1
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Regulatory gene function handoff allows essential gene loss in mosquitoes. Commun Biol 2020; 3:540. [PMID: 32999445 PMCID: PMC7528073 DOI: 10.1038/s42003-020-01203-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/02/2020] [Indexed: 11/09/2022] Open
Abstract
Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry, has acquired paired-like expression in the malaria mosquito Anopheles stephensi. Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. Cheatle Jarvela et al. demonstrate in the mosquito Anopheles stephensi that the paired gene was functionally replaced by the gene gooseberry, even though paired is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development.
Collapse
Affiliation(s)
| | | | - Leslie Pick
- Department of Entomology, University of Maryland, Collage Park, MD, USA.
| |
Collapse
|
2
|
Bell K, Skier K, Chen KH, Gergen JP. Two pair-rule responsive enhancers regulate wingless transcription in the Drosophila blastoderm embryo. Dev Dyn 2019; 249:556-572. [PMID: 31837063 DOI: 10.1002/dvdy.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND While many developmentally relevant enhancers act in a modular fashion, there is growing evidence for nonadditive interactions between distinct cis-regulatory enhancers. We investigated if nonautonomous enhancer interactions underlie transcription regulation of the Drosophila segment polarity gene, wingless. RESULTS We identified two wg enhancers active at the blastoderm stage: wg 3613u, located from -3.6 to -1.3 kb upstream of the wg transcription start site (TSS) and 3046d, located in intron two of the wg gene, from 3.0 to 4.6 kb downstream of the TSS. Genetic experiments confirm that Even Skipped (Eve), Fushi-tarazu (Ftz), Runt, Odd-paired (Opa), Odd-skipped (Odd), and Paired (Prd) contribute to spatially regulated wg expression. Interestingly, there are enhancer specific differences in response to the gain or loss of function of pair-rule gene activity. Although each element recapitulates aspects of wg expression, a composite reporter containing both enhancers more faithfully recapitulates wg regulation than would be predicted from the sum of their individual responses. CONCLUSION These results suggest that the regulation of wg by pair-rule genes involves nonadditive interactions between distinct cis-regulatory enhancers.
Collapse
Affiliation(s)
- Kimberly Bell
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Center for Excellence in Learning & Teaching, Stony Brook University, Stony Brook, New York
| | - Kevin Skier
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kevin H Chen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Boston University School of Medicine, Boston, Massachusetts
| | - John Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
4
|
Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development 2018; 145:dev.155580. [PMID: 29724758 PMCID: PMC6001374 DOI: 10.1242/dev.155580] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023]
Abstract
Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. While the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete, and Odd-paired expression. In Drosophila these transcription factors are expressed like simple timers within the blastoderm, while in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
| | - Andrew D Peel
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
5
|
Gurdziel K, Lorberbaum DS, Udager AM, Song JY, Richards N, Parker DS, Johnson LA, Allen BL, Barolo S, Gumucio DL. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density. PLoS One 2015; 10:e0145225. [PMID: 26710299 PMCID: PMC4692483 DOI: 10.1371/journal.pone.0145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Lorberbaum
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aaron M. Udager
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jane Y. Song
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Parker
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lisa A. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Scott Barolo
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| |
Collapse
|
6
|
Li L, Li P, Xue L. The RED domain of Paired is specifically required for Drosophila accessory gland maturation. Open Biol 2015; 5:140179. [PMID: 25694546 PMCID: PMC4345280 DOI: 10.1098/rsob.140179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix–turn–helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain.
Collapse
Affiliation(s)
- Li Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Ping Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
7
|
Boualia SK, Gaitan Y, Tremblay M, Sharma R, Cardin J, Kania A, Bouchard M. A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev Biol 2013; 382:555-66. [PMID: 23920117 DOI: 10.1016/j.ydbio.2013.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Translating the developmental program encoded in the genome into cellular and morphogenetic functions requires the deployment of elaborate gene regulatory networks (GRNs). GRNs are especially crucial at the onset of organ development where a few regulatory signals establish the different programs required for tissue organization. In the renal system primordium (the pro/mesonephros), important regulators have been identified but their hierarchical and regulatory organization is still elusive. Here, we have performed a detailed analysis of the GRN underlying mouse pro/mesonephros development. We find that a core regulatory subcircuit composed of Pax2/8, Gata3 and Lim1 turns on a deeper layer of transcriptional regulators while activating effector genes responsible for cell signaling and tissue organization. Among the genes directly affected by the core components are the key developmental molecules Nephronectin (Npnt) and Plac8. Hence, the pro/mesonephros GRN links together several essential genes regulating tissue morphogenesis. This renal GRN sheds new light on the disease group Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in that gene mutations are expected to generate different phenotypic outcomes as a consequence of regulatory network deficiencies rather than threshold effects from single genes.
Collapse
Affiliation(s)
- Sami Kamel Boualia
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, 1160 Pine Ave. W., Montreal, Quebec, Canada H3A 1A3
| | | | | | | | | | | | | |
Collapse
|
8
|
Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M. Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PLoS One 2011; 6:e21529. [PMID: 21731775 PMCID: PMC3123351 DOI: 10.1371/journal.pone.0021529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans.
Collapse
Affiliation(s)
- Sami K. Boualia
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yaned Gaitan
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Inga Murawski
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robert Nadon
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Gao Y, Lan Y, Ovitt CE, Jiang R. Functional equivalence of the zinc finger transcription factors Osr1 and Osr2 in mouse development. Dev Biol 2009; 328:200-9. [PMID: 19389375 PMCID: PMC2690698 DOI: 10.1016/j.ydbio.2009.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
Osr1 and Osr2 are the only mammalian homologs of the Drosophila odd-skipped family developmental regulators. The Osr1 protein contains three zinc-finger motifs whereas Osr2 exists in two isoforms, containing three and five zinc-finger motifs respectively, due to alternative splicing of the transcripts. Targeted null mutations in these genes in mice resulted in distinct phenotypes, with heart and urogenital developmental defects in Osr1(-/-) mice and with cleft palate and open eyelids at birth in Osr2(-/-) mice. To investigate whether these contrasting mutant phenotypes are due to differences in their protein structure or to differential expression patterns, we generated mice in which the endogenous Osr2 coding region was replaced by either Osr1 cDNA or Osr2A cDNA encoding the five-finger isoform. The knockin alleles recapitulated endogenous Osr2 mRNA expression patterns in most tissues and completely rescued cleft palate and cranial skeletal developmental defects of Osr2(-/-) mice. Mice hemizygous or homozygous for either knockin allele exhibited open-eyelids at birth, which correlated with differences in expression patterns between the knockin allele and the endogenous Osr2 gene during eyelid development. Molecular marker analyses in Osr2(-/-) and Osr2(Osr1ki/Osr1ki) mice revealed that Osr2 controls eyelid development through regulation of the Fgf10-Fgfr2 signaling pathway and that Osr1 rescued Osr2 function in maintaining Fgf10 expression during eyelid development in Osr2(Osr1ki/Osr1ki) mice. These results indicate that the distinct functions of Osr1 and Osr2 during mouse development result from evolutionary divergence of their cis regulatory sequences rather than distinct biochemical activities of their protein products.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yu Lan
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Catherine E. Ovitt
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Rulang Jiang
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
10
|
Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. cis-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers. Genome Biol 2007; 8:R75. [PMID: 17490485 PMCID: PMC1929141 DOI: 10.1186/gb-2007-8-5-r75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/18/2006] [Accepted: 05/09/2007] [Indexed: 12/01/2022] Open
Abstract
: The use of cis-Decoder, a new tool for discovery of conserved sequence elements that are shared between similarly regulating enhancers, suggests that enhancers use overlapping repertoires of highly conserved core elements. A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Wayne Rasband
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Kevin Baler
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Goldstein RE, Cook O, Dinur T, Pisanté A, Karandikar UC, Bidwai A, Paroush Z. An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. Mol Cell Biol 2006; 25:10711-20. [PMID: 16314497 PMCID: PMC1316973 DOI: 10.1128/mcb.25.24.10711-10720.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Groucho, like its vertebrate Transducin-like Enhancer-of-split homologues, is a corepressor that silences gene expression in numerous developmental settings. Groucho itself does not bind DNA but is recruited to target promoters by associating with a large number of DNA-binding negative transcriptional regulators. These repressors tether Groucho via short conserved polypeptide sequences, of which two have been defined. First, WRPW and related tetrapeptide motifs have been well characterized in several repressors. Second, a motif termed Engrailed homology 1 (eh1) has been found predominantly in homeodomain-containing transcription factors. Here we describe a yeast two-hybrid screen that uncovered physical interactions between Groucho and transcription factors, containing eh1 motifs, with different types of DNA-binding domains. We show that one of these, the zinc finger protein Odd-skipped, requires its eh1-like sequence for repressing specific target genes in segmentation. Comparison between diverse eh1 motifs reveals a bias for the phosphoacceptor amino acids serine and threonine at a fixed position, and a mutational analysis of Odd-skipped indicates that these residues are critical for efficient interactions with Groucho and for repression in vivo. Our data suggest that phosphorylation of these phosphomeric residues, if it occurs, will down-regulate Groucho binding and therefore repression, providing a mechanism for posttranslational control of Groucho-mediated repression.
Collapse
Affiliation(s)
- Robert E Goldstein
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Pyrowolakis G, Hartmann B, Müller B, Basler K, Affolter M. A Simple Molecular Complex Mediates Widespread BMP-Induced Repression during Drosophila Development. Dev Cell 2004; 7:229-40. [PMID: 15296719 DOI: 10.1016/j.devcel.2004.07.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/04/2004] [Accepted: 06/15/2004] [Indexed: 01/03/2023]
Abstract
The spatial and temporal control of gene expression during the development of multicellular organisms is regulated to a large degree by cell-cell signaling. We have uncovered a simple mechanism through which Dpp, a TGFbeta/BMP superfamily member in Drosophila, represses many key developmental genes in different tissues. A short DNA sequence, a Dpp-dependent silencer element, is sufficient to confer repression of gene transcription upon Dpp receptor activation and nuclear translocation of Mad and Medea. Transcriptional repression does not require the cooperative action of cell type-specific transcription factors but relies solely on the capacity of the silencer element to interact with Mad and Medea and to subsequently recruit the zinc finger-containing repressor protein Schnurri. Our findings demonstrate how the Dpp pathway can repress key targets in a simple and tissue-unrestricted manner in vivo and hence provide a paradigm for the inherent capacity of a signaling system to repress transcription upon pathway activation.
Collapse
Affiliation(s)
- George Pyrowolakis
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Buckley MS, Chau J, Hoppe PE, Coulter DE. odd-skipped homologs function during gut development in C. elegans. Dev Genes Evol 2004; 214:10-8. [PMID: 14648222 DOI: 10.1007/s00427-003-0369-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/17/2003] [Indexed: 11/28/2022]
Abstract
Genes in the odd-skipped (odd) family encode a discrete subset of C2H2 zinc finger proteins that are widely distributed among metazoan phyla. Although the initial member (odd) was identified as a Drosophila pair-rule gene, various homologs are expressed within each of the three germ layers in complex patterns that suggest roles in many pathways beyond segmentation. To further investigate the evolutionary history and extant functions of genes in this family, we have initiated a characterization of two homologs, odd-1 and odd-2, identified in the genome of the nematode, Caenorhabditis elegans. Sequence comparisons with homologs from insects (Drosophila and Anopheles) and mammals suggest that two paralogs were present within an ancestral metazoan; additional insect paralogs and both extant mammalian genes likely resulted from gene duplications that occurred after the split between the arthropods and chordates. Analyses of gene function using RNAi indicate that odd-1 and odd-2 play essential and distinct roles during gut development. Specific expression of both genes in the developing intestine and other cells in the vicinity of the gut was shown using GFP-reporters. These results indicate primary functions for both genes that are most like those of the Drosophila paralogs bowel and drumstick, and support a model in which gut specification represents the ancestral role for genes in this family.
Collapse
Affiliation(s)
- Martin S Buckley
- Department of Biology, Saint Louis University, MO 63103-2010, USA
| | | | | | | |
Collapse
|
14
|
Deshpande N, Dittrich R, Technau GM, Urban J. Successive specification of Drosophila neuroblasts NB 6-4 and NB 7-3 depends on interaction of the segment polarity genes wingless, gooseberry and naked cuticle. Development 2001; 128:3253-61. [PMID: 11546742 DOI: 10.1242/dev.128.17.3253] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.
Collapse
Affiliation(s)
- N Deshpande
- Institut für Genetik, Universität Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | | | | | | |
Collapse
|