1
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Akkuratov EE, Wu J, Sowa D, Shah ZA, Liu L. Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2016; 14:1343-9. [PMID: 26295826 PMCID: PMC5388798 DOI: 10.2174/1871527314666150821103008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
Ouabain stimulates activation of various signaling cascades such as protein kinase B (Akt) and Extracellular-signaling-regulated kinase 1/2 (ERK 1/2) in various cell lines. Retinoic acid (RA) is commonly used to induce neuroblastoma differentiation in cultures. Upon RA administration, human neuroblastoma cell line, SK-N-SH demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Here we report that ouabain-induced signaling is altered under the action of 1 μM RA in human neuroblastoma SK-N-SH cells. RA increased the expression of p110α subunit of phosphoinositide 3-kinase (PI3K), Akt and β1 subunit of Na+/K+-ATPase. Ouabain activated Akt and ERK 1/2 in differentiated SK-N-SH cells; this effect was not observed in non-differentiated SK-N-SH cells. Long-term incubation of non-differentiated SK-N-SH with 1 μM ouabain led to a decrease in the number of cells; this effect was reduced in differentiated SK-N-SH cells. Taken together, these results suggest that ouabain leads to cell death in neuroblastoma cells rather than neuronal cells due to the different response to ouabain manifested by activation of Akt and ERK 1/2.
Highlights
• RA increases the expression of p110α subunit of PI3K, Akt and β1 subunit of Na+/K+-ATPase • Ouabain induces activation of Akt and ERK 1/2 in differentiated SK-N-SH cells but not in non-differentiated cells • 1 μM ouabain leads to a decrease in the number of cells in non-differentiated SK-N-SH • Reduction of ouabain-induced cell death in differentiated SK-N-SH
Collapse
Affiliation(s)
| | | | | | | | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
3
|
Rahman MM, Park BY. Na, K-ATPase β2 isoform (atp1b2) expressed in the retina of Xenopus. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.4.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Mohanty BK, Gupta BL. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation. Mol Reprod Dev 2011; 79:138-60. [PMID: 22213374 DOI: 10.1002/mrd.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD.
Collapse
|
5
|
Chang LW, Spitzer NC. Spontaneous calcium spike activity in embryonic spinal neurons is regulated by developmental expression of the Na+, K+-ATPase beta3 subunit. J Neurosci 2009; 29:7877-85. [PMID: 19535599 PMCID: PMC3090545 DOI: 10.1523/jneurosci.4264-08.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 03/06/2009] [Accepted: 03/31/2009] [Indexed: 02/03/2023] Open
Abstract
Different types and patterns of spontaneous electrical activity drive many aspects of neuronal differentiation. Neurons in the developing Xenopus spinal cord exhibit calcium spikes, which regulate gene transcription and neurotransmitter specification. The ionic currents necessary for spike production have been described. However, the mechanisms that generate the onset of this activity and the basis of its regulation remain unclear. Although signaling molecules appear to act on plasma membrane receptors to trigger calcium spike activity, other mechanisms for spontaneous calcium spike regulation may exist as well. Here, we analyze the developmental expression of the Na(+), K(+)-ATPase beta3 subunit in Xenopus tropicalis embryos and show that its levels are downregulated at a time during embryonic development that coincides with the onset of prominent calcium spike activity in spinal neurons. Inhibition of an earlier increase in beta3 expression leads to more depolarized resting membrane potentials and results in later reduction of spike activity. This suppression of beta3 levels also reduces expression of the store-operated calcium channel subunit, Orai1. These findings suggest that the Na(+), K(+)-ATPase plays a role in initiating calcium spike activity and regulating calcium homeostasis.
Collapse
Affiliation(s)
| | - Nicholas C. Spitzer
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0357
| |
Collapse
|
6
|
Costa RMB, Mason J, Lee M, Amaya E, Zorn AM. Novel gene expression domains reveal early patterning of the Xenopus endoderm. Gene Expr Patterns 2003; 3:509-19. [PMID: 12915320 DOI: 10.1016/s1567-133x(03)00086-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoderm gives rise the respiratory and digestive tract epithelia as well as associated organs such as the liver, lungs and pancreas. Investigations examining the molecular basis of embryonic endodermal patterning and organogenesis have been hampered by the lack of regionally expressed molecular markers in the early endoderm. By differentially screening an arrayed cDNA library, combined with an in situ hybridization screen we identified 13 new genes regionally expressed in the early tailbud endoderm of the Xenopus embryo. The putative proteins encoded by these cDNAs include a cell surface transporter, secreted proteins, a protease, a protease inhibitor, an RNA-binding protein, a phosphatase inhibitor and several enzymes. We find that the expression of these genes falls into one of three re-occurring domains in the tailbud embryo; (1). a ventral midgut, (2). posterior to the midgut and (3). in the dorsal endoderm beneath the notochord. Several of these genes are also regionally expressed at gastrula and neurula stages and appear to mark territories that were previously only predicted by the endoderm fate map. This indicates that there is significant positional identity in the early endoderm long before stages 28-32 when regional specification of the endoderm is thought to occur. These new genes provide valuable tools for studying endodermal patterning and organogenesis in Xenopus.
Collapse
Affiliation(s)
- Ricardo M B Costa
- Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | |
Collapse
|
7
|
Abstract
Understanding the factors that allow biological systems to reliably self-assemble consistent, highly complex, four dimensional patterns on many scales is crucial for the biomedicine of cancer, regeneration, and birth defects. The role of chemical signaling factors in controlling embryonic morphogenesis has been a central focus in modern developmental biology. While the role of tensile forces is also beginning to be appreciated, another major aspect of physics remains largely neglected by molecular embryology: electromagnetic fields and radiations. The continued progress of molecular approaches to understanding biological form and function in the post genome era now requires the merging of genetics with functional understanding of biophysics and physiology in vivo. The literature contains much data hinting at an important role for bioelectromagnetic phenomena as a mediator of morphogenetic information in many contexts relevant to embryonic development. This review attempts to highlight briefly some of the most promising (and often underappreciated) findings that are of high relevance for understanding the biophysical factors mediating morphogenetic signals in biological systems. These data originate from contexts including embryonic development, neoplasm, and regeneration.
Collapse
Affiliation(s)
- Michael Levin
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02114, USA.
| |
Collapse
|
8
|
Rutenberg J, Cheng SM, Levin M. Early embryonic expression of ion channels and pumps in chick and Xenopus development. Dev Dyn 2002; 225:469-84. [PMID: 12454924 DOI: 10.1002/dvdy.10180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An extensive body of literature implicates endogenous ion currents and standing voltage potential differences in the control of events during embryonic morphogenesis. Although the expression of ion channel and pump genes, which are responsible for ion flux, has been investigated in detail in nervous tissues, little data are available on the distribution and function of specific channels and pumps in early embryogenesis. To provide a necessary basis for the molecular understanding of the role of ion flux in development, we surveyed the expression of ion channel and pump mRNAs, as well as other genes that help to regulate membrane potential. Analysis in two species, chick and Xenopus, shows that several ion channel and pump mRNAs are present in specific and dynamic expression patterns in early embryos, well before the appearance of neurons. Examination of the distribution of maternal mRNAs reveals complex spatiotemporal subcellular localization patterns of transcripts in early blastomeres in Xenopus. Taken together, these data are consistent with an important role for ion flux in early embryonic morphogenesis; this survey characterizes candidate genes and provides information on likely embryonic contexts for their function, setting the stage for functional studies of the morphogenetic roles of ion transport.
Collapse
Affiliation(s)
- Joshua Rutenberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Eid SR, Brändli AW. Xenopus Na,K-ATPase: primary sequence of the beta2 subunit and in situ localization of alpha1, beta1, and gamma expression during pronephric kidney development. Differentiation 2001; 68:115-25. [PMID: 11686233 DOI: 10.1046/j.1432-0436.2001.680205.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The osmoregulatory function of the pronephric kidney, the first excretory organ of the vertebrate embryo, is essential for embryonic survival. The transport systems engaged in pronephric osmotic regulation are however poorly understood. The Na,K-ATPase is the key component in renal solute transport and water homeostasis. In the present study, we characterized the alpha, beta, and gamma subunits of the Na,K-ATPase of the developing Xenopus embryo. In addition to the known alpha1, beta1, beta3 and gamma subunits, we report here the identification of a novel cDNA encoding the Xenopus beta2 subunit. We demonstrate by in situ hybridization that each Xenopus Na,K-ATPase subunit exhibits a distinct tissue-specific and developmentally regulated expression pattern. We found that the developing pronephric kidney expresses alpha1, beta1, and gamma subunits uniformly along the entire length of the nephron. Onset of pronephric Na,K-ATPase subunit expression occurred in a coordinated fashion indicating that a common regulatory mechanism may initiate pronephric transcription of these genes. The ability to engage in active Na+ reabsorption appears to be established early in pronephric development, since Na,K-ATPase expression was detected well before the completion of pronephric organogenesis. Furthermore, Na,K-ATPase expression defines at the molecular level the onset of maturation phase during pronephric kidney organogenesis. Taken together, our studies reveal a striking conservation of Na,K-ATPase subunit expression between pronephric and metanephric kidneys. The pronephric kidney may therefore represent a simplified model to dissect the regulatory mechanisms underlying renal Na,K-ATPase subunit expression.
Collapse
Affiliation(s)
- S R Eid
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETHZ), Zürich
| | | |
Collapse
|