1
|
Camlin NJ, Venkatachalam I, Evans JP. Oscillations in PP1 activity are essential for accurate progression through mammalian oocyte meiosis. Cell Cycle 2023; 22:1614-1636. [PMID: 37340734 PMCID: PMC10361142 DOI: 10.1080/15384101.2023.2225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-phase transitions. Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in PP1 activity driving mitotic M-phase. Evidence from a variety of experimental systems also points to roles in meiosis. Here, we report that PP1 is important for M-phase transitions through mouse oocyte meiosis. We employed a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis. These studies show that temporal control of PP1 activity is essential for the G2/M transition, metaphase I/anaphase I transition, and the formation of a normal metaphase II oocyte. Our data also reveal that inappropriate activation of PP1 is more deleterious at the G2/M transition than at prometaphase I-to-metaphase I, and that an active pool of PP1 during prometaphase is vital for metaphase I/anaphase I transition and metaphase II chromosome alignment. Taken together, these results establish that loss of oscillations in PP1 activity causes a range of severe meiotic defects, pointing to essential roles for PP1 in female fertility, and more broadly, M-phase regulation.
Collapse
Affiliation(s)
- Nicole J. Camlin
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| | - Ilakkiya Venkatachalam
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
- Department of Human Genetics, University of Michigan, Ann Arbor, MIUnited States
| | - Janice P. Evans
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| |
Collapse
|
2
|
Özmen Ö, Karaman K. Transcriptome analysis and potential mechanisms of bovine oocytes under seasonal heat stress. Anim Biotechnol 2021:1-17. [PMID: 34928777 DOI: 10.1080/10495398.2021.2016429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress is the major factor affecting cattle fertility but molecular mechanisms of deleterious impacts of elevated temperature on oocyte are still not well known. Therefore, the aim of this study is to gain a better understanding of the underlying molecular mechanism of how heat stress affects GV-stage and MII-stage oocytes and discover hub genes to heat resistance for cow oocytes. In this study, we used the bioinformatics approach to discover the differentially expressed genes between GV-stage and MII-stage oocytes, which were collected during spring and summer. When GV-stage oocytes were compared to MII-stage oocytes collected in July (Jul DEGs group) a total of 1068 genes were found as differentially expressed as a result of heat stress. Also, HSPA8, COPS5, POLR2L, PSMC6, and TPI1 were identified as the common top ranked genes for the Jul DEGs group. The highest connected hub gene for the Jul DEGs group was determined as HSPA8. Our results showed that different heat response mechanisms might be activated to protect oocytes from elevated temperatures in cattle. The identified genes and their associated pathways might play an important role in the response to heat stress that affects the oocytes in cattle.
Collapse
Affiliation(s)
- Özge Özmen
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Turkey
| | - Kardelen Karaman
- Faculty of Veterinary Medicine, Department of Animal Breeding, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
3
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
5
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
6
|
Zhao X, Yu D, Feng C, Deng X, Wu D, Jin M, Wang E, Wang X, Yu B. Role of Greatwall kinase in release of mouse oocytes from diplotene arrest. Dev Growth Differ 2014; 56:669-78. [PMID: 25472593 DOI: 10.1111/dgd.12183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 11/27/2022]
Abstract
In eukaryotes, mitosis entry is induced by activation of maturation-promoting factor (MPF), which is regulated by a network of kinases and phosphatases. It has been suggested that Greatwall (GWL) kinase was crucial for the M-phase entry and could maintain cyclin B-Cdc2 activity through regulation of protein phosphatase 2A (PP2A), a counteracting phosphatase of MPF. Here, the role of GWL was assessed during release of mouse oocytes from prophase I arrest. GWL was crucial for meiotic maturation in mouse oocytes. As a positive regulator for meiosis resumption, GWL was continually expressed in germinal vesicle (GV) and MII stage oocytes and two-cell stage embryos. Additionally, GWL localized to the nucleus and dispersed into cytoplasm during GV breakdown (GVBD). Furthermore, downregulation of GWL or overexpression of catalytically-inactive GWL inhibited partial meiotic maturation. This prophase I arrest induced by GWL depletion could be rescued by the PP2A inhibition. However, both GWL-depleted and rescued oocytes had severe spindle defects that hardly reached MII. In contrast, oocytes overexpressing wild-type GWL resumed meiosis and progressed to MII stage. Thus, our data demonstrate that GWL acts in a pathway with PP2A which is essential for prophase I exit and metaphase I microtubule assembly in mouse oocytes.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gonzalez-Garcia JR, Bradley J, Nomikos M, Paul L, Machaty Z, Lai FA, Swann K. The dynamics of MAPK inactivation at fertilization in mouse eggs. J Cell Sci 2014; 127:2749-60. [PMID: 24741069 PMCID: PMC4058113 DOI: 10.1242/jcs.145045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Egg activation at fertilization in mammals is initiated by prolonged Ca(2+) oscillations that trigger the completion of meiosis and formation of pronuclei. A fall in mitogen-activated protein kinase (MAPK) activity is essential for pronuclear formation, but the precise timing and mechanism of decline are unknown. Here, we have measured the dynamics of MAPK pathway inactivation during fertilization of mouse eggs using novel chemiluminescent MAPK activity reporters. This reveals that the MAPK activity decrease begins during the Ca(2+) oscillations, but MAPK does not completely inactivate until after pronuclear formation. The MAPKs present in eggs are Mos, MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) and MAPK3 and MAPK1 (ERK1 and ERK2, respectively). Notably, the MAPK activity decline at fertilization is not explained by upstream destruction of Mos, because a decrease in the signal from a Mos-luciferase reporter is not associated with egg activation. Furthermore, Mos overexpression does not affect the timing of MAPK inactivation or pronuclear formation. However, the late decrease in MAPK could be rapidly reversed by the protein phosphatase inhibitor, okadaic acid. These data suggest that the completion of meiosis in mouse zygotes is driven by an increased phosphatase activity and not by a decline in Mos levels or MEK activity.
Collapse
Affiliation(s)
- Jose Raul Gonzalez-Garcia
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Josephine Bradley
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Michail Nomikos
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Laboni Paul
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
8
|
Adhikari D, Liu K. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 2014; 382:480-487. [PMID: 23916417 DOI: 10.1016/j.mce.2013.07.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Mammalian oocytes arrest at prophase of meiosis I at around birth and they remain arrested at this stage until puberty when the preovulatory surge of luteinizing hormone (LH) causes ovulation. Prophase I arrest in the immature oocyte results from the maintenance of low activity of maturation promoting factor (MPF), which consists of a catalytic subunit (CDK1) and regulatory subunit (cyclin B1). Phosphorylation-mediated inactivation of CDK1 and constant degradation of cyclin B1 keep MPF activity low during prophase I arrest. LH-mediated signaling manipulates a vast array of molecules to activate CDK1. Active CDK1 not only phosphorylates different meiotic phosphoproteins during the resumption of meiosis but also inhibits their rapid dephosphorylation by inhibiting the activities of CDK1 antagonizing protein phosphatases (PPs). In this way, CDK1 both phosphorylates its substrates and protects them from being dephosphorylated. Accumulating evidence suggests that the net MPF activity that drives the resumption of meiosis in oocytes depends on the activation status of CDK1 antagonizing PPs. This review aims to provide a summary of the current understanding of the signaling pathways involved in regulating MPF activity during prophase I arrest and reentry into meiosis of mammalian oocytes.
Collapse
Affiliation(s)
- Deepak Adhikari
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
9
|
Demirtas E, Holzer H, Son WY, Elizur S, Levin D, Chian RC, Tan SL. Willin vitromaturation ever be used in all IVF patients? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.5.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Li YH, Kang H, Xu YN, Heo YT, Cui XS, Kim NH, Oh JS. Greatwall Kinase Is Required for Meiotic Maturation in Porcine Oocytes1. Biol Reprod 2013; 89:53. [DOI: 10.1095/biolreprod.113.109850] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Swain JE, Ding J, Brautigan DL, Villa-Moruzzi E, Smith GD. Proper Chromatin Condensation and Maintenance of Histone H3 Phosphorylation During Mouse Oocyte Meiosis Requires Protein Phosphatase Activity1. Biol Reprod 2007; 76:628-38. [PMID: 17182892 DOI: 10.1095/biolreprod.106.055798] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have shown okadaic acid (OA) and calyculin-A (CLA) inhibition of mouse oocyte phosphoprotein phosphatase 1 (PPP1C) and/or phosphoprotein phosphatase 2A (PPP2CA) results in aberrant chromatin condensation, as evidenced by the inability to resolve bivalents. Phosphorylation of histone H3 at specific residues is thought to regulate chromatin condensation. Therefore, we examined changes in histone H3 phosphorylation during oocyte meiosis and the potential regulation by protein PPPs. Western blot and immunocytochemical analysis revealed histone H3 phosphorylation changed during mouse oocyte meiosis, with changes in chromatin condensation. Germinal vesicle-intact (GV-intact; 0 h) oocytes had no phospho-Ser10 but did have phospho-Ser28 histone H3. Oocytes that had undergone germinal vesicle breakdown (GVBD; 2 h) and progressed to metaphase I (MI; 7 h) and MII (16 h) had phosphorylated Ser10 and Ser28 histone H3 associated with condensed chromatin. To determine whether OA-induced aberrations in chromatin condensation were due to alterations in levels of histone H3 phosphorylation, we assessed phosphorylation of Ser10 and Ser28 residues following PPP inhibition. Oocytes treated with OA (1 microM) displayed increased phosphorylation of histone H3 at both Ser10 and Ser28 compared with controls. To begin to elucidate which OA-sensitive PPP is responsible for regulating chromatin condensation and histone H3 phosphorylation, we examined spatial and temporal localization of OA-sensitive PPPs, PPP1C, and PPP2CA. PPPC2A did not localize to condensed chromatin, whereas PPP1beta (PPP1CB) associated with condensing chromatin in GVBD, MI, and MII oocytes. Additionally, Western blot and immunocytochemistry confirmed presence of the PPP1C regulatory inhibitor subunit 2 (PPP1R2) in oocytes at condensed chromatin during meiosis and indicated a change in PPP1R2 phosphorylation. Inhibition of oocyte glycogen synthase kinase 3 (GSK3) appeared to regulate phosphorylation of PPP1R2. Furthermore, inhibition of GSK3 resulted in aberrant oocyte bivalent formation similar to that observed following PPP inhibition. These data suggest that PPP1CB is the OA/CLA-sensitive PPP that regulates oocyte chromatin condensation through regulation of histone H3 phosphorylation. Furthermore, GSK3 inhibition results in aberrant chromatin condensation and appears to regulate phosphorylation of PPP1R2.
Collapse
Affiliation(s)
- Jason E Swain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0617, USA
| | | | | | | | | |
Collapse
|
13
|
Stricker SA, Smythe TL. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms I. The roles of serine/threonine kinases and phosphatases. Mol Reprod Dev 2006; 73:1578-90. [PMID: 16902952 DOI: 10.1002/mrd.20597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unlike in most animals, oocytes of marine nemertean worms initiate maturation (=germinal vesicle breakdown, GVBD) following an increase, rather than a decrease, in intraoocytic cAMP. To analyze how serine/threonine (Ser/Thr) kinase cascades involving mitogen-activated protein kinase (MAPK), maturation-promoting factor (MPF), cAMP-dependent protein kinase (PKA), and phosphatidylinositol 3-kinase (PI3K) regulate nemertean GVBD, oocytes of Cerebratulus sp. were treated with pharmacological modulators and stimulated with cAMP-elevating drugs or seawater (SW) alone. Both cAMP elevators and SW triggered GVBD while activating MAPK, its target p90Rsk, and MPF. Similarly, neither cAMP- nor SW-induced GVBD was affected by several Ser/Thr phosphatase inhibitors, and both stimuli apparently accelerated GVBD via a MAPK-independent, PI3K-dependent mechanism. However, inhibitors of Raf-1, a kinase that activates MAPK kinase, blocked GVBD and MAPK activation during SW-, but not cAMP-induced maturation. In addition, MPF blockers more effectively reduced GVBD and MAPK activity in SW versus in cAMP-elevating treatments. Moreover, the two maturation-inducing stimuli yielded disparate patterns of PKA-related MAPK activations and phosphorylations of putative PKA substrates. Collectively, such findings suggest that in maturing oocytes of Cerebratulus sp., Ser/Thr kinase cascades differ during cAMP- versus SW-induced GVBD in several ways, including MAPK activation modes, MPF-feedback loops, and PKA-related signaling pathways. Additional differences in cAMP- versus SW-induced oocyte maturation are also described in the accompanying study that deals with the roles of tyrosine kinase signaling during GVBD.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexcio, Albuquerque, 87131, USA.
| | | |
Collapse
|
14
|
Lapasset L, Pradet-Balade B, Lozano JC, Peaucellier G, Picard A. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes. Dev Biol 2005; 285:200-10. [PMID: 16081061 DOI: 10.1016/j.ydbio.2005.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/03/2005] [Accepted: 06/13/2005] [Indexed: 11/29/2022]
Abstract
In vertebrates, enhanced translation of mRNAs in oocytes and early embryos entering M-phase is thought to occur through polyadenylation, involving binding, hyperphosphorylation and proteolytic degradation of Aurora-activated CPEB. In starfish, an unknown component of the oocyte nucleus is required for cyclin B synthesis following the release of G2/prophase block by hormonal stimulation. We have found that CPEB cannot be hyperphosphorylated following hormonal stimulation in starfish oocytes from which the nucleus has been removed. Activation of Aurora kinase, known to interact with protein phosphatase 1 and its specific inhibitor Inh-2, is also prevented. The microinjection of Inh-2 restores Aurora activation, CPEB hyperphosphorylation and cyclin B translation in enucleated oocytes. Nevertheless, we provide evidence that CPEB is in fact hyperphosphorylated by cdc2, without apparent involvement of Aurora or MAP kinase, and that cyclin B synthesis can be stimulated without previous degradation of phosphorylated CPEB. Thus, the regulation of cyclin B synthesis necessary for progression through meiosis can be explained by an equilibrium between CPEB phosphorylation and dephosphorylation, and both aspects of this control may rely on the sole activation of Cdc2 and subsequent nuclear breakdown.
Collapse
Affiliation(s)
- Laure Lapasset
- Laboratoire Arago, UMR 7628, CNRS and Université Pierre et Marie Curie, BP 44, F 66651 Banyuls-sur-mer, France
| | | | | | | | | |
Collapse
|
15
|
LaRosa C, Downs SM. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism. Mol Reprod Dev 2005; 70:235-45. [PMID: 15570612 DOI: 10.1002/mrd.20200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, 530 N 15th Street, Milwaukee, WI 53233, USA
| | | |
Collapse
|
16
|
Wang X, Swain JE, Bollen M, Liu XT, Ohl DA, Smith GD. Endogenous regulators of protein phosphatase-1 during mouse oocyte development and meiosis. Reproduction 2004; 128:493-502. [PMID: 15509695 DOI: 10.1530/rep.1.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reversible phosphorylation, involving protein kinases and phosphatases (PP), is important in regulating oocyte meiosis. Okadaic acid (OA) inhibition of PP1 and/or PP2A stimulates oocyte germinal vesicle breakdown (GVB). In oocytes, PP1 is localized in the cytoplasm and nucleus, yet endogenous regulation of oocyte PP1 has not been investigated. The objectives of the study were to identify intra-oocyte mechanisms regulating PP1 during acquisition of OA-sensitive meiotic competence and meiotic resumption. Immunohistochemical studies revealed that GVB-incompetent oocytes contained equivalent cytoplasmic and nuclear PP1. Upon development of OA-sensitive meiotic competence, PP1 displayed differential intracellular localization with significantly greater nuclear staining with distinct nucleolar rimming compared with cytoplasmic staining. Germinal vesicle-intact oocytes contained neither nuclear inhibitor of PP1, nor PP1 cytoplasmic inhibitor-1 transcripts or proteins. Reverse transcription-PCR with PP1 cytoplasmic inhibitor-2 (I2) primers and oocyte RNA amplified a predicted 330-bp product with the identical sequence to mouse liver I2. Oocytes contained a heat-stable PP1 inhibitor with biochemical properties of I2. Phosphorylation of PP1 at Thr320 by cyclin dependent kinase-1 (CDK1) causes PP1 inactivation. Germinal vesicle-intact oocytes did not contain phospho-Thr320-PP1. Upon GVB, PP1 became phosphorylated at Thr320 and this phosphorylation did not occur if GVB was blocked with the CDK1 inhibitor, roscovitine (ROSC). Inhibition of oocyte GVB with ROSC was reversible and coincided with PP1 phosphorylation at Thr320. Increased oocyte staining of nuclear PP1 compared with cytoplasmic staining at a chronological stage when oocytes gain meiotic competence, and phosphorylation and inhibition of PP1 by CDK1 at or around GVB appear to be important mechanisms in regulating oocyte PP1 activity and meiosis. In addition, these studies provide further support for PP1 being the OA-sensitive PP important in the regulation of the acquisition of meiotic competence, nuclear events during meiotic arrest, and GVB.
Collapse
Affiliation(s)
- Xia Wang
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109-0617, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bui HT, Yamaoka E, Miyano T. Involvement of Histone H3 (Ser10) Phosphorylation in Chromosome Condensation Without Cdc2 Kinase and Mitogen-Activated Protein Kinase Activation in Pig Oocytes1. Biol Reprod 2004; 70:1843-51. [PMID: 14960481 DOI: 10.1095/biolreprod.103.026070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho Nada-ku, Kobe 657-8501, Japan
| | | | | |
Collapse
|
18
|
Mailhes JB, Hilliard C, Fuseler JW, London SN. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro. Chromosome Res 2004; 11:619-31. [PMID: 14516070 DOI: 10.1023/a:1024909119593] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent advances in understanding some of the molecular aspects of chromosome segregation during mitosis and meiosis provide a background for investigating potential mechanisms of aneuploidy in mammalian germ cells. Numerous protein kinases and phosphatases have important functions during mitosis and meiosis. Alterations in these enzyme activities may upset the normal temporal sequence of biochemical reactions and cellular organelle modifications required for orderly chromosome segregation. Protein phosphatases 1 (PP1) and 2A (PP2A) play integral roles in regulating oocyte maturation (OM) and the metaphase-anaphase transitions. Mouse oocytes were transiently exposed in vitro to different dosages (0, 0.01, 0.1, or 1.0 microg/ml) of the PP1 and PP2A phosphatase inhibitor okadaic acid (OA) during meiosis I and oocytes were cytogenetically analyzed. Significant (p < 0.05) OA dose-response increases in the frequencies of metaphase I (MI) arrested oocytes, MI oocytes with 80 chromatids instead of the normal 20 tetrads, and anaphase I telophase I (AI-TI) oocytes with two groups of an unequal number of chromatids were found. Analysis of MII oocytes revealed significant (p < 0.05) increases in the frequencies of premature sister chromatid separation, single-unpaired chromatids, and hyperploidy. Besides showing that OA is aneugenic, these data suggest that OA-induced protein phosphatase inhibition upsets the normal kinase-phosphatase equilibrium during mouse OM, resulting in precocious removal of cohesion proteins from chromosomes.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, PO Box 33932, Shreveport, Louisiana 71130, USA.
| | | | | | | |
Collapse
|
19
|
Payne C, Schatten G. Golgi dynamics during meiosis are distinct from mitosis and are coupled to endoplasmic reticulum dynamics until fertilization. Dev Biol 2003; 264:50-63. [PMID: 14623231 DOI: 10.1016/j.ydbio.2003.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.
Collapse
Affiliation(s)
- Christopher Payne
- Program in Molecular and Cellular Biosciences, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97201, USA
| | | |
Collapse
|
20
|
Tay J, Hodgman R, Sarkissian M, Richter JD. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev 2003; 17:1457-62. [PMID: 12815066 PMCID: PMC196075 DOI: 10.1101/gad.1071403] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CPEB is an mRNA-binding protein that stimulates polyadenylation-induced translation of maternal mRNA once it is phosphorylated on Ser 174 or Thr 171 (species-dependent). Disruption of the CPEB gene in mice causes an arrest of oogenesis at embryonic day 16.5 (E16.5), when most oocytes are in pachytene of prophase I. Here, we show that CPEB undergoes Thr 171 phosphorylation at E16.5, but dephosphorylation at the E18.5, when most oocytes are entering diplotene. Although phosphorylation is mediated by the kinase aurora, the dephosphorylation is due to the phosphatase PP1. The temporal control of CPEB phosphorylation suggests a mechanism in which CPE-containing mRNA translation is stimulated at pachytene and metaphase I.
Collapse
Affiliation(s)
- Joyce Tay
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
21
|
Swain JE, Wang X, Saunders TL, Dunn R, Smith GD. Specific inhibition of mouse oocyte nuclear protein phosphatase-1 stimulates germinal vesicle breakdown. Mol Reprod Dev 2003; 65:96-103. [PMID: 12658638 DOI: 10.1002/mrd.10258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Okadaic acid (OA)-induced germinal vesicle breakdown (GVBD) and localization of protein phosphatase-1 (PP1) in oocyte nuclei are suggestive of PP1's role in regulating oocyte GVBD. To explore this possibility, we microinjected protein phosphatase (PP) inhibitors OA, anti-PP1 antibody (anti-PP1), PP1 inhibitor I2, and anti-PP2A antibody (anti-PP2A) into nuclei of roscovitine (ROSC)-arrested mouse oocytes. Oocytes were also injected with recombinant PP1 in the absence of ROSC. Oocytes were assessed for GVBD and metaphase II (MII) development at 2 and 18 hr post-injection. Data were analyzed using Cochran-Mantel-Haenszel Statistics adjusted for time. Microinjection of OA significantly enhanced GVBD in comparison to controls at 2 and 18 hr (P < 0.01), yet had no effect on MII development. Similarly, microinjection of anti-PP1 resulted in significantly higher levels of GVBD compared to controls at 2 and 18 hr (P < 0.01). Interestingly, anti-PP1 microinjection also tended to enhance MII development at 18 hr in comparison to controls (P < 0.09). Microinjection of I2, anti-PP2A, and PP1 had no effect on GVBD or MII development. If reduction of PP1 activity was important for GVBD, one would anticipate an endogenous means of regulating PP1 activity at this developmental stage. In somatic cells, phosphorylation of PP1 at Thr320 causes PP1 inactivation. Germinal vesicle-intact oocytes did not contain phosphorylated PP1, as determined using a specific Thr320-Phospho-PP1 antibody, Western blot analysis, and confocal immunocytochemistry. At or around the time of GVBD, oocyte PP1 became phosphorylated at Thr320, which remained phosphorylated through MII development. These data indicate that inhibition of intra-nuclear PP1, through specific antibody neutralization, mimics OA-stimulated GVBD, providing the first direct evidence that nuclear PP1 is involved in regulation of oocyte nuclear membrane integrity. In addition, phosphorylation of PP1 occurs at/or around GVBD indicating that inactivation of PP1 is an important intracellular event in regulation of nuclear envelope dissolution at GVBD.
Collapse
Affiliation(s)
- Jason E Swain
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
22
|
Wang X, Liu XT, Dunn R, Ohl DA, Smith GD. Glycogen synthase kinase-3 regulates mouse oocyte homologue segregation. Mol Reprod Dev 2003; 64:96-105. [PMID: 12420304 DOI: 10.1002/mrd.10213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracellular regulation of oocyte meiosis is not completely understood. However, reversible phosphorylation, which involves serine/threonine protein kinases and phosphatases (PP), is an important mediator. Glycogen synthase kinase-3 (GSK-3) is a highly conserved serine/threonine protein kinase. Currently no reports exist on presence or function of GSK-3 in mammalian oocytes. The aim of this study was to determine GSK-3 presence/absence, transcript and protein expression, intracellular protein distribution, and to investigate the functional importance of GSK-3 in mouse oocyte meiosis. Germinal vesicle-intact (GVI) oocytes contained both GSK-3 transcript and protein. Although GSK-3 beta-isoform is the only transcript identifiable in GVI oocytes, both alpha- and beta-isoforms were recognized by Western blot analysis. In growing, meiotic-incompetent oocytes GSK-3 was present, diffusely located throughout the cytoplasm and absent in the nucleus, whereas in meiotic-competent oocytes this cytoplasmic GSK-3 displays a predominant peri-oolemma staining. Treatment of mouse GVI oocytes with lithium chloride (LiCl), which inhibits both inositol monophosphatase (IMPase) and GSK-3, had no significant influence on oocyte viability, morphology, or development to metaphase II (MII). However, LiCl caused abnormal spindle formation and significantly increased incidence of abnormal homologue segregation during the first meiotic division. L690,330, which is a specific IMPase inhibitor, had no significant effect on oocyte viability, morphology, MII development, or homologue segregation. This is the first report of GSK-3 in mammalian oocytes. LiCl inhibition of mouse oocyte GSK-3 modified organization of microtubules and/or function of meiotic spindles thus compromising segregation of condensed bivalent chromosomes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
23
|
Kawai Y, Yamaguchi T, Yoden T, Hanada M, Miyake M. Effect of protein phosphatase inhibitors on the development of mouse embryos: protein phosphorylation is involved in the E-cadherin distribution in mouse two-cell embryos. Biol Pharm Bull 2002; 25:179-83. [PMID: 11853161 DOI: 10.1248/bpb.25.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphorylation plays many important roles in cell functions and cell differentiation. To clarify the roles of protein phosphorylation in early embryonic development in mice, 2-cell embryos were cultured in the presence of various protein phosphatase inhibitors such as calyculin A, okadaic acid, cyclosporin A, tacrolimus (FK506) and benzyl-phosphonic acid. Calyculin A potently inhibited the 2-cell cleavage to the 4-cell stage. The concentration for 50% inhibition was 0.26 nM. At the same time, we found that calyculin A-treated 2-cell embryos showed a morula-like shape at a concentration of 2 nM in 24 h. It is well known that E-cadherin plays a key role in the compaction of late 8-cell stage embryos. In this report, we observed the distribution of E-cadherin protein using anti-E-cadherin antibody with a fluorescence microscope, and also evaluated the relative E-cadherin mRNA content at various stages of embryos by RT-PCR and ABI PRISM 7700 System (a real time PCR apparatus). The fluorescence intensity of E-cadherin increased along with the embryonic development. During the embryonic development from the 2-cell stage to the blastocyst stage, the relative E-cadherin mRNA content greatly increased in a time-dependent manner, while the mRNA did not increase with the addition of calyculin A at the 2-cell stage. Therefore, we observed the localization of the E-cadherin protein in calyculin A-treated embryos with a laser microscope. The distribution pattern of E-cadherin was altered by the addition of calyculin A from a scattered pattern throughout the embryos to a localized pattern at the cell-cell boundary region. These results strongly suggest that the distribution of E-cadherin protein is regulated by protein phosphorylation and/or dephosphorylation.
Collapse
Affiliation(s)
- Yuichi Kawai
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan.
| | | | | | | | | |
Collapse
|
24
|
Lu Q, Dunn RL, Angeles R, Smith GD. Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2A during mouse oocyte meiosis. Biol Reprod 2002; 66:29-37. [PMID: 11751260 DOI: 10.1095/biolreprod66.1.29] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) and protein phosphatase 2A (PP2A) regulate oocyte meiosis, yet little is known regarding their mechanisms of action. This study addressed the functional importance of active MAPK and PP2A in regulating oocyte meiosis. Experiments were conducted to identify MAPK activation, PP2A activity, intracellular enzyme trafficking, and ultrastructural associations during meiosis. Questions of requisite kinase and/or phosphatase activity and chromatin condensation, microtubule polymerization, and spindle formation were addressed. At the protein level, MAPK and PP2A were present in constant amounts throughout the first meiotic division. Both MAPK and PP2A were activated following germinal vesicle breakdown (GVBD) in conjunction with metaphase I development. Immunocytochemical studies confirmed the absence of active MAPK in germinal vesicle-intact (GVI) and GVBD oocytes. At metaphase I and during the metaphase I/metaphase II transition, activated MAPK colocalized with microtubules, poles, and plates of meiotic spindles. Protein phosphatase 2A was dispersed evenly throughout the GVI oocyte cytoplasm. Throughout the metaphase I/metaphase II transition, PP2A colocalized with microtubules of meiotic spindles. Both active MAPK and PP2A associated with in vitro-polymerized microtubules, suggesting that active MAPK and PP2A locally regulate spindle formation. Inhibition of MAPK activation resulted in compromised microtubule polymerization, no spindle formation, and loosely condensed chromosomes. Treatment with okadaic acid (OA) or calyculin-A (CL-A), which inhibits oocyte cytoplasmic PP2A, caused an absence of microtubule polymerization and spindles, even though MAPK activity was increased under these treatment conditions. Thus, active MAPK is required, but is not sufficient, for normal meiotic spindle formation and chromosome condensation. In addition, the oocyte OA/CL-A-sensitive PP, presumably PP2A, is essential for microtubule polymerization and meiotic spindle formation.
Collapse
Affiliation(s)
- Qing Lu
- Departments of Obstetrics and Gynecology, Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0617, USA
| | | | | | | |
Collapse
|
25
|
Smith GD, Liu XT, Phillippe M. Divergence in murine myometrium spontaneous and oxytocin-stimulated contractile responses to serine/threonine protein phosphatase-1 inhibition. Biol Reprod 2000; 63:781-8. [PMID: 10952921 DOI: 10.1095/biolreprod63.3.781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Reversible phosphorylation is essential in regulating uterine contractions. Identification, characterization, and functional understanding of myometrium protein phosphatase(s) are lacking. Okadaic acid (OA), which inhibits protein phosphatase-1 (PP1) and PP2A, has been shown to alter uterine contractions. Experiments were conducted to determine the 1) identity of the myometrial OA-sensitive PP, 2) influence of OA on spontaneous and oxytocin (OT)-stimulated myometrial contractions, and 3) expression of uterine PPs during sexual development. Western blot analysis indicated the presence of PP1(alpha) and PP2A in immature and mature mice. As determined by immunohistochemistry, gonadotropin-stimulated adult mouse uteri contain PP1(alpha) in longitudinal and circular myometrial layers and endometrial epithelium. Conversely, PP2A was localized to the endometrial stroma. Cumulative addition of OA (n = 9; 10, 100, 250, 500, 1000 nM) did not significantly alter spontaneous contractions of mouse uterine horns in comparison to vehicle-treated controls (n = 9). By the end of the test period OA- and vehicle-treated uteri displayed a comparable decline in uterine contractions to 79.2% and 63.7%, respectively, of basal contractile activity. Pretreatment of uterine tissue with OA (1 microM; n = 7) significantly reduced contractile response to increasing concentrations of OT (8, 16, 32, 64 nM) in comparison to vehicle pretreatment (dimethyl sulfoxide; n = 7). At the end of the OT-administration period, contractile activity was 160.4% and 67.3% of basal contractile activity for vehicle (no OA) and OA-pretreated groups, respectively. During the early prepubertal period PP1(alpha) was expressed in longitudinal myometrium and absent in circular myometrium; whereas, during the transition to sexual maturity PP1(alpha) was observed in both the longitudinal and circular myometrium. In summary, these studies have indicated 1) that PP1 is the primary myometrial OA-sensitive PP; 2) that inhibition of PP1 had no effect on spontaneous contractions, whereas it markedly inhibited OT-stimulated uterine contractions; and 3) that PP1 is differentially expressed in the circular and longitudinal myometrium in relation to sexual development.
Collapse
Affiliation(s)
- G D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|