1
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
2
|
Nicol SM, Sabbah S, Brulois KF, Jung JU, Bell AI, Hislop AD. Primary B Lymphocytes Infected with Kaposi's Sarcoma-Associated Herpesvirus Can Be Expanded In Vitro and Are Recognized by LANA-Specific CD4+ T Cells. J Virol 2016; 90:3849-3859. [PMID: 26819313 PMCID: PMC4810529 DOI: 10.1128/jvi.02377-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) has tropism for B lymphocytes, in which it establishes latency, and can also cause lymphoproliferative disorders of these cells manifesting as primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). T cell immunity is vital for the control of KSHV infection and disease; however, few models of B lymphocyte infection exist to study immune recognition of such cells. Here, we developed a model of B lymphocyte infection with KSHV in which infected tonsillar B lymphocytes were expanded by providing mitogenic stimuli and then challenged with KSHV-specific CD4(+)T cells. The infected cells expressed viral proteins found in PELs, namely, LANA and viral IRF3 (vIRF3), albeit at lower levels, with similar patterns of gene expression for the major latency, viral interleukin 6 (vIL-6), and vIRF3 transcripts. Despite low-level expression of open reading frame 50 (ORF50), transcripts for the immune evasion genes K3 and K5 were detected, with some downregulation of cell surface-expressed CD86 and ICAM. The vast majority of infected lymphocytes expressed IgM heavy chains with Igλ light chains, recapitulating the features seen in infected cells in MCD. We assessed the ability of the infected lymphocytes to be targeted by a panel of major histocompatibility complex (MHC) class II-matched CD4(+)T cells and found that LANA-specific T cells restricted to different epitopes recognized these infected cells. Given that at least some KSHV latent antigens are thought to be poor targets for CD8(+)T cells, we suggest that CD4(+)T cells are potentially important effectors for thein vivocontrol of KSHV-infected B lymphocytes. IMPORTANCE KSHV establishes a latent reservoir within B lymphocytes, but few models exist to study KSHV-infected B cells other than the transformed PEL cell lines, which have likely accrued mutations during the transformation process. We developed a model of KSHV-infected primary B lymphocytes that recapitulates features seen in PEL and MCD by gene expression and cell phenotype analysis, allowing the study of T cell recognition of these cells. Challenge of KSHV-infected B cells with CD4(+)T cells specific for LANA, a protein expressed in all KSHV-infected cells and malignanciesin vivo, showed that these effectors could efficiently recognize such targets. Given that the virus expresses immune evasion genes or uses proteins with intrinsic properties, such as LANA, that minimize epitope recognition by CD8(+)T cells, CD4(+)T cell immunity to KSHV may be important for maintaining the virus-host balance.
Collapse
Affiliation(s)
- Samantha M Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London, United Kingdom
| | - Kevin F Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D Hislop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Pan X, Papasani M, Hao Y, Calamito M, Wei F, Quinn Iii WJ, Basu A, Wang J, Hodawadekar S, Zaprazna K, Liu H, Shi Y, Allman D, Cancro M, Atchison ML. YY1 controls Igκ repertoire and B-cell development, and localizes with condensin on the Igκ locus. EMBO J 2013; 32:1168-82. [PMID: 23531880 DOI: 10.1038/emboj.2013.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/11/2013] [Indexed: 12/25/2022] Open
Abstract
Conditional knock-out (KO) of Polycomb Group (PcG) protein YY1 results in pro-B cell arrest and reduced immunoglobulin locus contraction needed for distal variable gene rearrangement. The mechanisms that control these crucial functions are unknown. We deleted the 25 amino-acid YY1 REPO domain necessary for YY1 PcG function, and used this mutant (YY1ΔREPO), to transduce bone marrow from YY1 conditional KO mice. While wild-type YY1 rescued B-cell development, YY1ΔREPO failed to rescue the B-cell lineage yielding reduced numbers of B lineage cells. Although the IgH rearrangement pattern was normal, there was a selective impact at the Igκ locus that showed a dramatic skewing of the expressed Igκ repertoire. We found that the REPO domain interacts with proteins from the condensin and cohesin complexes, and that YY1, EZH2 and condensin proteins co-localize at numerous sites across the Ig kappa locus. Knock-down of a condensin subunit protein or YY1 reduced rearrangement of Igκ Vκ genes suggesting a direct role for YY1-condensin complexes in Igκ locus structure and rearrangement.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hassaballa AE, Palmer VL, Anderson DK, Kassmeier MD, Nganga VK, Parks KW, Volkmer DL, Perry GA, Swanson PC. Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery. Immunology 2012; 134:469-86. [PMID: 22044391 DOI: 10.1111/j.1365-2567.2011.03509.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During their development, B lymphocytes undergo V(D)J recombination events and selection processes that, if successfully completed, produce mature B cells expressing a non-self-reactive B-cell receptor (BCR). Primary V(D)J rearrangements yield self-reactive B cells at high frequency, triggering attempts to remove, silence, or reprogramme them through deletion, anergy induction, or secondary V(D)J recombination (receptor editing), respectively. In principle, expressing a catalytically inactive V(D)J recombinase during a developmental stage in which V(D)J rearrangement is initiated may impair this process. To test this idea, we generated transgenic mice expressing a RAG1 active site mutant (dnRAG1 mice); RAG1 transcript was elevated in splenic, but not bone marrow, B cells in dnRAG1 mice relative to wild-type mice. The dnRAG1 mice accumulate splenic B cells with a B1-like phenotype that exhibit defects in B-cell activation, and are clonally diverse, yet repertoire restricted with a bias toward Jκ1 gene segment usage. The dnRAG1 mice show evidence of impaired B-cell development at the immature-to-mature transition, immunoglobulin deficiency, and poorer immune responses to thymus-independent antigens. Interestingly, dnRAG1 mice expressing the anti-dsDNA 3H9H56R heavy chain fail to accumulate splenic B1-like cells, yet retain peritoneal B1 cells. Instead, these mice show an expanded marginal zone compartment, but no difference is detected in the frequency of heavy chain gene replacement. Taken together, these data suggest a model in which dnRAG1 expression impairs secondary V(D)J recombination. As a result, selection and/or differentiation processes are altered in a way that promotes expansion of B1-like B cells in the spleen.
Collapse
Affiliation(s)
- Ashraf E Hassaballa
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Integrated mimicry of B cell antibody mutagenesis using yeast homologous recombination. Mol Biotechnol 2011; 47:57-69. [PMID: 20645027 DOI: 10.1007/s12033-010-9312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antibody affinity maturation proceeds in vivo via a combination of point mutations, insertions, deletions, and combinatorial shuffling of light chains or portions of the heavy chain, thereby reducing the probability of trapping in local affinity optima in sequence space. In vivo homologous recombination in yeast can be exploited to mimic the broad spectrum of mutational types deployed by B cells, incorporating both receptor revision and receptor editing together with polymerase-directed point mutagenesis. This method was used to effect a 10,000-fold affinity improvement in an anti-peptide single-chain antibody in three rounds of mutagenesis and screening, and a 1,000-fold affinity improvement in an anti-protein single-chain antibody in a single round. When recombinational mutagenesis (CDR or chain shuffling) was directly compared to error-prone PCR, the recombinational approach yielded greater affinity improvement with substantially reduced divergence from germline sequences, demonstrating an advantage of simultaneously testing a broad range of mutational strategies.
Collapse
|
6
|
Wang JH, Gostissa M, Yan CT, Goff P, Hickernell T, Hansen E, Difilippantonio S, Wesemann DR, Zarrin AA, Rajewsky K, Nussenzweig A, Alt FW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 2009; 460:231-6. [PMID: 19587764 DOI: 10.1038/nature08159] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/25/2009] [Indexed: 01/08/2023]
Abstract
Variable, diversity and joining gene segment (V(D)J) recombination assembles immunoglobulin heavy or light chain (IgH or IgL) variable region exons in developing bone marrow B cells, whereas class switch recombination (CSR) exchanges IgH constant region exons in peripheral B cells. Both processes use directed DNA double-strand breaks (DSBs) repaired by non-homologous end-joining (NHEJ). Errors in either V(D)J recombination or CSR can initiate chromosomal translocations, including oncogenic IgH locus (Igh) to c-myc (also known as Myc) translocations of peripheral B cell lymphomas. Collaboration between these processes has also been proposed to initiate translocations. However, the occurrence of V(D)J recombination in peripheral B cells is controversial. Here we show that activated NHEJ-deficient splenic B cells accumulate V(D)J-recombination-associated breaks at the lambda IgL locus (Igl), as well as CSR-associated Igh breaks, often in the same cell. Moreover, Igl and Igh breaks are frequently joined to form translocations, a phenomenon associated with specific Igh-Igl co-localization. Igh and c-myc also co-localize in these cells; correspondingly, the introduction of frequent c-myc DSBs robustly promotes Igh-c-myc translocations. Our studies show peripheral B cells that attempt secondary V(D)J recombination, and determine a role for mechanistic factors in promoting recurrent translocations in tumours.
Collapse
|
7
|
Lange MD, Waldbieser GC, Lobb CJ. Patterns of receptor revision in the immunoglobulin heavy chains of a teleost fish. THE JOURNAL OF IMMUNOLOGY 2009; 182:5605-22. [PMID: 19380808 DOI: 10.4049/jimmunol.0801013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H chain cDNA libraries were constructed from the RNA derived from seven different organs and tissues from the same individual catfish. Sequence analysis of >300 randomly selected clones identified clonal set members within the same or different tissues, and some of these represented mosaic or hybrid sequences. These hybrids expressed V(H) members of the same or different V(H) families within different regions of the same clone. Within some clonal sets multiple hybrids were identified, and some of these represented the products of sequential V(H) replacement events. Different experimental methods confirmed that hybrid clones identified in the cDNA library from one tissue could be reisolated in the cDNA pool or from the total RNA derived from the same or a different tissue, indicating that these hybrids likely represented the products of in vivo receptor revision events. Murine statistical recombination models were used to evaluate cryptic recombination signal sequences (cRSS), and significant cRSS pairs in the predicted V(H) donor and recipient were identified. These models supported the hypothesis that seamless revisions may have occurred via hybrid joint formation. The heptamers of the cRSS pairs were located at different locations within the coding region, and different events resulted in the replacement of one or both CDR as well as events that replaced the upstream untranslated region and the leader region. These studies provide phylogenetic evidence that receptor revision may occur in clonally expanded B cell lineages, which supports the hypothesis that additional levels of somatic H chain diversification may exist.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
8
|
Abstract
First observed in mouse pre-B-cell lines and then in knock-in mice carrying self-reactive IgH transgenes, VH replacement has now been shown to contribute to the primary B-cell repertoire in humans. Through recombination-activating gene (RAG)-mediated recombination between a cryptic recombination signal sequence (RSS) present in almost all VH genes and the flanking 23 base pair RSS of an upstream VH gene, VH replacement renews the entire VH-coding region, while leaving behind a short stretch of nucleotides as a VH replacement footprint. In addition to extending the CDR3 region, the VH replacement footprints preferentially contribute charged amino acids. VH replacement rearrangement in immature B cells may either eliminate a self-reactive B-cell receptor or contribute to the generation of self-reactive antibodies. VH replacement may also rescue non-productive or dysfunctional VHDJH rearrangement in pro-B and pre-B cells. Conversely, VH replacement of a productive immunoglobulin H gene may generate non-productive VH replacement to disrupt or temporarily reverse the B-cell differentiation process. VH replacement can thus play a complex role in the generation of the primary B-cell repertoire.
Collapse
Affiliation(s)
- Zhixin Zhang
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | |
Collapse
|
9
|
Perfetti V, Vignarelli MC, Palladini G, Navazza V, Giachino C, Merlini G. Insights into the regulation of immunoglobulin light chain gene rearrangements via analysis of the kappa light chain locus in lambda myeloma. Immunology 2004; 112:420-7. [PMID: 15196210 PMCID: PMC1782513 DOI: 10.1046/j.1365-2567.2004.01902.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that B cells may undergo sequential rearrangements at the light chain loci, despite already expressing light chain receptors. This phenomenon may occur in the bone marrow and, perhaps, in germinal centers. As immunoglobulin (Ig)kappa light chains usually rearrange before Iglambda light chains, we analysed, by polymerase chain reaction, the Igkappa locus of bone marrow mononuclear cells from 29 patients with Iglambda myeloma to identify earlier recombinations in marrow plasma cells. The results demonstrated that Igkappa alleles were inactivated via the kappa-deleting element, presumably prior to V(kappa)-J(kappa) rearrangement, in many cases. Eighteen alleles (16 myeloma clones, 55%) showed V(kappa)-J(kappa) rearrangements, with increased utilization of 5' distant V(kappa) and 3' distant Jkappa gene segments (Jkappa4, 56%), an indication of multiple sequential rearrangements. In-frame, potentially functional V(kappa)-J(kappa) rearrangements were found in approximately one-third of available rearrangements (as expected by chance), each one in different myeloma clones: three were germline encoded, while one had several nucleotide substitutions, suggesting inactivation after the onset of somatic hypermutation. Three of four potentially functional V(kappa)-J(kappa)rearrangements involved V(kappa)4-1, a segment considered to be associated with autoimmunity. These findings provide insights into the regulation of light chain rearrangements and support the view that B cells may occasionally undergo sequential light chain rearrangements after the onset of somatic hypermutation.
Collapse
Affiliation(s)
- Vittorio Perfetti
- Internal Medicine and Medical Oncology, IRCCS Policlinico S. Matteo-University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|