1
|
Rostam N, Goloborodko A, Riemer S, Hertel A, Riedel D, Vorbrüggen G, Dosch R. The germ plasm is anchored at the cleavage furrows through interaction with tight junctions in the early zebrafish embryo. Development 2022; 149:275789. [DOI: 10.1242/dev.200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The zebrafish germline is specified during early embryogenesis by inherited maternal RNAs and proteins collectively called germ plasm. Only the cells containing germ plasm will become part of the germline, whereas the other cells will commit to somatic cell fates. Therefore, proper localization of germ plasm is key for germ cell specification and its removal is crucial for the development of the soma. The molecular mechanism underlying this process in vertebrates is largely unknown. Here, we show that germ plasm localization in zebrafish is similar to that in Xenopus but distinct from Drosophila. We identified non muscle myosin II (NMII) and tight junction (TJ) components, such as ZO2 and claudin-d (Cldn-d) as interaction candidates of Bucky ball (Buc), which is the germ plasm organizer in zebrafish. Remarkably, we also found that TJ protein ZO1 colocalizes with germ plasm, and electron microscopy of zebrafish embryos uncovered TJ-like structures at the cleavage furrows where the germ plasm is anchored. In addition, injection of the TJ receptor Cldn-d produced extra germ plasm aggregates, whereas expression of a dominant-negative version inhibited germ plasm aggregate formation. Our findings support for the first time a role for TJs in germ plasm localization.
Collapse
Affiliation(s)
- Nadia Rostam
- Institute of Human Genetics, University Medical Center 1 , 37073 Göttingen , Germany
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen 2 Department of Developmental Biology , , 37077 Göttingen , Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| | - Andres Hertel
- Max Planck Institute for Biophysical Chemistry 4 Department of Molecular Developmental Biology , , 37077 Göttingen , Germany
| | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry 5 Laboratory of Electron Microscopy , , 37077 Göttingen , Germany
| | - Gerd Vorbrüggen
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen 2 Department of Developmental Biology , , 37077 Göttingen , Germany
- Max Planck Institute for Biophysical Chemistry 4 Department of Molecular Developmental Biology , , 37077 Göttingen , Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center 1 , 37073 Göttingen , Germany
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| |
Collapse
|
2
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
3
|
Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol 2017; 6:rsob.150187. [PMID: 27488374 PMCID: PMC5008007 DOI: 10.1098/rsob.150187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
| | - Matthew Kofron
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Adnan Mir
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Abstract
The claudin family of tetraspan transmembrane proteins is essential for tight junction formation and regulation of paracellular transport between epithelial cells. Claudins also play a role in apical-basal cell polarity, cell adhesion and link the tight junction to the actin cytoskeleton to exert effects on cell shape. The function of claudins in paracellular transport has been extensively studied through loss-of-function and gain-of-function studies in cell lines and in animal models, however, their role in morphogenesis has been less appreciated. In this review, we will highlight the importance of claudins during morphogenesis by specifically focusing on their critical functions in generating epithelial tubes, lumens, and tubular networks during organ formation.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Indra R Gupta
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| | - Aimee K Ryan
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| |
Collapse
|
5
|
Kozlovskaja-Gumbrienė A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, Knaut H, McClain M, Piotrowski T. Proliferation-independent regulation of organ size by Fgf/Notch signaling. eLife 2017; 6. [PMID: 28085667 PMCID: PMC5235355 DOI: 10.7554/elife.21049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Organ morphogenesis depends on the precise orchestration of cell migration, cell shape changes and cell adhesion. We demonstrate that Notch signaling is an integral part of the Wnt and Fgf signaling feedback loop coordinating cell migration and the self-organization of rosette-shaped sensory organs in the zebrafish lateral line system. We show that Notch signaling acts downstream of Fgf signaling to not only inhibit hair cell differentiation but also to induce and maintain stable epithelial rosettes. Ectopic Notch expression causes a significant increase in organ size independently of proliferation and the Hippo pathway. Transplantation and RNASeq analyses revealed that Notch signaling induces apical junctional complex genes that regulate cell adhesion and apical constriction. Our analysis also demonstrates that in the absence of patterning cues normally provided by a Wnt/Fgf signaling system, rosettes still self-organize in the presence of Notch signaling. DOI:http://dx.doi.org/10.7554/eLife.21049.001
Collapse
Affiliation(s)
| | - Ren Yi
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Andy Aman
- Stowers Institute for Medical Research, Kansas City, United States
| | - Ryan Jiskra
- Stowers Institute for Medical Research, Kansas City, United States
| | - Danielle Nagelberg
- Developmental Genetics Program and Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, United States
| | - Holger Knaut
- Developmental Genetics Program and Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
6
|
Claudin-10 is required for relay of left-right patterning cues from Hensen's node to the lateral plate mesoderm. Dev Biol 2015; 401:236-48. [PMID: 25744724 DOI: 10.1016/j.ydbio.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/22/2023]
Abstract
Species-specific symmetry-breaking events at the left-right organizer (LRO) drive an evolutionarily-conserved cascade of gene expression in the lateral plate mesoderm that is required for the asymmetric positioning of organs within the body cavity. The mechanisms underlying the transfer of the left and right laterality information from the LRO to the lateral plate mesoderm are poorly understood. Here, we investigate the role of Claudin-10, a tight junction protein, in facilitating the transfer of left-right identity from the LRO to the lateral plate mesoderm. Claudin-10 is asymmetrically expressed on the right side of the chick LRO, Hensen's node. Gain- and loss-of-function studies demonstrated that right-sided expression of Claudin-10 is essential for normal rightward heart tube looping, the first morphological asymmetry during organogenesis. Manipulation of Claudin-10 expression did not perturb asymmetric gene expression at Hensen's node, but did disrupt asymmetric gene expression in the lateral plate mesoderm. Bilateral expression of Claudin-10 at Hensen's node prevented expression of Nodal, Lefty-2 and Pitx2c in the left lateral plate mesoderm, while morpholino knockdown of Claudin-10 inhibited expression of Snail1 in the right lateral plate mesoderm. We also determined that amino acids that are predicted to affect ion selectivity and protein interactions that bridge Claudin-10 to the actin cytoskeleton were essential for its left-right patterning function. Collectively, our data demonstrate a novel role for Claudin-10 during the transmission of laterality information from Hensen's node to both the left and right sides of the embryo and demonstrate that tight junctions have a critical role during the relay of left-right patterning cues from Hensen's node to the lateral plate mesoderm.
Collapse
|
7
|
Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV. Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 2014; 393:109-23. [PMID: 24972089 PMCID: PMC4481729 DOI: 10.1016/j.ydbio.2014.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Asymmetric development of the vertebrate embryo has fascinated embryologists for over a century. Much has been learned since the asymmetric Nodal signaling cascade in the left lateral plate mesoderm was detected, and began to be unraveled over the past decade or two. When and how symmetry is initially broken, however, has remained a matter of debate. Two essentially mutually exclusive models prevail. Cilia-driven leftward flow of extracellular fluids occurs in mammalian, fish and amphibian embryos. A great deal of experimental evidence indicates that this flow is indeed required for symmetry breaking. An alternative model has argued, however, that flow simply acts as an amplification step for early asymmetric cues generated by ion flux during the first cleavage divisions. In this review we critically evaluate the experimental basis of both models. Although a number of open questions persist, the available evidence is best compatible with flow-based symmetry breakage as the archetypical mode of symmetry breakage.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany.
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology (220), Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-0494, USA
| | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
8
|
Hsieh YW, Alqadah A, Chuang CF. Asymmetric neural development in the Caenorhabditis elegans olfactory system. Genesis 2014; 52:544-54. [PMID: 24478264 PMCID: PMC4065219 DOI: 10.1002/dvg.22744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
Asymmetries in the nervous system have been observed throughout the animal kingdom. Deviations of brain asymmetries are associated with a variety of neurodevelopmental disorders; however, there has been limited progress in determining how normal asymmetry is established in vertebrates. In the Caenorhabditis elegans chemosensory system, two pairs of morphologically symmetrical neurons exhibit molecular and functional asymmetries. This review focuses on the development of antisymmetry of the pair of amphid wing "C" (AWC) olfactory neurons, from transcriptional regulation of general cell identity, establishment of asymmetry through neural network formation and calcium signaling, to the maintenance of asymmetry throughout the life of the animal. Many of the factors that are involved in AWC development have homologs in vertebrates, which may potentially function in the development of vertebrate brain asymmetry.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
| | - Amel Alqadah
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, OH, USA
| | - Chiou-Fen Chuang
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
9
|
Collins MM, Ryan AK. Are there conserved roles for the extracellular matrix, cilia, and junctional complexes in left-right patterning? Genesis 2014; 52:488-502. [PMID: 24668924 DOI: 10.1002/dvg.22774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/19/2014] [Indexed: 01/11/2023]
Abstract
Many different types of molecules have essential roles in patterning the left-right axis and directing asymmetric morphogenesis. In particular, the relationship between signaling molecules and transcription factors has been explored extensively. Another group of proteins implicated in left-right patterning are components of the extracellular matrix, apical junctions, and cilia. These structural molecules have the potential to participate in the conversion of morphogenetic cues from the extracellular environment into morphogenetic patterning via their interactions with the actin cytoskeleton. Although it has been relatively easy to temporally position these proteins within the hierarchy of the left-right patterning pathway, it has been more difficult to define how they mechanistically fit into these pathways. Consequently, our understanding of how these factors impart patterning information to influence the establishment of the left-right axis remains limited. In this review, we will discuss those structural molecules that have been implicated in early phases of left-right axis development.
Collapse
Affiliation(s)
- Michelle M Collins
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
10
|
Vandenberg LN, Levin M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 2013; 379:1-15. [PMID: 23583583 PMCID: PMC3698617 DOI: 10.1016/j.ydbio.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
Understanding how and when the left-right (LR) axis is first established is a fundamental question in developmental biology. A popular model is that the LR axis is established relatively late in embryogenesis, due to the movement of motile cilia and the resultant directed fluid flow during late gastrulation/early neurulation. Yet, a large body of evidence suggests that biophysical, molecular, and bioelectrical asymmetries exist much earlier in development, some as early as the first cell cleavage after fertilization. Alternative models of LR asymmetry have been proposed that accommodate these data, postulating that asymmetry is established due to a chiral cytoskeleton and/or the asymmetric segregation of chromatids. There are some similarities, and many differences, in how these various models postulate the origin and timing of symmetry breaking and amplification, and these events' linkage to the well-conserved subsequent asymmetric transcriptional cascades. This review examines experimental data that lend strong support to an early origin of LR asymmetry, yet are also consistent with later roles for cilia in the amplification of LR pathways. In this way, we propose that the various models of asymmetry can be unified: early events are needed to initiate LR asymmetry, and later events could be utilized by some species to maintain LR-biases. We also present an alternative hypothesis, which proposes that individual embryos stochastically choose one of several possible pathways with which to establish their LR axis. These two hypotheses are both tractable in appropriate model species; testing them to resolve open questions in the field of LR patterning will reveal interesting new biology of wide relevance to developmental, cell, and evolutionary biology.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
11
|
The tight junction protein claudin-1 influences cranial neural crest cell emigration. Mech Dev 2012; 129:275-83. [PMID: 22771518 DOI: 10.1016/j.mod.2012.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022]
Abstract
The neural crest is a population of migratory cells that follows specific pathways during development, eventually differentiating to form parts of the face, heart, and peripheral nervous system, the latter of which includes contributions from placodal cells derived from the ectoderm. Stationary, premigratory neural crest cells acquire the capacity to migrate by undergoing an epithelial-to-mesenchymal transition that facilitates their emigration from the dorsal neural tube. This emigration involves, in part, the dismantling of cell-cell junctions, including apically localized tight junctions in the neuroepithelium. In this study, we have characterized the role of the transmembrane tight junction protein claudin-1 during neural crest and placode ontogeny. Our data indicate that claudin-1 is highly expressed in the developing neuroepithelium but is down-regulated in migratory neural crest cells, although expression persists in the ectoderm from which the placode cells arise. Depletion or overexpression of claudin-1 augments or reduces neural crest cell emigration, respectively, but does not impact the development of several cranial placodes. Taken together, our results reveal a novel function for a tight junction protein in the formation of migratory cranial neural crest cells in the developing vertebrate embryo.
Collapse
|
12
|
Vandenberg LN, Levin M. Polarity proteins are required for left-right axis orientation and twin-twin instruction. Genesis 2012; 50:219-34. [PMID: 22086838 PMCID: PMC3294047 DOI: 10.1002/dvg.20825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/31/2023]
Abstract
Two main classes of models address the earliest steps of left-right patterning: those postulating that asymmetry is initiated via cilia-driven fluid flow in a multicellular tissue at gastrulation, and those postulating that asymmetry is amplified from intrinsic chirality of individual cells at very early embryonic stages. A recent study revealed that cultured human cells have consistent left-right (LR) biases that are dependent on apical-basal polarity machinery. The ability of single cells to set up asymmetry suggests that cellular chirality could be converted to embryonic laterality by cilia-independent polarity mechanisms in cell fields. To examine the link between cellular polarity and LR patterning in a vertebrate model organism, we probed the roles of apical-basal and planar polarity proteins in the orientation of the LR axis in Xenopus. Molecular loss-of-function targeting these polarity pathways specifically randomizes organ situs independently of contribution to the ciliated organ. Alterations in cell polarity also disrupt tight junction integrity, localization of the LR signaling molecule serotonin, the normally left-sided expression of Xnr-1, and the LR instruction occurring between native and ectopic organizers. We propose that well-conserved polarity complexes are required for LR asymmetry and that cell polarity signals establish the flow of laterality information across the early blastoderm independently of later ciliary functions. genesis 50:219-234, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155
| |
Collapse
|
13
|
Westmoreland JJ, Drosos Y, Kelly J, Ye J, Means AL, Washington MK, Sosa-Pineda B. Dynamic distribution of claudin proteins in pancreatic epithelia undergoing morphogenesis or neoplastic transformation. Dev Dyn 2012; 241:583-94. [PMID: 22275141 PMCID: PMC3288608 DOI: 10.1002/dvdy.23740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The assembly of distinct proteins into tight junctions results in the formation of a continuous barrier that regulates the paracellular flux of water, ions, and small molecules across epithelia. The claudin protein family encompasses numerous major structural components of tight junctions. These proteins specify the permeability characteristics of tight junctions and consequently, some of the physiological properties of epithelia. Furthermore, defective claudin expression has been found to correlate with some diseases, tumor progression, and defective morphogenesis. Investigating the pattern of claudin expression during embryogenesis or in certain pathological conditions is necessary to begin disclosing the role of these proteins in health and disease. RESULTS This study analyzed the expression of several claudins during mouse pancreas organogenesis and in pancreatic intraepithelial neoplasias of mouse and human origin. CONCLUSIONS Our results underscored a distinctive, dynamic distribution of certain claudins in both the developing pancreas and the pancreatic epithelium undergoing neoplastic transformation.
Collapse
Affiliation(s)
| | - Yiannis Drosos
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jacqueline Kelly
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jianming Ye
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Anna L. Means
- Departments of Surgery and Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
14
|
Haddad N, Andalousi JE, Khairallah H, Yu M, Ryan AK, Gupta IR. The tight junction protein claudin-3 shows conserved expression in the nephric duct and ureteric bud and promotes tubulogenesis in vitro. Am J Physiol Renal Physiol 2011; 301:F1057-65. [DOI: 10.1152/ajprenal.00497.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The claudin family of proteins is required for the formation of tight junctions that are contact points between epithelial cells. Although little is known of the cellular events by which epithelial cells of the ureteric bud form tubules and branch, tubule formation is critical for kidney development. We hypothesize that if claudin-3 (Cldn3) is expressed within tight junctions of the ureteric bud, this will affect ureteric bud cell shape and tubule formation. Using transmission electron microscopy, we identified tight junctions within epithelial cells of the ureteric bud. Whole mount in situ hybridization and immunoassays were performed in the mouse and chick and demonstrated that Cldn3 transcript and protein were expressed in the nephric duct, the ureteric bud, and its derivatives at critical time points during tubule formation and branching. Mouse inner medullary collecting duct cells (mIMCD-3) form tubules when seeded in a type I collagen matrix and were found to coexpress CLDN3 and the tight junction marker zonula occludens-1 in the cell membrane. When these cells were stably transfected with Cldn3 fused to the enhanced green fluorescent protein reporter, multiple clones showed a significant increase in tubule formation compared with controls ( P < 0.05) due in part to an increase in cell proliferation ( P < 0.01). Cldn3 may therefore promote tubule formation and expansion of the ureteric bud epithelium.
Collapse
Affiliation(s)
| | - Jasmine El Andalousi
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | | | - Melissa Yu
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Aimee K. Ryan
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Indra R. Gupta
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| |
Collapse
|
15
|
Vandenberg LN, Pennarola BW, Levin M. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One 2011; 6:e23306. [PMID: 21826245 PMCID: PMC3149648 DOI: 10.1371/journal.pone.0023306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
Collapse
Affiliation(s)
- Laura N. Vandenberg
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Brian W. Pennarola
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Biology Department, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Yamagishi M, Ito Y, Ariizumi T, Komazaki S, Danno H, Michiue T, Asashima M. Claudin5 genes encoding tight junction proteins are required for Xenopus heart formation. Dev Growth Differ 2011; 52:665-75. [PMID: 20887567 DOI: 10.1111/j.1440-169x.2010.01204.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Claudin proteins are the major components of tight junctions connecting adjacent cells, where they regulate a variety of cellular activities. In the present paper we identified two Xenopus claudin5 genes (cldn5a and 5b), which are expressed early in the developing cardiac region. Precocious cldn5 expression was observed in explants of non-heart-forming mesoderm under inhibition of the canonical Wnt pathway. Cardiogenesis was severely perturbed by antisense oligonucleotides against cldn5 or by Cldn5 proteins lacking the cytoplasmic domain. Results of light- and electron-microscopic observations suggested that cldn5a and 5b are required for Xenopus heart tube formation through epithelialization of the precardiac mesoderm.
Collapse
Affiliation(s)
- Masahiro Yamagishi
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba-city, Ibaraki 305-3962, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Ozden O, Black BL, Ashwell CM, Tipsmark CK, Borski RJ, Grubb BJ. Developmental profile of claudin-3, -5, and -16 proteins in the epithelium of chick intestine. Anat Rec (Hoboken) 2010; 293:1175-83. [PMID: 20583258 DOI: 10.1002/ar.21163] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins in the claudin family are a main component of tight junctions and form a seal that modulates paracellular transport in intestinal epithelium. This research tests the hypothesis that claudins 3, 5, and 16 will appear in the epithelium of embryonic intestine during functional differentiation. Immunohistochemistry is utilized to explore the developmental patterns of claudin-3, -5, and -16 proteins in the epithelium of embryonic chick intestine from 9 days prior to hatching through the early post-hatch period. These claudin proteins either changed their cellular localization or first appeared around the time of hatching. After hatching, claudin-3 expression was prominent in basal-lateral regions of the epithelium along the entire villus, but was absent from crypts. Claudin-5 was expressed most strongly in the crypt and lower villus epithelium within junctional complexes, whereas immunostaining of claudin-16 was localized within goblet cells of the upper villus region. The relative mRNA levels of claudin-3, -5, and -16 showed similar patterns; transcript levels rose between 18 and 20 days of development, then dropped by 2 days post-hatch. Results of this work indicate that the claudin proteins assume their final locations within the epithelium around the time of hatching, suggesting that in addition to their known barrier and fence functions within tight junctions, these claudins may have additional roles in the differentiation and/or physiological function of chick intestine. The localization of claudin-16 to goblet cells and its distribution in the more mature cells of the upper villus region suggest an unexpected role in goblet cell maturation and mucus secretion.
Collapse
Affiliation(s)
- Ozkan Ozden
- Molecular Radiation Oncology, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
18
|
Aw S, Koster J, Pearson W, Nichols C, Shi NQ, Carneiro K, Levin M. The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos. Dev Biol 2010; 346:39-53. [PMID: 20643119 PMCID: PMC2937067 DOI: 10.1016/j.ydbio.2010.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/21/2010] [Accepted: 07/08/2010] [Indexed: 11/17/2022]
Abstract
Consistent left-right asymmetry requires specific ion currents. We characterize a novel laterality determinant in Xenopus laevis: the ATP-sensitive K(+)-channel (K(ATP)). Expression of specific dominant-negative mutants of the Xenopus Kir6.1 pore subunit of the K(ATP) channel induced randomization of asymmetric organ positioning. Spatio-temporally controlled loss-of-function experiments revealed that the K(ATP) channel functions asymmetrically in LR patterning during very early cleavage stages, and also symmetrically during the early blastula stages, a period when heretofore largely unknown events transmit LR patterning cues. Blocking K(ATP) channel activity randomizes the expression of the left-sided transcription of Nodal. Immunofluorescence analysis revealed that XKir6.1 is localized to basal membranes on the blastocoel roof and cell-cell junctions. A tight junction integrity assay showed that K(ATP) channels are required for proper tight junction function in early Xenopus embryos. We also present evidence that this function may be conserved to the chick, as inhibition of K(ATP) in the primitive streak of chick embryos randomizes the expression of the left-sided gene Sonic hedgehog. We propose a model by which K(ATP) channels control LR patterning via regulation of tight junctions.
Collapse
Affiliation(s)
- Sherry Aw
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph Koster
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wade Pearson
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nian-Qing Shi
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Katia Carneiro
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
19
|
New aspects of the molecular constituents of tissue barriers. J Neural Transm (Vienna) 2010; 118:7-21. [PMID: 20865434 DOI: 10.1007/s00702-010-0484-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/30/2010] [Indexed: 01/24/2023]
Abstract
Epithelial and endothelial tissue barriers are based on tight intercellular contacts (Tight Junctions, TJs) between neighbouring cells. TJs are multimeric complexes, located at the most apical border of the lateral membrane. So far, a plethora of proteins locating at tight intercellular contacts have been discovered, the role of which has just partly been unraveled. Yet, there is convincing evidence that many TJ proteins exert a dual role: They act as structural components at the junctional site and they are involved in signalling pathways leading to alterations of gene expression and cell behaviour (migration, proliferation). This review will shortly summarize the classical functions of TJs and TJ-related proteins and will introduce a new category, termed the "non-classical" functions of junctional proteins. A particular focus will be directed towards the nuclear targeting of junctional proteins and the downstream effects elicited by their intranuclear activities.
Collapse
|
20
|
Gupta IR, Ryan AK. Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 2010; 77:314-25. [PMID: 20447145 DOI: 10.1111/j.1399-0004.2010.01397.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Claudins are the structural and molecular building blocks of tight junctions. Individual cells express more than one claudin family member, which suggests that a combinatorial claudin code that imparts flexibility and dynamic regulation of tight junction function could exist. Although we have learned much from manipulating claudin expression and function in cell lines, loss-of-function and gain-of-function experiments in animal model systems are essential for understanding how claudin-based boundaries function in the context of a living embryo and/or tissue. These in vivo manipulations have pointed to roles for claudins in maintaining the epithelial integrity of cell layers, establishing micro-environments and contributing to the overall shape of an embryo or tissue. In addition, loss-of-function mutations in combination with the characterization of mutations in human disease have demonstrated the importance of claudins in regulating paracellular transport of solutes and water during normal physiological states. In this review, we will discuss specific examples of in vivo studies that illustrate the function of claudin family members during development and in disease.
Collapse
Affiliation(s)
- I R Gupta
- Department of Pediatrics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
21
|
Xclaudin 1 is required for the proper gastrulation in Xenopus laevis. Biochem Biophys Res Commun 2010; 397:75-81. [DOI: 10.1016/j.bbrc.2010.05.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
|
22
|
Siddiqui M, Sheikh H, Tran C, Bruce AEE. The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 2010; 239:715-22. [PMID: 20014098 DOI: 10.1002/dvdy.22172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zebrafish epiboly results in the thinning and spreading of the blastoderm to cover the yolk cell and close the blastopore. The extra-embryonic yolk syncytial layer (YSL) tows the blastoderm vegetally during epiboly by means of its tight junction attachments to the enveloping layer (EVL). Claudins are the major transmembrane protein components of tight junctions. Here, we focus on the function of Claudin E (Cldne), which is expressed specifically in the EVL. Morpholino knock-down of cldne produced a highly penetrant epiboly delay. Our analysis suggested that the EVL margin, which is attached to the YSL, was under reduced tension in morphant embryos. We propose that local variation in the strength of EVL-YSL attachment in morphant embryos resulted in slow and uneven advancement of the EVL and blastoderm. Our work is the first to demonstrate that Claudins are important for zebrafish epiboly.
Collapse
Affiliation(s)
- Manal Siddiqui
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Blum M, Beyer T, Weber T, Vick P, Andre P, Bitzer E, Schweickert A. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 2009; 238:1215-25. [DOI: 10.1002/dvdy.21855] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Miyamoto T, Momoi A, Kato K, Kondoh H, Tsukita S, Furuse M, Furutani-Seiki M. Generation of transgenic medaka expressing claudin7-EGFP for imaging of tight junctions in living medaka embryos. Cell Tissue Res 2009; 335:465-71. [PMID: 19037661 DOI: 10.1007/s00441-008-0726-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/20/2008] [Indexed: 11/27/2022]
Abstract
The tight junction (TJ) is a specialized cell-cell adhesion structure in epithelial and endothelial sheets unique to the chordates and functions as a barrier of fluidal diffusion across the cell sheets. In order to study the dynamics of TJ formation in vivo during embryogenesis, we have generated a transgenic medaka line that expresses claudin-7 protein fused to enhanced green fluorescent protein under the regulation of the red seabream beta-actin promoter in transparent medaka embryos. Claudins contain four transmembrane domains and have been identified as the key molecules that dictate the function of TJs. This transgenic medaka line will thus be useful for imaging of TJs in living embryos and hence in screening for mutations affecting cell-cell adhesion.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
26
|
Abstract
Left-right patterning is a fascinating problem of morphogenesis, linking evolutionary and cellular signaling mechanisms across many levels of organization. In the past 15 years, enormous progress has been made in elucidating the molecular details of this process in embryos of several model species. While many outside the field seem to believe that the fundamental aspects of this pathway are now solved, workers on asymmetry are faced with considerable uncertainties over the details of specific mechanisms, a lack of conceptual unity of mechanisms across phyla, and important questions that are not being pursued in any of the popular model systems. Here, we suggest that data from clinical syndromes, cryptic asymmetries, and bilateral gynandromorphs, while not figuring prominently in the mainstream work on LR asymmetry, point to crucial and fundamental gaps of knowledge about asymmetry. We identify 12 big questions that provide exciting opportunities for fundamental new advances in this field.
Collapse
Affiliation(s)
- Sherry Aw
- Biological and Biomedical Sciences Program Harvard Medical School, and Center for Regenerative and Developmental Biology Forsyth Institute
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, U.S.A., Tel. (617) 892-8403, Fax: (617) 892-8597,
| |
Collapse
|
27
|
Eckert JJ, Fleming TP. Tight junction biogenesis during early development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:717-28. [PMID: 18339299 DOI: 10.1016/j.bbamem.2007.09.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/12/2023]
Abstract
The tight junction (TJ) is an essential component of the differentiated epithelial cell required for polarised transport and intercellular integrity and signalling. Whilst much can be learnt about how the TJ is constructed and maintained and how it functions using a wide range of cellular systems, the mechanisms of TJ biogenesis within developmental models must be studied to gain insight into this process as an integral part of epithelial differentiation. Here, we review TJ biogenesis in the early mammalian embryo, mainly considering the mouse but also including the human and other species, and, briefly, within the amphibian embryo. We relate TJ biogenesis to inherent mechanisms of cell differentiation and biosynthesis occurring during cleavage of the egg and the formation of the first epithelium. We also evaluate a wide range of exogenous cues, including cell-cell interactions, protein kinase C signalling, gap junctional communication, Na+/K+-ATPase and cellular energy status, that may contribute to TJ biogenesis in the embryo and how these may shape the pattern of early morphogenesis.
Collapse
Affiliation(s)
- Judith J Eckert
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | |
Collapse
|
28
|
Bauer Huang SL, Saheki Y, VanHoven MK, Torayama I, Ishihara T, Katsura I, van der Linden A, Sengupta P, Bargmann CI. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Dev 2007; 2:24. [PMID: 17986337 PMCID: PMC2213652 DOI: 10.1186/1749-8104-2-24] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The left and right AWC olfactory neurons in Caenorhabditis elegans differ in their functions and in their expression of chemosensory receptor genes; in each animal, one AWC randomly takes on one identity, designated AWCOFF, and the contralateral AWC becomes AWCON. Signaling between AWC neurons induces left-right asymmetry through a gap junction network and a claudin-related protein, which inhibit a calcium-regulated MAP kinase pathway in the neuron that becomes AWCON. RESULTS We show here that the asymmetry gene olrn-1 acts downstream of the gap junction and claudin genes to inhibit the calcium-MAP kinase pathway in AWCON. OLRN-1, a protein with potential membrane-association domains, is related to the Drosophila Raw protein, a negative regulator of JNK mitogen-activated protein (MAP) kinase signaling. olrn-1 opposes the action of two voltage-activated calcium channel homologs, unc-2 (CaV2) and egl-19 (CaV1), which act together to stimulate the calcium/calmodulin-dependent kinase CaMKII and the MAP kinase pathway. Calcium channel activity is essential in AWCOFF, and the two AWC neurons coordinate left-right asymmetry using signals from the calcium channels and signals from olrn-1. CONCLUSION olrn-1 and voltage-activated calcium channels are mediators and targets of AWC signaling that act at the transition between a multicellular signaling network and cell-autonomous execution of the decision. We suggest that the asymmetry decision in AWC results from the intercellular coupling of voltage-regulated channels, whose cross-regulation generates distinct calcium signals in the left and right AWC neurons. The interpretation of these signals by the kinase cascade initiates the sustained difference between the two cells.
Collapse
Affiliation(s)
- Sarah L Bauer Huang
- Howard Hughes Medical Institute and Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Qi B, Fujita-Yoshigaki J, Michikawa H, Satoh K, Katsumata O, Sugiya H. Differences in claudin synthesis in primary cultures of acinar cells from rat salivary gland are correlated with the specific three-dimensional organization of the cells. Cell Tissue Res 2007; 329:59-70. [PMID: 17347813 DOI: 10.1007/s00441-007-0389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/31/2007] [Indexed: 01/10/2023]
Abstract
Tight junctions are essential for the maintenance of epithelial cell polarity. We have previously established a system for the primary culture of salivary parotid acinar cells that retain their ability to generate new secretory granules and to secrete proteins in a signal-dependent manner. Because cell polarity and cell-cell adhesion are prerequisites for the formation of epithelial tissues, we have investigated the structure of the tight junctions in these cultures. We have found two types of cellular organization in the culture: monolayers and semi-spherical clusters. Electron microscopy has revealed tight junctions near the apical region of the lateral membranes between cells in the monolayers and cells at the surface of the clusters. The cells in the interior of the clusters also have tight junctions and are organized around a central lumen. These interior cells retain more secretory granules than the surface or monolayer cells, suggesting that they maintain their original character as acinar cells. The synthesis of claudin-4 increases during culture, although it is not detectable in the cells immediately after isolation from the glands. Immunofluorescence microscopy has shown that claudin-4 is synthesized in the monolayers and at the surface of the clusters, but not inside the clusters. Only claudin-3, which is present in the original acinar cells following isolation and in the intact gland, has been detected inside the clusters. These results suggest that differences in claudin expression are related to the three-dimensional structures of the cell cultures and reflect their ability to function as acinar cells.
Collapse
Affiliation(s)
- Bing Qi
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Sakaecho-nishi 2-870-1, Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Claudins belong to a family of transmembrane proteins that were identified as components of tight junction strands. We carried out comparative in situ hybridization analysis of 11 claudin genes (claudin1 - claudin11) during murine odontogenesis from the formation of the epithelial thickening to the cytodifferentiation stage. We identify dynamic spatiotemporal expression of 9 of the 11 claudins. At the early bell stage, two claudins (claudin1 and 4) are specifically expressed in stratum intemedium, whereas only one claudin is expressed in each of the preameloblasts (claudin2) and preodontoblasts (claudin10). At the bud stage, when the first epithelial differentiation pathways are being established, localized expression of six claudins (claudin1, 3, 4, 6, 7, and 10) identify spatial specific interactions, suggesting a hitherto unobserved complexity of epithelial organization, within the early tooth primordium.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College, Guy's Hospital, London Bridge, London, UK
| | | |
Collapse
|
32
|
Park EC, Hayata T, Cho KWY, Han JK. Xenopus cDNA microarray identification of genes with endodermal organ expression. Dev Dyn 2007; 236:1633-49. [PMID: 17474120 DOI: 10.1002/dvdy.21167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The endoderm is classically defined as the innermost layer of three Metazoan germ layers. During organogenesis, the endoderm gives rise to the digestive and respiratory tracts as well as associated organs such as the liver, pancreas, and lung. At present, however, how the endoderm forms the variety of cell types of digestive and respiratory tracts as well as the budding organs is not well understood. In order to investigate the molecular basis and mechanism of organogenesis and to identify the endodermal organ-related marker genes, we carried out microarray analysis using Xenopus cDNA chips. To achieve this goal, we isolated the Xenopus gut endoderm from three different stages of Xenopus organogenesis, and separated each stage of gut endoderm into anterior and posterior regions. Competitive hybridization of cDNA between the anterior and posterior endoderm regions, to screen genes that specifically expressed in the major organs, revealed 915 candidates. We then selected 104 clones for in situ hybridization analysis. Here, we report the identification and expression patterns of the 104 Xenopus endodermal genes, which would serve as useful markers for studying endodermal organ development.
Collapse
Affiliation(s)
- Edmond Changkyun Park
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Levin M. Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. ACTA ACUST UNITED AC 2006; 78:191-223. [PMID: 17061264 DOI: 10.1002/bdrc.20078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well-characterized, the left-right (LR) axis has only relatively recently begun to be understood at the molecular level. The mechanisms that ensure invariant LR asymmetry of the heart, viscera, and brain involve fundamental aspects of cell biology, biophysics, and evolutionary biology, and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis links biomolecular chirality to embryonic development and ultimately to behavior and cognition, revealing feedback loops and conserved functional modules occurring as widely as plants and mammals. This review focuses on the unique and fascinating physiological aspects of LR patterning in a number of vertebrate and invertebrate species, discusses several profound mechanistic analogies between biological regulation in diverse systems (specifically proposing a nonciliary parallel between kidney cells and the LR axis based on subcellular regulation of ion transporter targeting), highlights the possible importance of early, highly-conserved intracellular events that are magnified to embryo-wide scales, and lays out the most important open questions about the function, evolutionary origin, and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and the Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
34
|
Simard A, Di Pietro E, Young CR, Plaza S, Ryan AK. Alterations in heart looping induced by overexpression of the tight junction protein Claudin-1 are dependent on its C-terminal cytoplasmic tail. Mech Dev 2006; 123:210-27. [PMID: 16500087 DOI: 10.1016/j.mod.2005.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.
Collapse
Affiliation(s)
- Annie Simard
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, Que., Canada
| | | | | | | | | |
Collapse
|
35
|
Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3-25. [PMID: 15582774 DOI: 10.1016/j.mod.2004.08.006] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/22/2004] [Accepted: 08/23/2004] [Indexed: 12/17/2022]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Baldessari D, Shin Y, Krebs O, König R, Koide T, Vinayagam A, Fenger U, Mochii M, Terasaka C, Kitayama A, Peiffer D, Ueno N, Eils R, Cho KW, Niehrs C. Global gene expression profiling and cluster analysis in Xenopus laevis. Mech Dev 2005; 122:441-75. [PMID: 15763214 DOI: 10.1016/j.mod.2004.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 10/04/2004] [Accepted: 11/07/2004] [Indexed: 01/12/2023]
Abstract
We have undertaken a large-scale microarray gene expression analysis using cDNAs corresponding to 21,000 Xenopus laevis ESTs. mRNAs from 37 samples, including embryos and adult organs, were profiled. Cluster analysis of embryos of different stages was carried out and revealed expected affinities between gastrulae and neurulae, as well as between advanced neurulae and tadpoles, while egg and feeding larvae were clearly separated. Cluster analysis of adult organs showed some unexpected tissue-relatedness, e.g. kidney is more related to endodermal than to mesodermal tissues and the brain is separated from other neuroectodermal derivatives. Cluster analysis of genes revealed major phases of co-ordinate gene expression between egg and adult stages. During the maternal-early embryonic phase, genes maintaining a rapidly dividing cell state are predominantly expressed (cell cycle regulators, chromatin proteins). Genes involved in protein biosynthesis are progressively induced from mid-embryogenesis onwards. The larval-adult phase is characterised by expression of genes involved in metabolism and terminal differentiation. Thirteen potential synexpression groups were identified, which encompass components of diverse molecular processes or supra-molecular structures, including chromatin, RNA processing and nucleolar function, cell cycle, respiratory chain/Krebs cycle, protein biosynthesis, endoplasmic reticulum, vesicle transport, synaptic vesicle, microtubule, intermediate filament, epithelial proteins and collagen. Data filtering identified genes with potential stage-, region- and organ-specific expression. The dataset was assembled in the iChip microarray database, , which allows user-defined queries. The study provides insights into the higher order of vertebrate gene expression, identifies synexpression groups and marker genes, and makes predictions for the biological role of numerous uncharacterized genes.
Collapse
Affiliation(s)
- Danila Baldessari
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qiu D, Cheng SM, Wozniak L, McSweeney M, Perrone E, Levin M. Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Dev Dyn 2005; 234:176-89. [PMID: 16059906 DOI: 10.1002/dvdy.20509] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry is a crucial feature of the vertebrate body plan. While much molecular detail of this patterning pathway has been uncovered, the embryonic mechanisms of the initiation of asymmetry, and their evolutionary conservation among species, are still not understood. A popular recent model based on data from mouse embryos suggests extracellular movement of determinants by ciliary motion at the gastrulating node as the initial step. An alternative model, driven by findings in the frog and chick embryo, focuses instead on cytoplasmic roles of motor proteins. To begin to test the latter hypothesis, we analyzed the very early embryonic localization of ciliary targets implicated in mouse LR asymmetry. Immunohistochemistry was performed on frog and chick embryos using antibodies that have (KIF3B, Polaris, Polycystin-2, acetylated alpha-tubulin) or have not (LRD, INV, detyrosinated alpha-tubulin) been shown to detect in frog embryos only the target that they detect in mammalian tissue. Immunohistochemistry revealed localization signals for all targets in the cytoplasm of cleavage-stage Xenopus embryos, and in the base of the primitive streak in chick embryos at streak initiation. Importantly, several left-right asymmetries were detected in both species, and the localization signals were dependent on microtubule and actin cytoskeletal organization. Moreover, loss-of-function experiments implicated very early intracellular microtubule-dependent motor protein function as an obligate aspect of oriented LR asymmetry in Xenopus embryos. These data are consistent with cytoplasmic roles for motor proteins in patterning the left-right axis that do not involve ciliary motion.
Collapse
Affiliation(s)
- Dayong Qiu
- Cytokine Biology Department, The Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The fundamental functions of epithelia and endothelia in multicellular organisms are to separate compositionally distinct compartments and regulate the exchange of small solutes and other substances between them. Tight junctions (TJs) between adjacent cells constitute the barrier to the passage of ions and molecules through the paracellular pathway and function as a 'fence' within the plasma membrane to create and maintain apical and basolateral membrane domains. How TJs achieve this is only beginning to be understood. Recently identified components of TJs include the claudins, a family of four-transmembrane-span proteins that are prime candidates for molecules that function in TJ permeability. Their identification and characterization have provided new insight into the diversity of different TJs and heterogeneity of barrier functions in different epithelia and endothelia.
Collapse
Affiliation(s)
- Kursad Turksen
- Ottawa Health Research Institute, Ontario K1Y 4E9, Canada.
| | | |
Collapse
|
39
|
Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. Structural Changes in the Carboxyl Terminus of the Gap Junction Protein Connexin43 Indicates Signaling between Binding Domains for c-Src and Zonula Occludens-1. J Biol Chem 2004; 279:54695-701. [PMID: 15492000 DOI: 10.1074/jbc.m409552200] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Satow R, Chan TC, Asashima M. The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 2004; 321:487-94. [PMID: 15358202 DOI: 10.1016/j.bbrc.2004.06.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Indexed: 11/20/2022]
Abstract
Vertebrates use two or three forms of kidney successively during development and the nephric duct is essential for this succession of kidney induction. While transcripts of many Wnt ligands and Wnt receptor Frizzled genes have been localized in developing kidney, the relationship between Wnt signaling and nephric duct development remains unknown. This study investigated the role of Xenopus frizzled-8 (Xfz8) in pronephros development. Translational inhibition of Xfz8 caused a significant reduction in the staining of a duct-specific antibody, but did not affect the expression of early pronephric maker genes in the duct region. Defects in pronephric tubule branching were also observed following inhibition of Xfz8. Histological analysis revealed that the Xfz8-inhibited cells failed to form a normal epithelium structure. These results suggest that Xfz8 is involved in the process of normal epithelium formation in the developing pronephric duct and tubules after specification.
Collapse
Affiliation(s)
- Reiko Satow
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
41
|
Abstract
The bilaterally symmetric body plan of vertebrates features several consistent asymmetries in the placement, structure, and function of organs such as the heart, intestine, and brain. Deviations from the normal pattern result in situs inversus, isomerisms, or heterotaxia (independent randomization), which have significant clinical implications. The invariance of the left-right (LR) asymmetry of normal morphology, neuronal function, and phenotype of several syndromes raises fascinating and fundamental questions in cell, developmental, evolutionary, and neurobiology. While a pathway of asymmetrically expressed signaling factors has been well-characterized in several model systems, very early steps in the establishment of LR asymmetry remain poorly understood. In particular, the origin of consistently oriented asymmetry is unknown. Recently, a candidate for the origins of asymmetry has been suggested: bulk transport of extracellular morphogens by rotating primary cilia during gastrulation. This model is appealing because it 'bootstraps' morphological asymmetry of the embryo from the intrinsic structural (molecular) chirality of motile cilia. However, conceptual and practical problems remain with this hypothesis. Indeed, the genetic data are also consistent with a different mechanism: cytoplasmic transport roles of motor proteins. This review outlines the progress and remaining questions in the field of left-right asymmetry, and focuses on an alternative model for 'Step 1' of asymmetry. More specifically, based on wide-ranging data on ion fluxes and motor protein function in several species, it is suggested that laterality is driven by pH/voltage gradients across the midline, which are established by chiral movement of motor proteins with respect to the cytoskeleton.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Dept., The Forsyth Institute, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Kitazawa C, Takai KK, Nakajima Y, Fujisawa H, Amemiya S. LiCl inhibits the establishment of left-right asymmetry in larvae of the direct-developing echinoidPeronella japonica. ACTA ACUST UNITED AC 2004; 301:707-17. [PMID: 15559932 DOI: 10.1002/jez.a.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of LiCl on the establishment of left-right (LR) asymmetry in larvae of the direct-developing echinoid Peronella japonica was investigated with special attention to the location of the amniotic opening and ciliary band pattern. The larvae of echinoids are LR symmetric, but shortly before metamorphosis the larval LR symmetry is lost as a result of the formation of an amniotic cavity (vestibule), part of the adult rudiment, on the left side of the body. P. japonica has been considered to be the only exception among the echinoids, because the amniotic cavity forms at the midline of the larval body. In the present study we discovered the following two different LR asymmetric traits in larvae of P. japonica: the opening of the amniotic cavity initially forms at the midline of the larval body but shifts to the left dorsal side, and a looped ciliary band that initially forms with LR symmetry becomes LR asymmetric as a result of the formation of a bulge on left dorsal side. The establishment of LR asymmetry in both the location of the amniotic opening and the change in the shape of the ciliary band was influenced by exposing embryos to LiCl. Quantitative analysis of the shift in amniotic opening showed that exposure of embryos to LiCl causes repression of leftward shifting of the amniotic opening in earlier stage larvae, and leftward or rightward shifting in later stage larvae. These findings suggest that LiCl is an effective means of impairing the establishment of LR asymmetry in sea urchin embryos.
Collapse
Affiliation(s)
- Chisato Kitazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
43
|
Levin M. Motor protein control of ion flux is an early step in embryonic left-right asymmetry. Bioessays 2003; 25:1002-10. [PMID: 14505367 DOI: 10.1002/bies.10339] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The invariant left-right asymmetry of animal body plans raises fascinating questions in cell, developmental, evolutionary, and neuro-biology. While intermediate mechanisms (e.g., asymmetric gene expression) have been well-characterized, very early steps remain elusive. Recent studies suggested a candidate for the origins of asymmetry: rotary movement of extracellular morphogens by cilia during gastrulation. This model is intellectually satisfying, because it bootstraps asymmetry from the intrinsic biochemical chirality of cilia. However, conceptual and practical problems remain with this hypothesis, and the genetic data is consistent with a different mechanism. Based on wide-ranging data on ion fluxes and motor protein action in a number of species, a model is proposed whereby laterality is generated much earlier, by asymmetric transport of ions, which results in pH/voltage gradients across the midline. These asymmetries are in turn generated by a new candidate for "step 1": asymmetric localization of electrogenic proteins by cytoplasmic motors.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute and Department of Craniofacial and Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
44
|
Abstract
The striking left-right asymmetry of visceral organs is known to depend on left- and right-side-specific cascades of gene expression during early embryogenesis. Now, developmental biologists are characterizing the earliest steps in asymmetry determination that dictate the sidedness of asymmetric gene expression. The proteins and structures involved control fascinating physiological processes, such as extracellular fluid flow and membrane voltage potential and yet little is known about how their activities are coordinated to control laterality. By analogy with intercellular signalling in certain epithelial and endothelial cells, however, it is reasonable to speculate that at least three of these players, monocilia, gap junction communication and the Ca2+ channel polycystin-2, participate in a signalling pathway that propagates left-right cues through multicellular fields.
Collapse
Affiliation(s)
- Mark Mercola
- Stem Cell and Regeneration Program, The Burnham Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:1-44. [PMID: 12475568 DOI: 10.1016/s0079-6107(02)00037-8] [Citation(s) in RCA: 832] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the basolateral domains of the plasma membrane. In recent years more than 40 different proteins have been discovered to be located at the TJs of epithelia, endothelia and myelinated cells. This unprecedented expansion of information has changed our view of TJs from merely a paracellular barrier to a complex structure involved in signaling cascades that control cell growth and differentiation. Both cortical and transmembrane proteins integrate TJs. Among the former are scaffolding proteins containing PDZ domains, tumor suppressors, transcription factors and proteins involved in vesicle transport. To date two components of the TJ filaments have been identified: occludin and claudin. The latter is a protein family with more than 20 members. Both occludin and claudins are integral proteins capable of interacting adhesively with complementary molecules on adjacent cells and of co-polymerizing laterally. These advancements in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.
Collapse
Affiliation(s)
- L González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Ave. Politécnico Nacional 2508, México DF, 07000, Mexico.
| | | | | | | |
Collapse
|
46
|
Fujita M, Itoh M, Shibata M, Taira S, Taira M. Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos. Mech Dev 2002; 119 Suppl 1:S27-30. [PMID: 14516656 DOI: 10.1016/s0925-4773(03)00087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To study how epithelial layers are formed during early development in Xenopus embryos, we have focused on Claudin, the major component of the tight junction. So far, 19 claudin genes have been found in the mouse, expressed in different epithelial tissues. However, though a number of cytological studies have been done for the roles of Claudins, their expression patterns and functions during early embryogenesis are largely unknown. We found three novel Xenopus claudin genes, which are referred to as claudin-4L1, -4L2, and -7L1. At the early gastrula stage, claudin-4L1, -4L2, and -7L1 mRNAs were detected in the ectoderm and in the mesoderm. At the late gastrula stage, claudin mRNAs were detected in the ectoderm through the involuting archenteron roof. At the neurula stage, claudin-4L1/4L2 and -7L1 mRNAs were differentially expressed in the neural groove and the epidermal ectoderm. At the tailbud stage, the claudin mRNAs were found in the branchial arches, the otic vesicles, the sensorial layer of the epidermis, and along the dorsal midline of the neural tube. In addition, claudin-4L1/4L2 mRNAs were detected in the pronephros and the endoderm, whereas claudin-7L1 mRNA was observed in the epithelial layer of the epidermis.
Collapse
Affiliation(s)
- Makiko Fujita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
47
|
Muñoz-Sanjuán I, Bell E, Altmann CR, Vonica A, Brivanlou AH. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development 2002; 129:5529-40. [PMID: 12403722 DOI: 10.1242/dev.00097] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The earliest decision in vertebrate neural development is the acquisition of a neural identity by embryonic ectodermal cells. The default model for neural induction postulates that neural fate specification in the vertebrate embryo occurs by inhibition of epidermal inducing signals in the gastrula ectoderm. Bone morphogenetic proteins (BMPs) act as epidermal inducers, and all identified direct neural inducers block BMP signaling either intra- or extracellularly. Although the mechanism of action of the secreted neural inducers has been elucidated, the relevance of intracellular BMP inhibitors in neural induction is not clear. In order to address this issue and to identify downstream targets after BMP inhibition, we have monitored the transcriptional changes in ectodermal explants neuralized by Smad7 using a Xenopus laevis 5000-clone gastrula-stage cDNA microarray. We report the identification and initial characterization of 142 genes whose transcriptional profiles change in the neuralized explants. In order to address the potential involvement during neural induction of genes identified in the array, we performed gain-of-function studies in ectodermal explants. This approach lead to the identification of four genes that can function as neural inducers in Xenopus and three others that can synergize with known neural inducers in promoting neural fates. Based on these studies, we propose a role for post-transcriptional control of gene expression during neural induction in vertebrates and present a model whereby sustained BMP inhibition is promoted partly through the regulation of TGFbeta activated kinase (TAK1) activity by a novel TAK1-binding protein (TAB3).
Collapse
Affiliation(s)
- Ignacio Muñoz-Sanjuán
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Polarising a cell or an embryo is a crucial and recurrent event during development, as it is important for cell differentiation and migration. Cells can become polarised along their apical-basal axis and also within the plane of the tissue layer to which they belong. The embryo develops three axes: the anteroposterior, the dorsoventral and the left-right axis. Recent work indicates instructive roles for cell adhesion molecules in establishing not only apical-basal polarity but also planar cell polarity and, surprisingly, in the generation of left-right asymmetry in vertebrates. Signalling cascades that regulate polarity formation seem to be conserved among different organisms, thereby raising the intriguing question of whether this also holds true for the cell adhesion molecules.
Collapse
Affiliation(s)
- Doris Wedlich
- University of Karlsruhe, Institute of Zoology II, PO Box 6980, D-76128 Karlsruhe, Germany.
| |
Collapse
|
49
|
Abstract
The vertebrate Six3 gene a homeobox gene of the Six-family, plays a crucial role in early eye and forebrain development. Here we report the isolation of candidate factors that interact with Six3 in a yeast two-hybrid screen. Among these are two basic helix loop helix (bHLH) domain containing proteins. Biochemical analysis reveals that the bHLH proteins ATH5, ATH3, NEUROD as well as ASH1 interact specifically with XSix3. By defining the interacting domains we show that the bHLH domain of NEUROD interacts with the SIX domain of XSix3. The co-expression of the interacting molecules during late retina determination/differentiation suggests a new role for Six3 and the respective interaction partner also in these late steps of eye development.
Collapse
Affiliation(s)
- Kristin Tessmar
- Developmental Biology Programme, EMBL-Heidelberg, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Abstract
A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
Collapse
Affiliation(s)
- M Mercola
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|