1
|
Ahmadkhani N, Benson JD, Eroglu A, Higgins AZ. High throughput method for simultaneous screening of membrane permeability and toxicity for discovery of new cryoprotective agents. Sci Rep 2025; 15:1862. [PMID: 39805972 PMCID: PMC11731021 DOI: 10.1038/s41598-025-85509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity. This study presents a new method for rapidly assessing the cell membrane permeability and toxicity of candidate CPAs. The new method enables ~ 100 times faster permeability measurement than previous methods, while also allowing assessment of CPA toxicity using the same 96-well plate. We tested five commonly used CPAs and 22 less common ones at both 4 °C and room temperature, with 23 of them passing the screening process based on their favorable toxicity and permeability properties. Considering its advantages such as high throughput measurement of membrane permeability along with simultaneous toxicity assessment, the presented method holds promise as an effective initial screening tool to identify new CPAs for cryopreservation.
Collapse
Affiliation(s)
- Nima Ahmadkhani
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia - Augusta University, Augusta, USA
| | - Adam Z Higgins
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA.
| |
Collapse
|
2
|
Caliskan S, Liu D, Oldenhof H, Sieme H, Wolkers WF. Use of membrane transport models to design cryopreservation procedures for oocytes. Anim Reprod Sci 2024; 267:107536. [PMID: 38908169 DOI: 10.1016/j.anireprosci.2024.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dejia Liu
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
3
|
Ahmadkhani N, Benson JD, Eroglu A, Higgins AZ. High throughput method for simultaneous screening of membrane permeability and toxicity for discovery of new cryoprotective agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604685. [PMID: 39091780 PMCID: PMC11291039 DOI: 10.1101/2024.07.22.604685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Vitrification is the most promising method for cryopreservation of complex structures such as organs and tissue constructs. However, this method requires multimolar concentrations of cell-permeant cryoprotective agents (CPAs), which can be toxic at such elevated levels. The selection of CPAs for organ vitrification has been limited to a few chemicals; however, there are numerous chemicals with properties similar to commonly used CPAs. In this study, we developed a high-throughput method that significantly increases the speed of cell membrane permeability measurement, enabling ~100 times faster permeability measurement than previous methods. The method also allows assessment of CPA toxicity using the same 96-well plate. We tested five commonly used CPAs and 22 less common ones at both 4 °C and room temperature, with 23 of them passing the screening process based on their favorable toxicity and permeability properties. Considering its advantages such as high throughput measurement of membrane permeability along with simultaneous toxicity assessment, the presented method holds promise as an effective initial screening tool to identify new CPAs for cryopreservation.
Collapse
Affiliation(s)
- Nima Ahmadkhani
- School of Chemical, Biological and Environmental Engineering, Oregon State University
| | | | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia - Augusta University
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University
| |
Collapse
|
4
|
Gordiyenko OI, Kovalenko IF, Rogulska OY, Trufanova NA, Gurina TM, Trufanov OV, Petrenko OY. Theory-based cryopreservation mode of mesenchymal stromal cell spheroids. Cryobiology 2024; 115:104906. [PMID: 38762155 DOI: 10.1016/j.cryobiol.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Cryopreservation of spheroids requires development of new improved methods. The plasma membranes permeability coefficients for water and cryoprotectants determine time characteristics of mass transfer through the cell membranes, and therefore the optimal modes of cells cryopreservation. Here we proposed an approach to cryopreservation of multicellular spheroids which considers their generalized characteristics as analogues of the membranes' permeability coefficients of the individual cells. We have determined such integral characteristics of spheroids from mesenchymal stromal cells (MSCs) as osmotically inactive volume; permeability coefficients for water and Me2SO molecules and the activation energy of their penetration. Based on these characteristics, we calculated the osmotic behavior of multicellular spheroids under cooling conditions to select the optimal cooling rate. We also determined the optimal cooling rate of spheroids using the probabilistic model developed based on the two-factor theory of cryodamage. From the calculation it follows that the optimal cooling rate of the MSC-based spheroids is 0.75°С/min. To verify the obtained theoretical estimates, we conducted experiments on freezing MSC-based spheroids under different modes. The obtained results of primary viability screening indicate that freezing at a constant linear cooling rate of 0.75-1.0°С/min gives a good result. Theoretical prediction of the spheroid osmotic behavior during cooling provided the basis for experimental verification of varying the temperature to which slow cooling should be carried out before immersion in liquid nitrogen. Slow freezing of spheroids to -40 °C followed by immersion in liquid nitrogen was shown to preserve cells better than slow freezing to -80 °C. Obtained data allow more effective use of MSC-based spheroids in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- O I Gordiyenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - I F Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Rogulska
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Physiology, Czech Academy of Science, Prague, Czech Republic; Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.
| | - N A Trufanova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - T M Gurina
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O V Trufanov
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
5
|
Todrin AF, Kovalenko IF, Smolyaninova YI, Timofeyeva OV, Popivnenko LI, Gordiyenko OI. Determination of cell membrane permeability coefficients: Comparison of models in the case of oocytes. Cryobiology 2023; 113:104789. [PMID: 37924929 DOI: 10.1016/j.cryobiol.2023.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Values of cell membranes permeability coefficients for water and molecules of cryoprotective agents (CPAs) are the necessary characteristics for developing physical-mathematical models describing mass transfer processes through cell membranes in order to predict optimal cell cooling rates. We carried out a comparative analysis of the permeability coefficients of mouse oocyte membranes for molecules of water, ethylene glycol (EG), propane-1,2-diol (1,2-PD) and dimethyl sulfoxide (Me2SO), determined by applying the classical Kedem-Katchalsky model, which considers only the penetration of non-electrolyte molecules (water and CPA) through the membrane, and the model developed by us, which takes into account the transmembrane transfer of ions and the associated changes in the transmembrane electric potential. We shown that calculations based on the developed modified model provide lower values of the permeability coefficients of the oocyte membrane for water and CPA molecules. What is important that the obtained by our modified model permeability coefficients for water molecules do not depend on the type of cryoprotectant, while the application of the classical model both in our studies and works of other authors always gave different values of these coefficients in solutions with different cryoprotectants. Our modified model also makes it possible to determine the dynamics of the transmembrane electric potential of the cell under the conditions of transmembrane mass transfer and the duration of the membrane being influenced by the changes in electric potential, that is a parameter that can directly affect the viability of cells.
Collapse
Affiliation(s)
- A F Todrin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine.
| | - I F Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine.
| | - Ye I Smolyaninova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine.
| | - O V Timofeyeva
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine
| | - L I Popivnenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine.
| | - O I Gordiyenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, 23, Pereyaslavskaya str., 61016, Kharkiv, Ukraine.
| |
Collapse
|
6
|
Huang L, Benson JD, Almasri M. Microfluidic measurement of individual cell membrane water permeability. Anal Chim Acta 2021; 1163:338441. [PMID: 34024416 DOI: 10.1016/j.aca.2021.338441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
This paper reports a microfluidic lab-on-chip for dynamic particle sizing and real time individual cell membrane permeability measurements. To achieve this, the device measures the impedance change of individual cells or particles at up to ten time points after mixing with different media, e.g. dimethyl sulfoxide or DI water, from separate inlets. These measurements are enabled by ten gold electrode pairs spread across a 20 mm long microchannel. The device measures impedance values within 0.26 s after mixing with other media, has a detection throughput of 150 samples/second, measures impedance values at all ten electrodes at this rate, and allows tracking of individual cell volume changes caused by cell osmosis in anisosmotic fluids over a 1.3 s postmixing timespan, facilitating accurate individual cell estimates of water permeability. The design and testing were performed using yeast cells (Saccharomyces cerevisiae). The relationship between volume and impedance in both polystyrene calibration beads as well as the volume-osmolality relationship in yeast were demonstrated. Moreover, we present the first noninvasive and non-optically-based water permeability measurements in individual cells.
Collapse
Affiliation(s)
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
7
|
Numerical solution of inward solidification of a dilute ternary solution towards a semi-permeable spherical cell. Math Biosci 2019; 316:108240. [PMID: 31465730 DOI: 10.1016/j.mbs.2019.108240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022]
Abstract
Modeling a cell's response to encroaching ice has informed the development of cryopreservation protocols for four decades. It has been well documented that knowledge of the cellular state as a function of media and cooling rate faciliate informed cryopreservation protocol design and explain mechanisms of damage. However, previous efforts have neglected the interaction between solutes and the encroaching ice front and their effects on the cell state. To address this, here we examine the cryobiologically relevant setting of a spherically-symmetric model of a biological cell separated by a ternary fluid mixture from an encroaching solid-liquid interface. The cell and liquid regions contain cell membrane impermeable intracellular and extracellular salts, respectively, a cell membrane permeable solute commonly used in cryopreservation protocols known as a cryoprotective agent (CPA), and water as a membrane permeable solvent. As cooling and solidification proceed the extracellular chemical environment evolves and leads to mass transport across the cell membrane. Consequently, both the solidification front and the cell membrane are free boundaries whose dynamics are coupled through transport processes in the solid, liquid and cell regions. We describe a numerical procedure to solve this coupled free-boundary problem based on a domain transformation and method of lines approach. We also investigate how the thermal and chemical states inside the cell are influenced by different cooling protocols at the external boundary. Finally, we observe that the previously unaccounted-for partial solute rejection at the advancing solid-liquid interface increases the CPA and salt concentrations in the extracellular liquid as a function of the interface speed and segregation coefficients, suggesting that previous model predictions of the cell state during cryopreservation were inaccurate.
Collapse
|
8
|
Lei Z, Xie D, Mbogba MK, Chen Z, Tian C, Xu L, Zhao G. A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes. LAB ON A CHIP 2019; 19:1929-1940. [PMID: 31038148 DOI: 10.1039/c9lc00107g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The temperature-dependent oocyte membrane permeability plays a significant role in oocyte cryopreservation, such as optimizing the addition/removal of cryoprotective agents and the rate of cooling/rewarming. However, the systems for studying the temperature dependence of oocyte membrane permeability are either too complicated or unable to achieve wide-range precise temperature control. In addition, these systems cannot achieve the simultaneous observation of multiple oocytes. Here, we report a novel microfluidic platform that combines a precise local temperature heater/detector and a simple global water bath to achieve wide-range accurate temperature control without increasing the difficulty of fabrication, and it also realizes non-interfering, position-controllable and non-missing capture of multiple oocytes for parallel experiments to increase throughput. The permeability coefficients (Lp, Ps) of the mouse oocyte membrane exposed to cryoprotective agents (1.5 M EG and 1.5 M PG) at four temperatures (4, 15, 25 and 37 °C) are consistent with those reported in previous works, which proves the feasibility and practicality of the microfluidic platform in this study.
Collapse
Affiliation(s)
- Zeling Lei
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Dongcheng Xie
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Momoh Karmah Mbogba
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Conghui Tian
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Lei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
9
|
Niu D, Zhao G, Liu X, Zhou P, Cao Y. Prevention of Osmotic Injury to Human Umbilical Vein Endothelial Cells for Biopreservation: A First Step Toward Biobanking of Endothelial Cells for Vascular Tissue Engineering. Tissue Eng Part C Methods 2016; 22:270-9. [PMID: 26701745 DOI: 10.1089/ten.tec.2015.0364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-survival-rate cryopreservation of endothelial cells plays a critical role in vascular tissue engineering, while optimization of osmotic injuries is the first step toward successful cryopreservation. We designed a low-cost, easy-to-use, microfluidics-based microperfusion chamber to investigate the osmotic responses of human umbilical vein endothelial cells (HUVECs) at different temperatures, and then optimized the protocols for using cryoprotective agents (CPAs) to minimize osmotic injuries and improve processes before freezing and after thawing. The fundamental cryobiological parameters were measured using the microperfusion chamber, and then, the optimized protocols using these parameters were confirmed by survival evaluation and cell proliferation experiments. It was revealed for the first time that HUVECs have an unusually small permeability coefficient for Me2SO. Even at the concentrations well established for slow freezing of cells (1.5 M), one-step removal of CPAs for HUVECs might result in inevitable osmotic injuries, indicating that multiple-step removal is essential. Further experiments revealed that multistep removal of 1.5 M Me2SO at 25°C was the best protocol investigated, in good agreement with theory. These results should prove invaluable for optimization of cryopreservation protocols of HUVECs.
Collapse
Affiliation(s)
- Dan Niu
- 1 Department of Electronic Science and Technology, Center for Biomedical Engineering, University of Science and Technology of China , Hefei, Anhui, China
| | - Gang Zhao
- 1 Department of Electronic Science and Technology, Center for Biomedical Engineering, University of Science and Technology of China , Hefei, Anhui, China .,2 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei, Anhui, China
| | - Xiaoli Liu
- 1 Department of Electronic Science and Technology, Center for Biomedical Engineering, University of Science and Technology of China , Hefei, Anhui, China
| | - Ping Zhou
- 2 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei, Anhui, China .,3 Center for Reproductive Medicine, The Affiliated Hospital of Anhui Medical University , Hefei, Anhui, China
| | - Yunxia Cao
- 2 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei, Anhui, China .,3 Center for Reproductive Medicine, The Affiliated Hospital of Anhui Medical University , Hefei, Anhui, China
| |
Collapse
|
10
|
Morató R, Chauvigné F, Novo S, Bonet S, Cerdà J. Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol Reprod Dev 2014; 81:450-61. [DOI: 10.1002/mrd.22310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/29/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Roser Morató
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar; Consejo Superior de Investigaciones Científicas (CSIC); Barcelona Spain
| | - Sergi Novo
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar; Consejo Superior de Investigaciones Científicas (CSIC); Barcelona Spain
| |
Collapse
|
11
|
Karlsson JOM, Szurek EA, Higgins AZ, Lee SR, Eroglu A. Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 2013; 68:18-28. [PMID: 24246951 DOI: 10.1016/j.cryobiol.2013.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach.
Collapse
Affiliation(s)
- Jens O M Karlsson
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA
| | - Edyta A Szurek
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Sang R Lee
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Ali Eroglu
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Obstetrics and Gynecology, and Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Wei X, Xiangwei F, Guangbin Z, Jing X, Liang W, Ming D, Dianshuai Y, Mingxing Y, Jianhui T, Shien Z. Cytokeratin distribution and expression during the maturation of mouse germinal vesicle oocytes after vitrification. Cryobiology 2013; 66:261-6. [DOI: 10.1016/j.cryobiol.2013.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
13
|
Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, Toner M. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. LAB ON A CHIP 2011; 11:3530-7. [PMID: 21887438 PMCID: PMC3755277 DOI: 10.1039/c1lc20377k] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.
Collapse
Affiliation(s)
- Yun Seok Heo
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Ho-Joon Lee
- The Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bryan A. Hassell
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas L. Toth
- Vincent Obstetrics and Gynecology Services, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heidi Elmoazzen
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
14
|
De Santis L, Coticchio G. Reprint of: Theoretical and experimental basis of slow freezing. Reprod Biomed Online 2011; 23:290-7. [PMID: 21889729 DOI: 10.1016/j.rbmo.2011.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/14/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022]
Abstract
In human IVF, cryopreservation of oocytes has become an alternative to embryo storage. It has also shown enormous potential for oocyte donation, fertility preservation and animal biotechnology. Mouse oocytes have represented the elective model to develop oocyte cryopreservation in the human and over several decades their use has made possible the development of theoretical and empirical approaches. Progress in vitrification has overshadowed slow freezing to such an extent that it has been suggested that vitrification could soon become the exclusive cryopreservation choice in human IVF. However, recent studies have clearly indicated that human embryo slow freezing, a practice considered well established for decades, can be significantly improved by a simple empirical approach. Alternatively, recent and more advanced theoretical models can predict oocyte responses to the diverse factors characterizing an entire slow-freezing procedure, offering a global method for the improvement of current protocols. This gives credit to the notion that oocyte slow freezing still has considerable margins for improvement. In human IVF, cryopreservation of oocytes has become an alternative to embryo storage. It has also shown enormous potential for oocyte donation, fertility preservation and animal biotechnology. Mouse oocytes have represented the elective model to develop oocyte cryopreservation in the human and over several decades their use has made possible the development of theoretical and empirical approaches. Progress in vitrification has overshadowed slow freezing to such an extent that it has been suggested that vitrification could soon become the exclusive cryopreservation choice in human IVF. However, recent studies have clearly indicated that human embryo slow freezing, a practice considered well established for decades, can be significantly improved by a simple empirical approach. Alternatively, recent and more advanced theoretical models can predict oocyte responses to the diverse factors characterizing an entire slow freezing procedure, offering a global method for the improvement of current protocols. This gives credit to the notion that oocyte slow freezing still has considerable margins of improvement.
Collapse
Affiliation(s)
- Lucia De Santis
- IVF Unit, Dept. Ob/Gyn, H S. Raffaele, Vita-Salute University, Milan, Italy
| | | |
Collapse
|
15
|
Chauvigné F, Lubzens E, Cerdà J. Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol 2011; 11:34. [PMID: 21477270 PMCID: PMC3079631 DOI: 10.1186/1472-6750-11-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 04/08/2011] [Indexed: 12/12/2022] Open
Abstract
Background Increasing cell membrane permeability to water and cryoprotectants is critical for the successful cryopreservation of cells with large volumes. Artificial expression of water-selective aquaporins or aquaglyceroporins (GLPs), such as mammalian aquaporin-3 (AQP3), enhances cell permeability to water and cryoprotectants, but it is known that AQP3-mediated water and solute permeation is limited and pH dependent. To exploit further the possibilities of using aquaporins in cryobiology, we investigated the functional properties of zebrafish (Danio rerio) GLPs. Results Water, glycerol, propylene glycol and ethylene glycol permeability of zebrafish Aqp3a, -3b, -7, -9a, -9b, -10a and -10b, and human AQP3, was examined. Expression in Xenopus laevis oocytes indicated that the permeability of DrAqp3a and -3b to ethylene glycol was higher than for glycerol or propylene glycol under isotonic conditions, unlike other zebrafish GLPs and human AQP3, which were more permeable to glycerol. In addition, dose-response experiments and radiolabeled ethylene glycol uptake assays suggested that oocytes expressing DrAqp3b were permeated by this cryoprotectant more efficiently than those expressing AQP3. Water and ethylene glycol transport through DrAqp3a and -3b were, however, highest at pH 8.5 and completely abolished at pH 6.0. Point mutations in the DrAqp3b amino acid sequence rendered two constructs, DrAqp3b-T85A showing higher water and ethylene glycol permeability at neutral and alkaline pH, and DrAqp3b-H53A/G54H/T85A, no longer inhibited at acidic pH but less permeable than the wild type. Finally, calculation of permeability coefficients for ethylene glycol under concentration gradients confirmed that the two DrAqp3b mutants were more permeable than wild-type DrAqp3b and/or AQP3 at neutral pH, resulting in a 2.6- to 4-fold increase in the oocyte intracellular concentration of ethylene glycol. Conclusion By single or triple point mutations in the DrAqp3b amino acid sequence, we constructed one mutant with enhanced ethylene glycol permeability and another with reduced pH sensitivity. The DrAqp3b and the two mutant constructs may be useful for application in cryobiology.
Collapse
Affiliation(s)
- François Chauvigné
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | |
Collapse
|
16
|
Theoretical and experimental basis of slow freezing. Reprod Biomed Online 2011; 22:125-32. [DOI: 10.1016/j.rbmo.2010.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/14/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
|
17
|
Prentice JR, Anzar M. Cryopreservation of Mammalian oocyte for conservation of animal genetics. Vet Med Int 2010; 2011. [PMID: 20886016 PMCID: PMC2945659 DOI: 10.4061/2011/146405] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/09/2010] [Indexed: 11/24/2022] Open
Abstract
The preservation of the female portion of livestock genetics has become an international priority; however, in situ conservation strategies are extremely expensive. Therefore, efforts are increasingly focusing on the development of a reliable cryopreservation method for oocytes, in order to establish ova banks. Slow freezing, a common method for cryopreservation of oocytes, causes osmotic shock (solution effect) and intracellular ice crystallization leading to cell damage. Vitrification is an alternative method for cryopreservation in which cells are exposed to a higher concentration of cryoprotectants and frozen with an ultra rapid freezing velocity, resulting in an ice crystal free, solid glass-like structure. Presently, vitrification is a popular method for cryopreservation of embryos. However, vitrification of oocytes is still challenging due to their complex structure and sensitivity to chilling.
Collapse
Affiliation(s)
- Jennifer R Prentice
- Canadian Animal Genetic Resources, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | | |
Collapse
|
18
|
Ma XH, Shi Y, Hou Y, Liu Y, Zhang L, Fan WX, Ge D, Liu TQ, Cui ZF. Slow-freezing cryopreservation of neural stem cell spheres with different diameters. Cryobiology 2010; 60:184-91. [DOI: 10.1016/j.cryobiol.2009.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
19
|
Hong SW, Sepilian V, Chung HM, Kim TJ. Cryopreserved human blastocysts after vitrification result in excellent implantation and clinical pregnancy rates. Fertil Steril 2009; 92:2062-4. [DOI: 10.1016/j.fertnstert.2009.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 05/21/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
|
20
|
Paynter SJ, Andrews KJ, Vinh NN, Kelly CM, Rosser AE, Amso NN, Dunnett SB. Membrane permeability coefficients of murine primary neural brain cells in the presence of cryoprotectant. Cryobiology 2009; 58:308-14. [PMID: 19285056 DOI: 10.1016/j.cryobiol.2009.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 11/20/2022]
Abstract
Neural cells isolated from the brain have a number of research and clinical applications, including transplantation to patients with neurodegenerative conditions. Tissue supply is one of the major limiting factors to clinical transplantation. Cryopreservation of primary neural cells would improve supply, aid in organisation of transplantation surgery and facilitate research. To date, cryopreservation using standard methods has resulted in reduced yield and/or viability of primary neural tissue. In order to optimise freezing protocols specifically for such cells, the non-osmotic volume (V(b)), water permeability (L(p)) and permeability to cryoprotectant (P(cpa)) were determined. Murine foetal brain tissue from the ganglionic eminence (GE), ventral mesencephalon (VM), or neocortical mantle (Ctx) was trypsinised to a single cell suspension. To determine V(b,) cell volume was measured after exposure to anisotonic solutions of sucrose (150-1500 mOsmol/kg). L(p) (mum/min.atm) and P(cpa) (mum/s) were determined for GE cells by measuring cell volume during exposure to 1.5 mol/l cryoprotectant. Cell volume was determined using an electronic particle counting method. V(b) was 27% for Ctx and GE, and 30% for VM. The osmotic response of GE cells was similar in the presence of propane-1,2-diol and dimethyl sulphoxide. In the presence of ethylene glycol, cell volume decrease was greater on initial exposure to cryoprotectant and recovery slower. Differences in L(p,) but not P(cpa), were found between cryoprotectants. The present results provide key parameters for optimisation of freezing protocols for cryopreservation of primary foetal brain tissues for application in neural cell transplantation.
Collapse
Affiliation(s)
- S J Paynter
- Dept. Obs. & Gyn., School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Karlsson JOM, Younis AI, Chan AWS, Gould KG, Eroglu A. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 2009; 76:321-33. [PMID: 18932214 DOI: 10.1002/mrd.20956] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful cryopreservation of oocytes of the rhesus monkey (Macaca mulatta) would facilitate the use of this valuable animal model in research on reproduction and development, while providing a stepping stone towards human oocyte cryopreservation and the conservation of endangered primate species. To enable rational design of cryopreservation techniques for rhesus monkey oocytes, we have determined their osmotic and permeability characteristics in the presence of dimethylsulfoxide (DMSO), ethylene glycol (EG), and propylene glycol (PROH), three widely used cryoprotectants. Using nonlinear regression to fit a membrane transport model to measurements of dynamic cell volume changes, we estimated the hydraulic conductivity (L(p)) and cryoprotectant permeability (P(s)) of mature and immature oocytes at 23.5 degrees C. Mature oocyte membranes were most permeable to PROH (P(s) = 0.56 +/- 0.05 microm/sec) and least permeable to DMSO (P(s) = 0.24 +/- 0.02 microm/sec); the permeability to EG was 0.34 +/- 0.07 microm/sec. In the absence of penetrating cryoprotectants, mature oocytes had L(p) = 0.55 +/- 0.05 microm/min/atm, whereas the hydraulic conductivity increased to 1.01 +/- 0.10, 0.61 +/- 0.07, or 0.86 +/- 0.06 microm/min/atm when mature oocytes were exposed to DMSO, EG, or PROH, respectively. The osmotically inactive volume (V(b)) in mature oocytes was 19.7 +/- 2.4% of the isotonic cell volume. The only statistically significant difference between mature and immature oocytes was a larger hydraulic conductivity in immature oocytes that were exposed to DMSO. The biophysical parameters measured in this study were used to demonstrate the design of cryoprotectant loading and dilution protocols by computer-aided optimization.
Collapse
Affiliation(s)
- Jens O M Karlsson
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
22
|
Tao T, Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet 2008; 25:287-96. [PMID: 18670872 PMCID: PMC2596676 DOI: 10.1007/s10815-008-9236-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/25/2008] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To review the recent progress in human oocyte and ovarian tissue cryopreservation, and in the application of these two technologies for preserving female fertility of patients who are undergoing cancer treatment. DESIGN The literature on human oocyte and ovarian tissue freezing was searched with PubMed. The scientific background, current developments and potential future applications of these two methods were reviewed. RESULTS Chemotherapy and/or radiotherapy can induce premature ovarian failure in most of female cancer patients. Consequently, there has been a greater need for options to preserve the reproductive potential of these individuals. However, options are somewhat limited currently, particularly following aggressive chemotherapy and/or radiotherapy treatment protocols. In recent years, there have been considerable advances in the cryopreservation of human oocytes and ovarian tissue. For women facing upcoming cancer therapies, cryopreservation of ovarian tissue and oocytes is a technology that holds promise for banking reproductive potential for the future. Recent laboratory modifications have resulted in improved oocyte survival, oocyte fertilization, and pregnancy rates from frozen-thawed oocytes in IVF. This suggests potential for clinical application. CONCLUSIONS In the case of patients who are facing infertility due to cancer therapy, oocyte cryopreservation may be one of the few options available. Ovarian tissue cryopreservation can only be recommended as an experimental protocol in carefully selected patients. In ovarian tissue transplantation, more research is needed in order to enhance the revascularization process with the goal of reducing the follicular loss that takes place after tissue grafting. These technologies are still investigational, although tremendous progress has been made. The availability of such treatment will potentially lead to its demand not only from patients with cancer but also from healthy women who chose to postpone childbearing until later in life and therefore wish to retain their fertility.
Collapse
Affiliation(s)
- Tao Tao
- The Toronto Institute For Reproductive Medicine, Toronto, ON, Canada.
| | | |
Collapse
|
23
|
Mullen SF, Li M, Li Y, Chen ZJ, Critser JK. Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil Steril 2008; 89:1812-25. [PMID: 17681308 PMCID: PMC2494737 DOI: 10.1016/j.fertnstert.2007.06.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the permeability of human metaphase II oocytes to ethylene glycol and water in the presence of ethylene glycol, and to use this information to develop a method to vitrify human oocytes. DESIGN An incomplete randomized block design. SETTING A university-affiliated assisted reproductive center. PATIENT(S) Women undergoing assisted reproduction in the Center for Reproductive Medicine at Shandong University. INTERVENTION(S) Oocytes were exposed to 1.0 molar ethylene glycol in a single step and photographed during subsequent volume excursions. MAIN OUTCOME MEASURE(S) A two-parameter model was employed to estimate the permeability to water and ethylene glycol. RESULT(S) Water permeability ranged from 0.15 to 1.17 microm/(min.atm), and ethylene glycol permeability ranged from 1.5 to 30 microm/min between 7 degrees C at 36 degrees C. The activation energies for water and ethylene glycol permeability were 14.42 Kcal/mol and 21.20 Kcal/mol, respectively. CONCLUSION(S) Despite the lower permeability of human metaphase II oocytes to ethylene glycol compared with previously published values for propylene glycol and dimethylsulfoxide, methods to add and remove human oocytes with a vitrifiable concentration of ethylene glycol can be designed that prevent excessive osmotic stress and minimize exposure to high concentrations of this compound.
Collapse
Affiliation(s)
- Steven F. Mullen
- The Comparative Medicine Center and Department of Veterinary Pathobiology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Mei Li
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Yuan Li
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Zi-Jiang Chen
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- The Department of Medical Microbiology and Immunology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| | - John K. Critser
- The Comparative Medicine Center and Department of Veterinary Pathobiology, The University of Missouri at Columbia, Columbia, MO 65211, USA
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- The Department of Medical Microbiology and Immunology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Kim SH, Ku SY, Sung KC, Kang MJ, Kim SA, Kim HS, Oh SK, Jee BC, Suh CS, Choi YM, Kim JG, Moon SY. Simplified EM grid vitrification is a convenient and efficient method for mouse mature oocyte cryopreservation. Yonsei Med J 2006; 47:399-404. [PMID: 16807991 PMCID: PMC2688161 DOI: 10.3349/ymj.2006.47.3.399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 12/08/2005] [Indexed: 11/27/2022] Open
Abstract
This study was performed to evaluate the efficiency of simplified EM grid vitrification, skipping the step of removing the cryoprotectant (5.5M EG + 1.0M sucrose) droplet on the grid after loading oocytes, compared to conventional cryopreservation protocols for mouse mature oocytes. Firstly, the recovery, survival, fertilization and hatching rates of simplified EM grid vitrification were compared with those of the slow freezing method using 1.5M DMSO. Then, conventional EM grid vitrification was compared with simplified EM grid vitrification. Simplified EM grid vitrification showed higher survival, fertilization and hatching rates than those of the slow freezing method (85.6% vs. 63.2%; 51.0% vs. 22.3%; 38.7% vs. 12.5%, p < 0.01, respectively). Moreover, simplified EM grid vitrification showed higher recovery, survival and fertilization rates than those of conventional EM grid vitrification (100% vs. 95.0%, p=0.024; 90.0% vs. 78.9%, p=0.033; 56.7% vs. 38.7%, p=0.021, respectively). Hatching rate tended to be higher for simplified EM grid vitrification compared to conventional EM grid vitrification (41.1% vs. 24.1%). In conclusion, simplified EM grid vitrification is a convenient and efficient method for cryopreservation of mouse mature oocytes, compared to conventional EM grid vitrification and slow freezing methods.
Collapse
Affiliation(s)
- Seok Hyun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Ki Cheong Sung
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Moon Joo Kang
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Sung Ah Kim
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hee Sun Kim
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Sun Kyung Oh
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Young Min Choi
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jung Gu Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | - Shin Yong Moon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Amorim CA, Rondina D, Lucci CM, Gonçalves PBD, Figueiredo JRD, Giorgetti A. Permeability of ovine primordial follicles to different cryoprotectants. Fertil Steril 2006; 85 Suppl 1:1077-81. [PMID: 16616077 DOI: 10.1016/j.fertnstert.2005.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine the behavior of isolated primordial follicles that were exposed to different concentrations of dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PROH), and glycerol (GLY). DESIGN Isolated primordial follicles were exposed to the cryoprotectant (CPA) solution and photographed to calculate their volume at different periods of exposure. SETTING Laboratorio Renzo Giuliani, University of Florence, Italy. ANIMAL(S) Lambs, 30-40 days old. INTERVENTION(S) Isolation of primordial follicles and subsequent exposure to CPA. MAIN OUTCOME MEASURE(S) Follicular volume. RESULT(S) At 2 minutes of CPA exposure, all follicles appeared to be shrunken. At approximately 5 minutes, shrinkage ceased, and follicles started to swell, absorbing the CPA and water to maintain osmotic equilibrium. When DMSO was tested, follicular dehydration in all concentrations did not exceed 17%; with PROH and EG, it reached 33% and 27%, respectively. The highest degree of dehydration (48%) was seen with GLY. In almost all tested concentrations, follicular shrinkage occurred up to 5 minutes. CONCLUSION(S) Volume changes in isolated primordial follicles can fluctuate according to the CPA used and its concentration.
Collapse
|
26
|
He Y, Devireddy RV. An inverse approach to determine solute and solvent permeability parameters in artificial tissues. Ann Biomed Eng 2005; 33:709-18. [PMID: 15981870 DOI: 10.1007/s10439-005-1511-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study presents a generic numerical model to simulate the coupled solute and solvent transport in tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA; dimethylsulfoxide or DMSO). Osmotic responses of various tissue cells within the artificial tissue are predicted by the numerical model with three model parameters: Permeability of the tissue cell membrane to water (Lp), permeability of the tissue cell membrane to the solute or CPA (omega), and the diffusion coefficient of the solute or CPA in the extracellular space (D). By fitting the model results with published experimental data on solute/water concentrations at various locations within an artificial tissue, we were able to determine the permeability parameters of artificial tissue cells in the presence of 1.538 M DMSO. Lp and omega were determined at three different locations within the artificial tissue assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m2/s). The best fit values of Lp ranged from 0.59 x 10(-14) to 4.22 x 10(-14) m3/N-s while omega ranged from 0 to 6.6 x 10(-13) mol/N-s. Based on these values of Lp and omega, the solute reflection coefficient, sigma = 1 - omegav(-)CPA/Lp, ranged from 0.9923 to 1.0. The relative values of omega and sigma suggest that the artificial tissue cells are relatively impermeable to DMSO (or omega approximately 0 and sigma approximately 1.0). This observation was used to modify our model to predict the values of Lp and D assuming omega = 0 and sigma = 1.0. The best fit values of Lp ranged from 640 x 10(-14) to 2.1 x 10(-14) m3/N-s while D ranged from 0.63 x 10(-9) to 1.52 x 10(-9) m2/s. The permeability parameters obtained in the present study represent the first such effort for artificial tissues.
Collapse
Affiliation(s)
- Yimeng He
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
27
|
Pedro PB, Yokoyama E, Zhu SE, Yoshida N, Valdez DM, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J Reprod Dev 2005; 51:235-46. [PMID: 15883485 DOI: 10.1262/jrd.16079] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the permeability of mouse oocytes and embryos, matured oocytes and embryos at various stages of development were placed in five cryoprotectant solutions at 25 C for 25 min. From the cross-sectional areas of the oocytes/embryos, the relative change in volume was analyzed. In oocytes, shrinkage was least extensive and recovery was quickest in the propylene glycol solution, showing that propylene glycol permeates the oocytes most rapidly. Dimethyl sulfoxide, acetamide, and ethylene glycol permeated the oocytes slightly more slowly than propylene glycol. The oocytes in glycerol shrunk extensively and then expanded marginally, indicating slow permeation. The volume changes of 1-cell and 2-cell embryos were similar to those of oocytes, showing little change in permeability. In 8-cell embryos, the volume recovered much faster than in the earlier stages especially in glycerol and acetamide. In morulae, the volume recovery was much faster in glycerol and in ethylene glycol; in ethylene glycol, the extent of shrinkage was small and the recovery was fast, indicating an extremely rapid permeation. Although the permeability of oocytes/embryos generally increased as embryo development proceeded, the degree of increase varied greatly among the cryoprotectants. Interestingly, the volume change in propylene glycol was virtually unaffected by the stage of development. Such information will be valuable for determining a suitable protocol for the cryopreservation of oocytes/embryos at different stages of development.
Collapse
Affiliation(s)
- Prudencio B Pedro
- Laboratory of Animal Science, College of Agriculture, Kochi University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Reports of clinical pregnancies from cryopreserved human oocytes have been steadily increasing in recent years. However, success in terms of births per thawed oocyte remains poor. A wide variety of freezing techniques has been used lately, but modifications to protocols are made on an empirical basis. Methods of cryopreservation are often poorly described or protocols are not strictly adhered to, resulting in variability of outcome. The first stage of a freezing protocol is exposure to cryoprotectant. If performed inappropriately, such exposure can result in damage due to chemical toxicity and/or osmotic stress. Measurement of cell volume change during exposure to cryoprotectants demonstrates the extent of osmotic stress experienced by that cell. Such measurements have been performed during perfusion of murine and human oocytes with cryoprotectant concentrations commonly used for cryopreservation of these cells. It has been demonstrated that changes in the cryoprotectant type, concentration and temperature of exposure can dramatically affect the extent of cell volume change. Even small changes in duration of exposure to cryoprotectant prior to cooling can result in drastic changes in cellular hydration. Such factors will potentially influence the ability of the cell to survive the stresses experienced during the subsequent stages of the cryopreservation protocol.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynaecology, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
29
|
Rodrigues APR, Amorim CA, Costa SHF, Matos MHT, Santos RR, Lucci CM, Báo SN, Ohashi OM, Figueiredo JR. Cryopreservation of caprine ovarian tissue using glycerol and ethylene glycol. Theriogenology 2004; 61:1009-24. [PMID: 15036991 DOI: 10.1016/j.theriogenology.2003.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 04/23/2003] [Indexed: 10/26/2022]
Abstract
Cryopreservation of ovarian tissue may be a potential alternative for the conservation of genetically superior animals, including high milk- and meat-producing goat breeds. However, until now, no information was available concerning the cryopreservation of preantral follicles (PF) enclosed in caprine ovarian tissue. The objective of the present study was to evaluate the structural and ultrastructural characteristics of caprine PF after exposure to and cryopreservation of ovarian tissue in 1.5 and 3M glycerol (GLY) and ethylene glycol (EG). At the slaughterhouse, each ovarian pair from five adult mixed breed goats was divided into nine fragments and randomly distributed into treatment groups. One fragment was immediately fixed for histological examination and ultrastructural analysis, after slaughter (control). Four of the ovarian fragments were equilibrated at 20 degrees C for 20 min in 1.8 ml of MEM containing 1.5 or 3M GLY or EG for a toxicity test and the final four fragments were slowly frozen using these cryoprotectants at the concentrations above. After toxicity testing and freezing/thawing, the ovarian fragments were fixed for histological examination. Histological analysis showed that after toxicity testing and cryopreservation of the ovarian tissue in GLY or EG at both concentrations, the percentage of normal PF was significantly lower than controls. Ultrastructural analysis of PF frozen in 1.5 and 3M GLY, as well as 3M EG demonstrated that these follicles remained morphologically normal. In conclusion, we demonstrated cryopreservation of caprine PF in ovarian tissue.
Collapse
Affiliation(s)
- A P R Rodrigues
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles, LAMOFOPA Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Devireddy RV. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol Reprod Dev 2004; 70:333-43. [PMID: 15625698 DOI: 10.1002/mrd.20209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a generic numerical model to simulate the coupled solute and solvent transport in human ovarian tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA). The model accounts for the axial and radial diffusion of the solute (CPA) as well as axial convection of the CPA, and a variable vascular surface area (A) during the transport process. In addition, the model also accounts for the radial movement of the solvent (water) into and out of the vascular spaces. Osmotic responses of various cells within an human ovarian tissue section are predicted by the numerical model with three model parameters: permeability of the tissue cell membrane to water (L(p)), permeability of the tissue cell membrane to the solute or CPA (omega) and the diffusion coefficient of the solute or CPA in the vascular space (D). By fitting the model results with published experimental data on solute/water concentrations within an human ovarian tissue section, I was able to determine the permeability parameters of ovarian tissue cells in the presence of 1.5M solutions of each of the following: dimethyl sulphoxide (DMSO), propylene glycol (PROH), ethylene glycol (EG), and glycerol (GLY), at two temperatures (4 degrees C and 27 degrees C). Modeling Approach 1: Assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m(2)/sec), the best fit values of L(p) ranged from 0.35 x 10(-14) to 1.43 x 10(-14) m(3)/N-sec while omega ranged from 2.57 x 10(-14) to 70.5 x 10(-14) mol/N-sec. Based on these values of L(p) and omega, the solute reflection coefficient, sigma defined as sigma = 1-omega v(CPA)/L(P) ranged from 0.9961 to 0.9996. Modeling Approach 2: The relative values of omega and sigma from our initial modeling suggest that the embedded ovarian tissue cells are relatively impermeable to all the CPAs investigated (or omega approximately 0 and sigma approximately 1.0). Consequently the model was modified and used to predict the values of L(p) and D assuming omega = 0 and sigma = 1.0. The best fit values of L(p) ranged from 0.44 x 10(-14) to 1.2 x 10(-14) m(3)/N-sec while D ranged from 0.85 x 10(-9) to 2.08 x 10(-9) m(2)/sec. Modeling Approach 3: Finally, the best fit values of D from modeling approach 2 were incorporated into model 1 to re-predict the values of L(p) and omega. It is hoped that the ovarian tissue cell parameters reported here will help to optimize chemical loading and unloading procedures for whole ovarian tissue sections and consequently, tissue cryopreservation procedures.
Collapse
Affiliation(s)
- Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, 2508 CEBA Bldg., Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
31
|
Songsasen N, Ratterree MS, VandeVoort CA, Pegg DE, Leibo SP. Permeability characteristics and osmotic sensitivity of rhesus monkey (Macaca mulatta) oocytes. Hum Reprod 2002; 17:1875-84. [PMID: 12093854 DOI: 10.1093/humrep/17.7.1875] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Permeability characteristics and sensitivity to osmotic shock are principal parameters that are important to derive procedures for the successful cryopreservation of mammalian oocytes. METHODS AND RESULTS The osmotically inactive volume of rhesus monkey oocytes was determined by measuring their volumes in the presence of hypertonic solutions of sucrose from 0.2 to 1.5 mol/l, compared with their volume in isotonic TALP-HEPES solution. Boyle-van't Hoff plots at infinite osmolality indicated that the non-osmotic volumes of immature and mature oocytes were 20 and 17% respectively. Osmotic responses of oocytes exposed to 1.0 mol/l solutions of glycerol, dimethylsulphoxide (DMSO) and ethylene glycol (EG) were determined. Rhesus monkey oocytes appeared to be less permeable to glycerol than to DMSO or to EG. Sensitivity of oocytes to osmotic shock was determined by exposing them to various solutions of EG (0.1 to 5.0 mol/l) and then abruptly diluting them into isotonic medium. Morphological survival, as measured by membrane integrity, of oocytes diluted out of EG depended significantly on the concentration of EG (P < 0.01). CONCLUSION Determination of permeability characteristics and sensitivity to osmotic shock of rhesus oocytes will aid in the derivation of procedures for their cryopreservation.
Collapse
Affiliation(s)
- N Songsasen
- Department of Biological Sciences, University of New Orleans and Audubon Center for Research of Endangered Species, New Orleans, LA 70131, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Oocyte cryopreservation, despite its impact on conservation of genetic resources, is not yet an established technology. Several problems need to be solved before this technology can be applied regularly. Chilling membrane susceptibility and formation of ice due to the large volume of the cell are the major problems observed. However, during the last years, several studies were done to obtain viable oocytes after cryopreservation. The addition of molecules known to stabilize membranes and the creation of freezing systems with rapid cooling throughout the transition phase have yielded a good percentage of viable immature and mature oocytes More recently, storage of female gametes was achieved by cryopreservation of cortical ovarian tissue. The possibility of restoring fertility by transplantation of frozen ovarian tissue or its long-term culture in vitro represents an important future means of preserving the fertility of patients and of storing the gametes of rare animals.
Collapse
Affiliation(s)
- S Ledda
- Department of Animal Biology, Veterinary Faculty, University of Sassari, Italy.
| | | | | | | |
Collapse
|
33
|
Paynter SJ, O'Neil L, Fuller BJ, Shaw RW. Membrane permeability of human oocytes in the presence of the cryoprotectant propane-1,2-diol. Fertil Steril 2001; 75:532-8. [PMID: 11239537 DOI: 10.1016/s0015-0282(00)01757-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the permeability of unfertilized human oocytes to water and the cryoprotectant propane-1,2-diol over a range of temperatures and to use these data to predict osmotic responses under given conditions. DESIGN Laboratory-based study. SETTING Teaching hospital. PATIENT(S) Infertility patients donating unfertilized oocytes in excess of those required for treatment. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Water and cryoprotectant permeability were determined from measurements of oocyte volume excursions on exposure to 1.5 M propane-1,2-diol at 30 degrees C, 24 degrees C, and 10 degrees C. RESULT(S) Permeability of human oocytes to water and cryoprotectant increased as temperature increased. The predicted response of oocytes, based on these data, closely matched the measured response of an oocyte on exposure to a widely used method for addition of cryoprotectant before freezing. CONCLUSION(S) Commonly used cryopreservation protocols involving slow cooling in the presence of propane-1,2-diol cause potentially damaging excursions in cell volume on exposure to cryoprotectant. Modifications that can be expected to reduce cell volume excursions, based on oocyte permeability data, are suggested.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynecology, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | |
Collapse
|
34
|
Paynter SJ, McGrath JJ, Fuller BJ, Shaw RW. A method for differentiating nonunique estimates of membrane transport properties: mature mouse oocytes exposed to glycerol. Cryobiology 1999; 39:205-14. [PMID: 10600254 DOI: 10.1006/cryo.1999.2202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measurement of the osmotic response of a cell in the presence of cryoprotectant facilitates the determination of permeability coefficients which, in turn, can be used to design cryopreservation protocols which minimize osmotic stress. One problem encountered in determining permeability coefficients, using the Kedem-Katchalsky (K-K) model of membrane permeability, is that several combinations of the three passive coupled transport coefficients, namely, hydraulic permeability (L(p), microm min(-1) atm(-1)), solute permeability (P(gly), microm s(-1)), and the reflection coefficient (sigma), can give a similar fit to the measured data. A method for determining the "correct" set of coefficients is suggested. The osmotic response of 10 metaphase II mouse oocytes was measured on perfusion with 1.5 mol L(-1) glycerol at 24 degrees C. For 8 of 10 oocytes perfused, two combinations of L(p), P(gly), and sigma gave a predicted response which closely matched the measured osmotic response, depending upon the initial estimates supplied to the software for these parameters. For the remaining two oocytes, similar values for the permeability coefficients were generated regardless of the initial estimates. To determine the correct set of parameters, the K-K equations were used to predict experimental conditions for which volumetric histories would be distinctly different for the two sets of "best-fit parameters," and then additional experimental data were compared to these predictions. Thus a further three oocytes were perfused with 0.2 or 0.5 mol L(-1) glycerol in the absence of nonpermeating solute. In the presence of both 0.2 and 0.5 mol L(-1) glycerol, L(p) = 2.11 +/- 0.69, P(gly) = 0.0016 +/- 0.0015, and sigma = 0.44 +/- 0.11 yielded a very poor fit to the measured response while L(p) = 0.98 +/- 0.70, P(gly) = 0. 0031 +/- 0.0021, and sigma = 0.91 +/- 0.15 yielded a close fit to the measured response. Thus the latter combination of coefficients was taken to be correct.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynaecology, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom
| | | | | | | |
Collapse
|
35
|
Paynter SJ, Fuller BJ, Shaw RW. Temperature dependence of Kedem-Katchalsky membrane transport coefficients for mature mouse oocytes in the presence of ethylene glycol. Cryobiology 1999; 39:169-76. [PMID: 10529310 DOI: 10.1006/cryo.1999.2199] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene glycol (EG) is the emerging cryoprotectant of choice for preservation of mammalian embryos but has not been widely used for oocyte preservation. Techniques for oocyte cryopreservation need to be improved before they can be incorporated into routine clinical practice. Hence the permeability characteristics of oocytes in the presence of EG have been determined in order to facilitate the design of cryopreservation protocols using this cryoprotectant. Individual mouse oocytes were held using negative pressure applied to the zona pellucida by means of a micropipet. Each oocyte was perfused with 1 ml 1.5 mol L(-1) EG at 30, 19, or 10 degrees C, a total of 10 oocytes being perfused at each temperature. The osmotic response of each oocyte before, during and after perfusion was recorded on videotape. Measurements of mean cell diameter across three axes were used to calculate oocyte volume, assuming them to be spherical, and, using mathematical modeling, values for hydraulic conductivity (L(p)) were found to be 0.91 +/- 0.05, 0.51 +/- 0.02, and 0.18 +/- 0.01 microm min(-1) atm(-1); cryoprotectant permeability (P(EG)) was 0.24 +/- 0.01, 0.09 +/- 0.005, and 0.03 +/- 0.004 microm s(-1); and reflection coefficient (sigma) was 0.98 +/- 0.005, 0.96 +/- 0.01, and 0.97 +/- 0.01 at 30, 19, and 10 degrees C, respectively. The activation energy (E(a)) of L(p) was 14. 0 kCal mol(-1) and of P(EG) was 16.4 kCal mol(-1).
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynaecology, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | | | | |
Collapse
|
36
|
Paynter SJ, Cooper A, Gregory L, Fuller BJ, Shaw RW. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum Reprod 1999; 14:2338-42. [PMID: 10469706 DOI: 10.1093/humrep/14.9.2338] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Equilibration of oocytes with cryoprotectants is a prerequisite of low temperature storage. However, cryoprotectant exposure may induce damage via osmotic stress. Knowledge of cell membrane permeability characteristics and their temperature dependence would facilitate the design of cryopreservation protocols in which osmotic stress is minimized and the incidence of intracellular freezing is reduced. To obtain such data, the volume change of donated human oocytes following exposure to cryoprotectant was measured at a variety of temperatures. After removal of cumulus cells, each oocyte was placed in a 5 microl droplet of phosphate-buffered medium. The oocyte was held in position by suction generated using a fine pipette and perfused with 1 ml 1.5 mol/l dimethylsulphoxide (DMSO) at 30, 24 or 10 degrees C. The volume of the oocyte before, during and after perfusion was recorded by videomicroscopy. Oocyte volume was calculated from radius measurements and the Kedem-Katchalsky (K-K) passive coupled transport coefficients, namely L(p) (hydraulic permeability), P(DMSO) (permeability to DMSO) and sigma (reflection coefficient) were derived. The resulting coefficients were L(p) = 1. 65 +/- 0.15, 0.70 +/- 0.06 and 0.28 +/- 0.04 microm/min.atm; P(DMSO) = 0.79 +/- 0.10, 0.25 +/- 0.04 and 0.06 +/- 0.01 microm/s and sigma = 0.97 +/- 0.01, 0.94 +/- 0.03 and 0.96 +/- 0.01 at 30, 24 and 10 degrees C respectively. The activation energy for L(p) was 14.70 and for P(DMSO) was 20.82 kcal/mol. The permeability parameters of human oocytes are higher than those of murine oocytes, suggesting that they require a shorter period of exposure to DMSO with concomitantly reduced toxic effects.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics & Gynaecology, University of Wales College of Medicine, Cardiff CF14 4XN, UK
| | | | | | | | | |
Collapse
|
37
|
Saunders KM, Parks JE. Effects of cryopreservation procedures on the cytology and fertilization rate of in vitro-matured bovine oocytes. Biol Reprod 1999; 61:178-87. [PMID: 10377047 DOI: 10.1095/biolreprod61.1.178] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The survival and developmental capacity of bovine oocytes after cryopreservation are greatly impaired, possibly due to organelle damage caused by freezing procedures. Distributions of chromosomes, microtubules, and microfilaments in bovine oocytes matured in vitro were examined after cooling, ethylene glycol (EG) exposure, or freezing. Oocytes were incubated after treatment for 20 min or 1 or 3 h, fixed, and evaluated using specific fluorescent probes. Abnormal cytological features increased over control levels after cooling or EG exposure and rewarming. Changes observed in oocytes during prefreezing manipulations included chromosome dispersal and clumping, microtubule depolymerization and alteration of spindle structure, and formation of craters and discontinuity in cytoskeletal actin staining. Freezing also led to an increase in the occurrence of cytological abnormalities. Less than 31% of frozen-thawed oocytes contained a normal chromosome arrangement 3 h postthaw (versus 90% of controls). Only 7-14% of frozen-thawed oocytes had normal spindles (versus 59-71% of controls). Normal distribution of filamentous actin was observed in less than 30% of oocytes postthaw (versus 62-89% of controls). These results indicate that the steps in a conventional freezing procedure cause irreversible alterations in multiple cytological components of bovine oocytes, demonstrating the need for improved strategies for preventing cellular damage during cryopreservation procedures.
Collapse
Affiliation(s)
- K M Saunders
- Department of Animal Science, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
38
|
Hagedorn M, Kleinhans FW, Artemov D, Pilatus U. Characterization of a major permeability barrier in the zebrafish embryo. Biol Reprod 1998; 59:1240-50. [PMID: 9780333 DOI: 10.1095/biolreprod59.5.1240] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Fish embryos represent a class of multicompartmental biological systems that have not been successfully cryopreserved, primarily because of the lack of understanding of how water and cryoprotectants permeate the compartments. We are using the zebrafish embryo as a model to understand these kinetics. Zebrafish embryos have two major compartments, the blastoderm and the yolk, which is surrounded by the multinucleated yolk syncytial layer (YSL). We determined the water and cryoprotectant permeability in these compartments using two methods. First, we measured shrink/swell dynamics in optical volumetric experiments. Zebrafish embryos shrank over time and did not re-expand while immersed in dimethyl sulfoxide (DMSO) or propylene glycol. Second, we measured DMSO uptake with diffusion-weighted nuclear magnetic resonance spectroscopy. DMSO uptake was rapid during the first few minutes, then gradual thereafter. We used one- and two-compartment models to analyze the data and to determine the permeability parameters. We found that the two-compartment model provided a better fit to the data. On the basis of this model and in the presence of DMSO, the yolk and blastoderm had very similar water permeabilities (i.e., 0.01 and 0. 005 micron x min-1atm-1, respectively), but they had different DMSO permeabilities separated by three orders of magnitude (i.e., </= 5 x 10(-6) and 1.5 x 10(-3) cm/min, respectively). The low solute permeability of the yolk predicted that the yolk/YSL compartment should be more susceptible to cryodamage. To test this, the yolk, blastoderm, and YSL were examined at the ultrastructural level after vitrification. Only the YSL incurred significant damage after freezing and thawing (p </= 0.05).
Collapse
Affiliation(s)
- M Hagedorn
- Reproductive Physiology Program, National Zoological Park, Smithsonian Institution, Washington, District of Columbia 20008, USA.
| | | | | | | |
Collapse
|
39
|
O'Neil L, Paynter SJ, Fuller BJ. Vitrification of mature mouse oocytes: improved results following addition of polyethylene glycol to a dimethyl sulfoxide solution. Cryobiology 1997; 34:295-301. [PMID: 9160998 DOI: 10.1006/cryo.1997.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oocytes have been successfully cryopreserved using rapid and slow freezing procedures; however, variability in the success of replicates has limited its practical application. We have evaluated the potentially beneficial effects of adding 1 mg/ml of the polymer polyethylene glycol (PEG) (M(r) 8000) to a 6 M dimethyl sulfoxide (Me2SO) vitrification solution. Stepwise addition of cryoprotectant, either with or without PEG, was performed at room temperature (19-21 degrees C). Oocytes were then loaded in plastic insemination straws and held in liquid nitrogen vapour at -140 degrees C for 3 min prior to storage in liquid nitrogen. Oocytes were warmed rapidly to room temperature and removal of cryoprotective agent was effected in the presence of 1 M sucrose solution. Viability was assessed by vitro fertilization. Oocytes cryopreserved after exposure to 6 M Me2SO in the absence of PEG showed 60% normality, 80% fertilization, and 55% development to blastocyst, median of 11 replicate experiments (191 oocytes). Individual replicates yield highly variable survival which ranged from 0 to 100%. The addition of PEG significantly improved oocyte normality to 95% (range 76-100%; median of 9 replicate experiments, 301 oocytes). Rates of fertilization (91%; 60-100%) and development of blastocyst (73%; 67-92) were also improved. The addition of 1 mg/ml PEG to a 6 M Me2SO solution resulted in greatly improved viability of oocytes following cryopreservation and vastly reduced the variability seen with Me2SO solution alone.
Collapse
Affiliation(s)
- L O'Neil
- Department of Obstetrics and Gynaecology, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | | | | |
Collapse
|