - Jalila El Bakkouri
- Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculté de Médecine et Pharmacie, Université Hassan II, Casablanca, Maroc
| | - Naima Elhafidi
- Département de Pédiatrie 1, Hôpital d'Enfants de Rabat, CHU Ibn Sina, Rabat, Maroc
| | | | - Jilali Najib
- Département des Maladies Infectieuses, Hôpital A. Harouchi, CHU Ibn Rochd, Casablanca, Maroc
| | - Fatima Ailal
- Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculté de Médecine et Pharmacie, Université Hassan II, Casablanca, Maroc
| | - Hanane Salih Alj
- Laboratoire de Biologie et Santé, Unité de recherche Associée au CNRST-URAC 34, Faculté des Sciences Ben M'Sik, Université Hassan II Mohammedia, Casablanca, Maroc
| | - Ahmed Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculté de Médecine et Pharmacie, Université Hassan II, Casablanca, Maroc
| |
Collapse
|
20
|
Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, Geha RS, Cunningham CK, Bonilla FA, Conley ME, Ferdman RM, Hernandez-Trujillo V, Puck JM, Sullivan K, Secord EA, Ramesh M, Cunningham-Rundles C. Hyper IgM Syndrome: a Report from the USIDNET Registry. J Clin Immunol 2016; 36:490-501. [PMID: 27189378 PMCID: PMC5039943 DOI: 10.1007/s10875-016-0291-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE The United States Immunodeficiency Network (USIDNET) patient registry was used to characterize the presentation, genetics, phenotypes, and treatment of patients with Hyper IgM Syndrome (HIGM). METHODS The USIDNET Registry was queried for HIGM patient data collected from October 1992 to July 2015. Data fields included demographics, criteria for diagnosis, pedigree analysis, mutations, clinical features, treatment and transplant records, laboratory findings, and mortality. RESULTS Fifty-two physicians entered data from 145 patients of ages 2 months to 62 years (median 12 years); 131 were males. Using patients' age at last entry, data from 2072 patient years are included. Mutations were recorded for 85 subjects; 82 were in CD40LG. Eighteen subjects had non-X-linked HIGM. 40 % had a normal serum IgM and 15 %, normal IgA. Infections were reported for 91 %, with pulmonary, ear, and sinus infections being the most common. 42 % had Pneumocystis jirovecii pneumonia; 6 % had Cryptosporidium. 41 % had neutropenia. 78 % experienced non-infectious complications: chronic diarrhea (n = 22), aphthous ulcers (n = 28), and neoplasms (n = 8) including colon cancer, adrenal adenoma, liver adenocarcinoma, pancreatic carcinoid, acute myeloid leukemia, hepatoma, and, in a female with an autosomal dominant gain of function mutation in PIK3CD, an ovarian dysgerminoma. Thirteen patients had a hematopoietic marrow or stem cell transplant; three had solid organ transplants. Thirteen were known to have died (median age = 14 years). CONCLUSIONS Analysis of the USIDNET Registry provides data on the common clinical features of this rare syndrome, and in contrast with previously published data, demonstrates longer survival times and reduced gastrointestinal manifestations.
Collapse
Affiliation(s)
- Emily A Leven
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hans D Ochs
- Seattle Children's Hospital Seattle, Seattle, WA, USA
| | - Paul R Scholl
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | | | - Raif S Geha
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Jennifer M Puck
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Enrichment of rare variants in population isolates: single AICDA mutation responsible for hyper-IgM syndrome type 2 in Finland. Eur J Hum Genet 2016; 24:1473-8. [PMID: 27142677 PMCID: PMC5027683 DOI: 10.1038/ejhg.2016.37] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 01/21/2023] Open
Abstract
Antibody class-switch recombination and somatic hypermutation critically depend on the function of activation-induced cytidine deaminase (AID). Rare variants in its gene AICDA have been reported to cause autosomal recessive AID deficiency (autosomal recessive hyper-IgM syndrome type 2 (HIGM2)). Exome sequencing of a multicase Finnish family with an HIGM2 phenotype identified a rare, homozygous, variant (c.416T>C, p.(Met139Thr)) in the AICDA gene, found to be significantly enriched in the Finnish population compared with other populations of European origin (38.56-fold, P<0.001). The population history of Finland, characterized by a restricted number of founders, isolation and several population bottlenecks, has caused enrichment of certain rare disease-causing variants and losses of others, as part of a phenomenon called the Finnish Disease Heritage. Accordingly, rare founder mutations cause the majority of observed Finnish cases in these mostly autosomal recessive disorders that consequently are more frequent in Finland than elsewhere. Screening of all currently known Finnish patients with an HIGM2 phenotype showed them to be homozygous for p.(Met139Thr). All the Finnish p.(Met139Thr) carriers with available data on their geographic descent originated from the eastern and northeastern parts of Finland. They were observed to share more of their genome identity by descent (IBD) than Finns in general (P<0.001), and they all carried a 207.5-kb ancestral haplotype containing the variant. In conclusion, the identified p.(Met139Thr) variant is significantly enriched in Finns and explains all thus far found AID deficiencies in Finland.
Collapse
|
22
|
Ouadani H, Ben-Mustapha I, Ben-ali M, Ben-khemis L, Larguèche B, Boussoffara R, Maalej S, Fetni I, Hassayoun S, Mahfoudh A, Mellouli F, Yalaoui S, Masmoudi H, Bejaoui M, Barbouche MR. Novel and recurrent AID mutations underlie prevalent autosomal recessive form of HIGM in consanguineous patients. Immunogenetics 2015; 68:19-28. [PMID: 26545377 DOI: 10.1007/s00251-015-0878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Immunoglobulin class switch recombination deficiencies (Ig-CSR-D) are characterized by normal or elevated serum IgM level and absence of IgG, IgA, and IgE. Most reported cases are due to X-linked CD40L deficiency. Activation-induced cytidine deaminase deficiency is the most frequent autosomal recessive form, whereas CD40 deficiency is more rare. Herein, we present the first North African study on hyper IgM (HIGM) syndrome including 16 Tunisian patients. Phenotypic and genetic studies allowed us to determine their molecular basis. Three CD40LG mutations have been identified including two novels (c.348_351dup and c.782_*2del) and one already reported mutation (g.6182G>A). No mutation has been found in another patient despite the lack of CD40L expression. Interestingly, three AICDA mutations have been identified in 11 patients. Two mutations were novel (c.91T>C and c.389A>C found in one and five patients respectively), and one previously reported splicing mutation (c.156+1T>G) was found in five patients. Only one CD40-deficient patient, bearing a novel mutation (c.109T>G), has been identified. Thus, unlike previous reports, AID deficiency is the most frequent underlying molecular basis (68%) of Ig-CSR-D in Tunisian patients. This finding and the presence of specific recurrent mutations are probably due to the critical role played by inbreeding in North African populations.
Collapse
Affiliation(s)
- Hanen Ouadani
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Leila Ben-khemis
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Beya Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | | | - Sonia Maalej
- Department of Pneumology "D", Abderahman Mami Hospital, Ariana, Tunisia
| | - Ilhem Fetni
- Department of Pediatrics, Mongi Slim Hospital, Marsa, Tunisia
| | | | | | - Fethi Mellouli
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Sadok Yalaoui
- Laboratory of Biology, Abderahman Mami Hospital, Ariana, Tunisia
| | - Hatem Masmoudi
- Laboratory of Immunology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
23
|
Indrevær RL, Moskaug JØ, Paur I, Bøhn SK, Jørgensen SF, Blomhoff R, Aukrust P, Fevang B, Blomhoff HK. IRF4 Is a Critical Gene in Retinoic Acid–Mediated Plasma Cell Formation and Is Deregulated in Common Variable Immunodeficiency–Derived B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2601-11. [DOI: 10.4049/jimmunol.1500250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022]
|
24
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
25
|
Cabral-Marques O, Klaver S, Schimke LF, Ascendino ÉH, Khan TA, Pereira PVS, Falcai A, Vargas-Hernández A, Santos-Argumedo L, Bezrodnik L, Moreira I, Seminario G, Di Giovanni D, Raccio AG, Porras O, Weber CW, Ferreira JF, Tavares FS, de Carvalho E, Valente CFC, Kuntze G, Galicchio M, King A, Rosário-Filho NA, Grota MB, dos Santos Vilela MM, Di Gesu RSW, Lima S, de Souza Moura L, Talesnik E, Mansour E, Roxo-Junior P, Aldave JC, Goudouris E, Pinto-Mariz F, Berrón-Ruiz L, Staines-Boone T, Calderón WOC, del Carmen Zarate-Hernández M, Grumach AS, Sorensen R, Durandy A, Torgerson TR, Carvalho BTC, Espinosa-Rosales F, Ochs HD, Condino-Neto A. First report of the Hyper-IgM syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol 2014; 34:146-56. [PMID: 24402618 DOI: 10.1007/s10875-013-9980-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022]
Abstract
Hyper-IgM (HIGM) syndrome is a heterogeneous group of disorders characterized by normal or elevated serum IgM levels associated with absent or decreased IgG, IgA and IgE. Here we summarize data from the HIGM syndrome Registry of the Latin American Society for Immunodeficiencies (LASID). Of the 58 patients from 51 families reported to the registry with the clinical phenotype of HIGM syndrome, molecular defects were identified in 37 patients thus far. We retrospectively analyzed the clinical, immunological and molecular data from these 37 patients. CD40 ligand (CD40L) deficiency was found in 35 patients from 25 families and activation-induced cytidine deaminase (AID) deficiency in 2 unrelated patients. Five previously unreported mutations were identified in the CD40L gene (CD40LG). Respiratory tract infections, mainly pneumonia, were the most frequent clinical manifestation. Previously undescribed fungal and opportunistic infections were observed in CD40L-deficient patients but not in the two patients with AID deficiency. These include the first cases of pneumonia caused by Mycoplasma pneumoniae, Serratia marcescens or Aspergillus sp. and diarrhea caused by Microsporidium sp. or Isospora belli. Except for four CD40L-deficient patients who died from complications of presumptive central nervous system infections or sepsis, all patients reported in this study are alive. Four CD40L-deficient patients underwent successful bone marrow transplantation. This report characterizes the clinical and genetic spectrum of HIGM syndrome in Latin America and expands the understanding of the genotype and phenotype of this syndrome in tropical areas.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730 Lineu Prestes Avenue, São Paulo, SP, ZIP 05508-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Clinical features and genetic analysis of Taiwanese patients with the hyper IgM syndrome phenotype. Pediatr Infect Dis J 2013; 32:1010-6. [PMID: 23538518 DOI: 10.1097/inf.0b013e3182936280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Hyper IgM syndrome (HIGM), characterized by recurrent infections, low serum IgG and IgA, normal or elevated IgM, defective class switch recombination and somatic hypermutation, are heterogeneous disorders with at least 6 distinct molecular defects, including the CD40 ligand (CD40L) and the nuclear factor κB essential modulator (NEMO, also known as IKKγ) genes (both X-linked), the CD40, activation-induced cytidine deaminase (AICDA or AID), uracil-DNA glycosylase genes (autosomal recessive) and IκBα (IKBA) (autosomal dominant). Our objective was to determine the molecular basis and clinical features of Taiwanese patients with the HIGM phenotype. METHODS Clinical manifestations and candidate genes were analyzed in a nationwide population-based study. RESULTS Among 14 patients (12 unrelated families) since 2003, 10 patents were identified (8 families) with CD40L mutations, including 2 novel deletions of "A" nucleotide (Del 347A and Del 366A), both frameshift and stop at the 127th location; 1 novel AID deletion mutation lack of the 37thAsp and 38th Ser; 1 ataxia-telangiectasia mutation; and 1 deletion of chromosome 1q42. An adult-onset patient with mutant (Thr254Met)CD40L had approximately 30% detectable affinity and therefore less severity. Memory B cells decreased in patients with CD40L and activation-induced cytidine deaminase mutations. Three mortalities encompassed renal cell carcinoma in 1 patient with (Tyr169Asn)CD40L, pneumothorax in 1 with (Tyr140Stop)CD40L and pneumonia after chemotherapy in an ataxia-telangiectasia patient. One patient without detectable genetic defects but normal lymphocyte proliferation resembled the mild form of common variable immune deficiency phenotype. CONCLUSIONS In contrast to those with AICDA mutation, small chromosome 1 q42 deletion and unknown genetic defect, the majority (10/14; 71.4%) with CD40L mutations except (Thr254Met) and an ataxia-telangiectasia patient had the severe form of HIGM phenotype.
Collapse
|
27
|
Jimenez MJ, Steele RW. Recurrent severe arthralgia. Clin Pediatr (Phila) 2013; 52:882-5. [PMID: 23978668 DOI: 10.1177/0009922813498154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Caratão N, Cortesão CS, Reis PH, Freitas RF, Jacob CM, Pastorino AC, Carneiro-Sampaio M, Barreto VM. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome. Clin Immunol 2013; 148:279-86. [DOI: 10.1016/j.clim.2013.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/30/2022]
|
29
|
|
30
|
Mahdaviani SA, Hirbod-Mobarakeh A, Wang N, Aghamohammadi A, Hammarström L, Masjedi MR, Pan-Hammarström Q, Rezaei N. Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol 2013; 8:539-46. [PMID: 22992148 DOI: 10.1586/eci.12.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hyper-immunoglobulin M (HIGM) syndrome comprises a group of primary immunodeficiency disorders characterized by normal or elevated serum levels of IgM and low levels of other immunoglobulin classes. Patients with HIGM usually suffer from a variety of recurrent infections. Herein, we report two siblings of a Tajik family with a HIGM phenotype in which a novel missense mutation in the activation-induced cytidine deaminase (AICDA) gene was detected. Mutations in this gene are responsible for an autosomal recessive form of HIGM. We have also reviewed and summarized all published cases with HIGM due to defects in AICDA.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hirschhorn R, Hirschhorn K, Notarangelo LD. Immunodeficiency Disorders. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-30. [DOI: 10.1016/b978-0-12-383834-6.00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2012. [PMID: 23178850 DOI: 10.1007/s00018-012-1212-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | |
Collapse
|
33
|
Metzner M, Jäck HM, Wabl M. LINE-1 retroelements complexed and inhibited by activation induced cytidine deaminase. PLoS One 2012; 7:e49358. [PMID: 23133680 PMCID: PMC3487726 DOI: 10.1371/journal.pone.0049358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
LINE-1 (abbreviated L1) is a major class of retroelements in humans and mice. If unrestricted, retroelements accumulate in the cytoplasm and insert their DNA into the host genome, with the potential to cause autoimmune disease and cancer. Retroviruses and other retroelements are inhibited by proteins of the APOBEC family, of which activation-induced cytidine deaminase (AID) is a member. Although AID is mainly known for being a DNA mutator shaping the antibody repertoire in B lymphocytes, we found that AID also restricts de novo L1 integrations in B- and non-B-cell lines. It does so by decreasing the protein level of open reading frame 1 (ORF1) of both exogenous and endogenous L1. In activated B lymphocytes, AID deficiency increased L1 mRNA 1.6-fold and murine leukemia virus (MLV) mRNA 2.7-fold. In cell lines and activated B lymphocytes, AID forms cytoplasmic high-molecular-mass complexes with L1 mRNA, which may contribute to L1 restriction. Because AID-deficient activated B lymphocytes do not express ORF1 protein, we suggest that ORF1 protein expression is inhibited by additional restriction factors in these cells. The greater increase in MLV compared to L1 mRNA in AID-deficient activated B lymphocytes may indicate less strict surveillance of retrovirus.
Collapse
Affiliation(s)
- Mirjam Metzner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
34
|
Love RP, Xu H, Chelico L. Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A. J Biol Chem 2012; 287:30812-22. [PMID: 22822074 DOI: 10.1074/jbc.m112.393181] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and nucleus, not only restricts HIV but can also initiate catabolism of cellular DNA. Despite being ascribed these roles, there is a paucity of data available on the biochemical mechanism by which APOBEC3A deaminates ssDNA. Here we assessed APOBEC3A deamination activity on ssDNA and in dynamic systems modeling HIV replication (cytoplasmic event) and DNA transcription (nuclear event). We find that APOBEC3A, unlike the highly processive APOBEC3G, exhibits low or no processivity when deaminating synthetic ssDNA substrates with two cytosines located 5-63 nucleotides apart, likely because of an apparent K(d) in the micromolar range (9.1 μm). APOBEC3A was able to deaminate nascently synthesized (-)DNA in an in vitro model HIV replication assay but induced fewer mutations overall in comparison to APOBEC3G. However, the data indicate that the target deamination motif (5'-TC for APOBEC3A and 5'-CC for APOBEC3G) and not the number of mutations best predicted the ability to mutationally inactivate HIV. We further assessed APOBEC3A for the ability to deaminate dsDNA undergoing transcription, which could allow for collateral deaminations to occur in genomic DNA similar to the action of activation-induced cytidine deaminase. That APOBEC3A was able to deaminate dsDNA undergoing transcription suggests a genomic cost of a deamination-based retroviral restriction system.
Collapse
Affiliation(s)
- Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
35
|
Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF. A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem 2012; 287:28007-16. [PMID: 22715099 DOI: 10.1074/jbc.m112.370189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ∼1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | |
Collapse
|
36
|
Duarte-Rey C, Bogdanos DP, Leung PS, Anaya JM, Gershwin ME. IgM predominance in autoimmune disease: Genetics and gender. Autoimmun Rev 2012; 11:A404-12. [DOI: 10.1016/j.autrev.2011.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
38
|
Kuraoka M, McWilliams L, Kelsoe G. AID expression during B-cell development: searching for answers. Immunol Res 2011; 49:3-13. [PMID: 21136202 DOI: 10.1007/s12026-010-8185-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of activation-induced cytidine deaminase (AID) by germinal center (GC) B cells drives the processes of immunoglobulin (Ig) somatic hypermutation (SHM) and class switch recombination (CSR) necessary for the generation of high affinity IgG serum antibody and the memory B-cell compartment. Increasing evidence indicates that AID is also expressed at low levels in developing B cells but to date, this early, developmentally regulated AID expression has no known function. Does the timing and extent of AID expression in developmentally immature, non-GC B cells provide clues to reveal its physiologic role?
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
40
|
Duvvuri B, Duvvuri VRSK, Grigull J, Martin A, Pan-Hammarström Q, Wu GE, Larijani M. Altered spectrum of somatic hypermutation in common variable immunodeficiency disease characteristic of defective repair of mutations. Immunogenetics 2010; 63:1-11. [PMID: 20938659 DOI: 10.1007/s00251-010-0483-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/25/2010] [Indexed: 01/08/2023]
Abstract
Pathogenic common variable immunodeficiency diseases (CVID) are genetic, usually inherited diseases for which a limited number of genetic defects have been implicated. As CVID presents with a wide range of clinical characteristics, there are likely diverse and for the most part unidentified genetic causes. In some individuals, defects in somatic hypermutation (SHM) have been suggested as the underlying cause of CVID. To address the mechanisms of SHM defects in CVID, we conducted a comprehensive mutational analysis of immunoglobulin heavy chain sequences from CVID patients. We identified several remarkably specific alterations in the spectra of SHM in comparison to healthy individuals. We provide evidence that some CVID cases are associated with defective repair of AID-induced mutations by the DNA mismatch repair (MMR) machinery. Our findings together with reports of increased chromosomal radiosensitivity and associated lymphoproliferative disorders amongst CVID patients, suggest that altered DNA damage repair may be a cause of CVID.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- The School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada, M3J 1P3.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
DNA-repair pathways recognise and repair DNA damaged by exogenous and endogenous agents to maintain genomic integrity. Defects in these pathways lead to replication errors, loss or rearrangement of genomic material and eventually cell death or carcinogenesis. The creation of diverse lymphocyte receptors to identify potential pathogens requires breaking and randomly resorting gene segments encoding antigen receptors. Subsequent repair of the gene segments utilises ubiquitous DNA-repair proteins. Individuals with defective repair pathways are found to be immunodeficient and many are radiosensitive. The role of repair proteins in the development of adaptive immunity by VDJ recombination, antibody isotype class switching and affinity maturation by somatic hypermutation has become clearer over the past few years, partly because of identification of the genes involved in human disease. We describe the mechanisms involved in the development of adaptive immunity relating to DNA repair, and the clinical consequences and treatment of the primary immunodeficiency resulting from such defects.
Collapse
|
42
|
Abstract
The Hyper-immunoglobulin M syndromes (HIGM) are a heterogeneous group of genetic disorders resulting in defects of immunoglobulin class switch recombination (CSR), with or without defects of somatic hypermutation (SHM). They can be classified as defects of signalling through CD40 causing both a humoral immunodeficiency and a susceptibility to opportunistic infections, or intrinsic defects in B cells of the mechanism of CSR resulting in a pure humoral immunodeficiency. A HIGM picture can also be seen as part of generalized defects of DNA repair and in antibody deficiency syndromes, such as common variable immunodeficiency. CD40 signalling defects may require corrective therapy with bone marrow transplantation. Gene therapy, a potential curative approach in the future, currently remains a distant prospect. Those with a defective CSR mechanism generally do well on immunologoblulin replacement therapy. Complications may include autoimmunity, lymphoid hyperplasia and, in some cases, a predisposition to lymphoid malignancy.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, London, UK.
| | | |
Collapse
|
43
|
Slatter MA, Gennery AR. Primary Immunodeficiency Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:146-65. [DOI: 10.1007/978-1-4419-6448-9_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Bransteitter R, Prochnow C, Chen XS. The current structural and functional understanding of APOBEC deaminases. Cell Mol Life Sci 2009; 66:3137-47. [PMID: 19547914 PMCID: PMC11115857 DOI: 10.1007/s00018-009-0070-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 05/29/2009] [Accepted: 06/08/2009] [Indexed: 12/11/2022]
Abstract
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121-124, 2008); Prochnow et al. (Nature 445:447-451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116-119, 2008); Furukawa et al. (EMBO J 28:440-451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.
Collapse
Affiliation(s)
- Ronda Bransteitter
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
45
|
Prochnow C, Bransteitter R, Chen XS. APOBEC deaminases-mutases with defensive roles for immunity. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:893-902. [PMID: 19911124 DOI: 10.1007/s11427-009-0133-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.
Collapse
Affiliation(s)
- Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
46
|
Clinical and Laboratory Findings in Hyper-IgM Syndrome with Novel CD40L and AICDA Mutations. J Clin Immunol 2009; 29:769-76. [DOI: 10.1007/s10875-009-9315-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 06/16/2009] [Indexed: 11/27/2022]
|
47
|
Deane S, Selmi C, Naguwa SM, Teuber SS, Gershwin ME. Common variable immunodeficiency: etiological and treatment issues. Int Arch Allergy Immunol 2009; 150:311-24. [PMID: 19571563 PMCID: PMC2814150 DOI: 10.1159/000226232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the great advances in clinical medicine was the recognition of the pleomorphism of the immune response and the multiple afferent and efferent limbs of antigen processing and responsiveness. A significant contribution to this understanding was derived from studies of human immunodeficiency states, including both inherited and acquired syndromes. Amongst these syndromes, one of the most common, and least understood, is common variable immune deficiency (CVID). CVID is a syndrome that leads to a reduction in serum immunoglobulins and complications including recurrent infections. Management includes immunoglobulin replacement therapy; however, patients with CVID are at risk for complications of exogenous immunoglobulin administration as well as CVID-associated diseases such as autoimmune processes and malignancies. To assess the current state of knowledge in the field, we performed a literature review of a total of 753 publications covering the period of 1968 until 2008. From this list, 189 publications were selected for discussion. In this review, we demonstrate that while the molecular basis of CVID in many cases remains incompletely understood, significant strides have been made and it is now clear that there is involvement of several pathways of immune activation, with contributions from both T and B cells. Furthermore, despite the current gaps in our knowledge of the molecular pathogenesis of the syndrome, there have been dramatic advances in management that have led to improved survival and significantly reduced morbidity in affected patients.
Collapse
Affiliation(s)
| | | | | | | | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California
at Davis School of Medicine, Davis, Calif., USA
| |
Collapse
|
48
|
Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol 2009; 27:199-227. [PMID: 19302039 DOI: 10.1146/annurev.immunol.021908.132649] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sophisticated genetic tools have made possible the identification of the genes responsible for most well-described immunodeficiencies in the past 15 years. Mutations in Btk, components of the pre-B cell and B cell receptor (lambda5, Igalpha, Igbeta), or the scaffold protein BLNK account for approximately 90% of patients with defects in early B cell development. Hyper-IgM syndromes result from mutations in CD40 ligand, CD40, AID, or UNG in 70-80% of affected patients. Rare defects in ICOS or CD19 can result in a clinical picture that is consistent with common variable immunodeficiency, and as many as 10% of patients with this disorder have heterozygous amino acid substitutions in TACI. For all these disorders, there is considerable clinical heterogeneity in patients with the same mutation. Identifying the genetic and environmental factors that influence the clinical phenotype may enhance patient care and our understanding of normal B cell development.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This article reviews the primary immunodeficiencies that result in hypogammaglobulinemia or predominantly antibody deficiency disorders. This group makes up the largest proportion of patients with primary immunodeficiency. Significant advances have been made in understanding the molecular basis and clinical characteristics of patients with the more severe forms of antibody deficiency in the last 6 years. Recognition of these disorders remains poor with significant diagnostic delay. The milder forms of antibody deficiency disorders, especially those with normal total serum immunoglobulin G levels, remain poorly characterized and understood. Further work remains to be done in understanding and recognizing these syndromes to benefit patient care and foster further knowledge of the immune system.
Collapse
Affiliation(s)
- Patrick F K Yong
- Department of Clinical Immunology, Kings College Hospital, London SE5 9RS, UK
| | | | | |
Collapse
|
50
|
MacDuff DA, Demorest ZL, Harris RS. AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res 2009; 37:1854-67. [PMID: 19188259 PMCID: PMC2665220 DOI: 10.1093/nar/gkp030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrotransposons make up over 40% of the mammalian genome. Some copies are still capable of mobilizing and new insertions promote genetic variation. Several members of the APOBEC3 family of DNA cytosine deaminases function to limit the replication of a variety of retroelements, such as the long-terminal repeat (LTR)-containing MusD and Ty1 elements, and that of the non-LTR retrotransposons, L1 and Alu. However, the APOBEC3 genes are limited to mammalian lineages, whereas retrotransposons are far more widespread. This raises the question of what cellular factors control retroelement transposition in species that lack APOBEC3 genes. A strong phylogenetic case can be made that an ancestral activation-induced deaminase (AID)-like gene duplicated and diverged to root the APOBEC3 lineage in mammals. Therefore, we tested the hypothesis that present-day AID proteins possess anti-retroelement activity. We found that AID can inhibit the retrotransposition of L1 through a DNA deamination-independent mechanism. This mechanism may manifest in the cytoplasmic compartment co- or posttranslationally. Together with evidence for AID expression in the ovary, our data combined to suggest that AID has innate immune functions in addition to its integral roles in creating antibody diversity.
Collapse
Affiliation(s)
- Donna A MacDuff
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|