1
|
Chen Y, Liu C, Shang Y, Wang L, Li W, Li G. Adam21 is dispensable for reproductive processes in mice. PeerJ 2021; 9:e12210. [PMID: 34631320 PMCID: PMC8465997 DOI: 10.7717/peerj.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND As a group of membrane-anchored proteins, the proteins containing a disintegrin and metalloprotease domain (ADAMs) control many biological processes, especially for male fertility. Mouse Adam21 was previously found to be specifically expressed in the somatic cells and germ cells of testes, but its functional role during spermatogenesis and male reproductive processes is still unknown. METHODS Adam21-null mice were created using the CRISPR/Cas9 system. Quantitative real-time PCR was used for analyzing of gene expression. Histological, cytological and immunofluorescence staining were performed to analyze the phenotypes of mouse testis and epididymis. Intracellular lipid droplets (LDs) were detected by Oil red O (ORO) staining and BODIPY staining. Fertility and sperm characteristics were also detected. RESULTS Here, we successfully generated an Adam21 conventional knockout mouse model via CRISPR/Cas9 technology so that we can explore its potential role in male reproduction. We found that male mice lacking Adam21 have normal fertility without any detectable defects in spermatogenesis or sperm motility. Histological analysis of the seminiferous epithelium showed no obvious spermatogenesis difference between Adam21-null and wild-type mice. Cytological analysis revealed no detectable defects in meiotic progression, neither Sertoli cells nor Leydig cells displayed any defect compared with that of the control mice. All these results suggest that Adam21 might not be essential for male fertility in mice, and its potential function still needs further investigation.
Collapse
Affiliation(s)
- Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guoping Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
2
|
Al-Shabebi A, Althnaian T, Alkhodair K. Localization and expression of ADAM2 in the dromedary camel testis, epididymis and sperm during rutting season. Anim Reprod 2021; 18:e20200241. [PMID: 33936295 PMCID: PMC8078865 DOI: 10.1590/1984-3143-ar2020-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ADAM2 (fertilin β) is a sperm surface protein reported in several mammalian species. However, the presence of ADAM2 in the male reproductive system and sperm of the camel is not well known. The present study was to clarify the localization and expression of ADAM2 in the dromedary camel testis, epididymis and spermatozoa during rutting season using immunohistochemistry (IHC) and the quantitative real-time polymerase chain reaction (qPCR). Tissue samples were obtained from the testis (proximal and distal) and epididymis (caput, corpus, and cauda) from eight mature male camels. Epididymal and ejaculated sperms were collected from four other fertile camels. IHC analysis clearly showed the localization of ADAM2 protein in the spermatocytes and the round and elongated spermatids of the testis, in the epithelial cells along the epididymis tract, on the posterior head of the sperm within the cauda epididymis, and on the acrosomal cap of both the epididymal and ejaculated sperm. The expression of camel ADAM2 mRNA was significantly higher (P < 0.05) in the testis when compared with the epididymis. These findings may suggest an important role of ADAM2 in the fertility of male dromedary camels.
Collapse
Affiliation(s)
- Abdulkarem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia.,College of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Thnaian Althnaian
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia
| | - Khalid Alkhodair
- Department of Anatomy, College of Veterinary Medicine, king Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Xiong W, Wang Z, Shen C. An update of the regulatory factors of sperm migration from the uterus into the oviduct by genetically manipulated mice. Mol Reprod Dev 2019; 86:935-955. [PMID: 31131960 DOI: 10.1002/mrd.23180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental MedicineShanghai Rui‐Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
- School of Life Sciences and BiochemistryShanghai Jiao Tong University Shanghai China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental MedicineShanghai Rui‐Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental MedicineShanghai Rui‐Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
4
|
Voronina VA, Harris FM, Schmahl J, Galligan C, Oristian D, Zamfirova R, Gong G, Bai Y, Fury W, Rajamani S, Walls JR, Poueymirou WT, Esau L, Gale NW, Auerbach W, Murphy AJ, Macdonald LE. Deletion of Adam6 in Mus musculus leads to male subfertility and deficits in sperm ascent into the oviduct. Biol Reprod 2018; 100:686-696. [DOI: 10.1093/biolre/ioy210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Faith M Harris
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | - Caryn Galligan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | | | - Lakeisha Esau
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Abstract
The members of the ADAM (a disintegrin and metalloprotease) family are membrane-anchored multi-domain proteins that play prominent roles in male reproduction. ADAM2, which was one of the first identified ADAMs, is the best studied ADAM in reproduction. In the male germ cells of mice, ADAM2 and other ADAMs form complexes that contribute to sperm-sperm adhesion, sperm-egg interactions, and the migration of sperm in the female reproductive tract. Here, we generated specific antibodies against mouse and human ADAM2, and investigated various features of ADAM2 in mice, monkeys and humans. We found that the cytoplasmic domain of ADAM2 might enable the differential association of this protein with other ADAMs in mice. Western blot analysis with the anti-human ADAM2 antibodies showed that ADAM2 is present in the testis and sperm of monkeys. Monkey ADAM2 was found to associate with chaperone proteins in testis. In humans, we identified ADAM2 as a 100-kDa protein in the testis, but failed to detect it in sperm. This is surprising given the results in mice and monkeys, but it is consistent with the failure of ADAM2 identification in the previous proteomic analyses of human sperm. These findings suggest that the reproductive functions of ADAM2 differ between humans and mice. Our protein analysis showed the presence of potential ADAM2 complexes involving yet-unknown proteins in human testis. Taken together, our results provide new information regarding the characteristics of ADAM2 in mammalian species, including humans.
Collapse
|
7
|
Choi H, Jin S, Kwon JT, Kim J, Jeong J, Kim J, Jeon S, Park ZY, Jung KJ, Park K, Cho C. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm. PLoS One 2016; 11:e0158321. [PMID: 27341348 PMCID: PMC4920383 DOI: 10.1371/journal.pone.0158321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
The members of the ADAM (a disintegrin and metalloprotease) family are membrane-anchored multi-domain proteins that play prominent roles in male reproduction. ADAM2, which was one of the first identified ADAMs, is the best studied ADAM in reproduction. In the male germ cells of mice, ADAM2 and other ADAMs form complexes that contribute to sperm-sperm adhesion, sperm-egg interactions, and the migration of sperm in the female reproductive tract. Here, we generated specific antibodies against mouse and human ADAM2, and investigated various features of ADAM2 in mice, monkeys and humans. We found that the cytoplasmic domain of ADAM2 might enable the differential association of this protein with other ADAMs in mice. Western blot analysis with the anti-human ADAM2 antibodies showed that ADAM2 is present in the testis and sperm of monkeys. Monkey ADAM2 was found to associate with chaperone proteins in testis. In humans, we identified ADAM2 as a 100-kDa protein in the testis, but failed to detect it in sperm. This is surprising given the results in mice and monkeys, but it is consistent with the failure of ADAM2 identification in the previous proteomic analyses of human sperm. These findings suggest that the reproductive functions of ADAM2 differ between humans and mice. Our protein analysis showed the presence of potential ADAM2 complexes involving yet-unknown proteins in human testis. Taken together, our results provide new information regarding the characteristics of ADAM2 in mammalian species, including humans.
Collapse
Affiliation(s)
- Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Suyeon Jeon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kang-Jin Jung
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
8
|
Krauchunas AR, Marcello MR, Singson A. The molecular complexity of fertilization: Introducing the concept of a fertilization synapse. Mol Reprod Dev 2016; 83:376-86. [PMID: 26970099 DOI: 10.1002/mrd.22634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
The details of sperm-egg interactions remain a relative mystery despite many decades of research. As new molecular complexities are being discovered, we need to revise the framework in which we think about fertilization. As such, we propose that fertilization involves the formation of a synapse between the sperm and egg. A cellular synapse is a structure that mediates cell adhesion, signaling, and secretion through specialized zones of interaction and polarity. In this review, we draw parallels between the immune synapse and fertilization, and argue that we should consider sperm-egg recognition, binding, and fusion in the context of a "fertilization synapse." Mol. Reprod. Dev. 83: 376-386, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | - Andrew Singson
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
9
|
Choi H, Han C, Jin S, Kwon JT, Kim J, Jeong J, Kim J, Ham S, Jeon S, Yoo YJ, Cho C. Reduced Fertility and Altered Epididymal and Sperm Integrity in Mice Lacking ADAM7. Biol Reprod 2015; 93:70. [PMID: 26246218 DOI: 10.1095/biolreprod.115.130252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
The mammalian epididymis is a highly convoluted tubule that connects the testis to the vas deferens. Its proper functions in sperm transport, storage, and maturation are essential for male reproduction. One of the genes predominantly expressed in the epididymis is ADAM7 (a disintegrin and metalloprotease 7). Previous studies have shown that ADAM7 synthesized in the epididymis is secreted into the epididymal lumen and is then transferred to sperm membranes, where it forms a chaperone complex that is potentially involved in sperm fertility. In this study, we generated and analyzed mice with a targeted disruption in the Adam7 gene. We found that the fertility of male mice was modestly but significantly reduced by knockout of Adam7. Histological analyses revealed that the cell heights of the epithelium were dramatically decreased in the caput of the epididymis of Adam7-null mice, suggesting a requirement for ADAM7 in maintaining the integrity of the epididymal epithelium. We found that sperm from Adam7-null mice exhibit decreased motility, tail deformation, and altered tyrosine phosphorylation, indicating that the absence of ADAM7 leads to abnormal sperm functions and morphology. Western blot analyses revealed reduced levels of integral membrane protein 2B (ITM2B) and ADAM2 in sperm from Adam7-null mice, suggesting a requirement for ADAM7 in normal expression of sperm membrane proteins involved in sperm functions. Collectively, our study demonstrates for the first time that ADAM7 is required for normal fertility and is important for the maintenance of epididymal integrity and for sperm morphology, motility, and membrane proteins.
Collapse
Affiliation(s)
- Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Cecil Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sera Ham
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Suyeon Jeon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
10
|
Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative to in vitro fertilization (IVF). Int J Mol Sci 2014; 15:12972-97. [PMID: 25054321 PMCID: PMC4139886 DOI: 10.3390/ijms150712972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/07/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process.
Collapse
|
11
|
Kaur K, Prabha V. Immunocontraceptives: new approaches to fertility control. BIOMED RESEARCH INTERNATIONAL 2014; 2014:868196. [PMID: 25110702 PMCID: PMC4119744 DOI: 10.1155/2014/868196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/10/2014] [Indexed: 11/24/2022]
Abstract
The rapidly increasing global population has bowed the attention of family planning and associated reproductive health programmes in the direction of providing a safe and reliable method which can be used to limit family size. The world population is estimated to exceed a phenomenal 10 billion by the year 2050 A.D., thus presenting a real jeopardy of overpopulation with severe implications for the future. Despite the availability of contraceptive methods, there are over one million elective abortions globally each year due to unintended pregnancies, having devastating impact on reproductive health of women worldwide. This highlights the need for the development of newer and improved contraceptive methods. A novel contraceptive approach that is gaining substantial attention is "immunocontraception" targeting gamete production, gamete outcome, or gamete function. Amongst these, use of sperm antigens (gamete function) seems to be an exciting and feasible approach. However, the variability of immune response and time lag to attain titer among vaccinated individuals after active immunization has highlighted the potential relevance of preformed antibodies in this league. This review is an attempt to analyze the current status and progress of immunocontraceptive approaches with respect to their establishment as a future fertility control agent.
Collapse
Affiliation(s)
- Kiranjeet Kaur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:159-80. [PMID: 25030764 DOI: 10.1007/978-1-4939-0817-2_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epididymal lumen is a complex microenvironment in which spermatozoa acquire motility and fertility. Spermatozoa are synthetically inactive and therefore the maturation process requires their interaction with proteins that are synthesized and secreted in a highly regionalized manner by the epididymal epithelium. In addition to the integration of epididymal secretory proteins, posttranslational modifications of existing sperm proteins are important for sperm maturation and acquisition of fertilizing potential. Phosphorylation, glycosylation, and processing are several of the posttranslational modifications that sperm proteins undergo during epididymal transit resulting in changes in protein function and localization ultimately leading to mature spermatozoa. In addition to these well-characterized modifications, protein aggregation and cross-linking also occur within the epididymal lumen and may represent unique mechanisms for controlling protein function including that for maturation as well as for extracellular quality control.
Collapse
|
13
|
Critical role of exosomes in sperm-egg fusion and virus-induced cell-cell fusion. Reprod Med Biol 2013; 12:117-126. [PMID: 29699139 DOI: 10.1007/s12522-013-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022] Open
Abstract
In mammals, two integral membrane proteins, sperm IZUMO1 and egg CD9, regulate sperm-egg fusion, and their roles are critical, but yet unclear. Recent studies, however, indicate interesting connections between the sperm-egg fusion and virus-induced cell-cell fusion. First, CD9-containing exosome-like vesicles, which are released from wild-type eggs, can induce the fusion between sperm and CD9-deficient egg, even though CD9-deficient eggs are highly refractory to the fusion with sperm. This finding provides strong evidence for the involvement of CD9-containing, fusion-facilitating vesicles in the sperm-egg fusion. Secondly, there are similarities between the generation of retroviruses in the host cells and the formation of small cellular vesicles, termed exosomes, in mammalian cells. The exosomes are involved in intercellular communication through transfer of proteins and ribonucleic acids (RNAs) including mRNAs and microRNAs. These collective studies provide an insight into the molecular mechanism of membrane fusion events.
Collapse
|
14
|
Um SH. Observation of a mouse sperm motility in a natural uterine tube-inspired microfluidic channel. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Cho C. Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 2012; 9:550-60. [DOI: 10.1038/nrurol.2012.167] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Phylogenetic and molecular evolution of the ADAM (A Disintegrin And Metalloprotease) gene family from Xenopus tropicalis, to Mus musculus, Rattus norvegicus, and Homo sapiens. Gene 2012; 507:36-43. [PMID: 22841792 DOI: 10.1016/j.gene.2012.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
ADAM (a disintegrin and metalloprotease) genes have been identified in various tissues and species, and recently associated with several important human diseases such as tumor and asthma. Although various biological processes have been known for the ADAM family in different species including fertilization, neurogenesis, infection and inflammation, little is known about its detailed phylogenetic and molecular evolutionary history. In this study, the ADAMs of Xenopus (Silurana) tropicalis, Mus musculus, Rattus norvegicus, and Homo sapiens were collected and analyzed by using the Bayesian analysis and gene synteny analysis to establish a comprehensive phylogenetic relationship and evolutionary drive of this gene family. It was found that there were more ADAMs in the two rodents than in the amphibian, suggesting an expansion of the ADAM gene family during the early evolution of mammals. All ADAMs from this expansion were retained in both the rodents, but other duplication events occurred subsequently in the two rodents, respectively, leading to the classification of rodent ADAMs as classes I, II and III. Moreover, these duplicated ADAM genes in the rodents were found to be driven by positive selection, which might be the major force to retain them in the genome. Importantly, it was also found that orthologs of ADAM3 and 5 have been lost in humans. These results not only provide valuable information of the evolution of ADAM genes, but may also help in understanding the role of ADAM genes in the pathobiology of relevant diseases.
Collapse
|
17
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
18
|
Fàbrega A, Guyonnet B, Dacheux JL, Gatti JL, Puigmulé M, Bonet S, Pinart E. Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (Sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrinol 2011; 9:96. [PMID: 21718510 PMCID: PMC3141649 DOI: 10.1186/1477-7827-9-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
Fertilin alpha (ADAM-1) and beta (ADAM-2) are integral membrane proteins of the ADAM family that form a fertilin complex involved in key steps of the sperm-oocyte membrane interaction. In the present work, we analyzed the presence of ADAM-1 and ADAM-2 mRNAs, the spermatozoa proteins' processing and their sub-cellular localization in epididymal samples from adult boars. ADAM-1 and ADAM-2 mRNAs were highly produced in the testis, but also in the vas efferens and the epididymis. On immunoblots of sperm extracts, ADAM-1 subunit appeared as a main reactive band of ~50-55 kDa corresponding to occurrence of different isoforms throughout the epididymal duct, especially in the corpus region where isoforms ranged from acidic to basic pI. In contrast, ADAM-2 was detected as several bands of ~90 kDa, ~75 kDa, ~50-55 kDa and ~40 kDa. The intensity of high molecular mass bands decreased progressively in the distal corpus where lower bands were also transiently observed, and only the ~40 kDa was observed in the cauda. The presence of bands of different molecular weights likely results from a proteolytic processing occurring mainly in the testis for ADAM-1, and also throughout the caput epididymis for ADAM-2. Immunolocalization showed that fertilin migrates from the acrosomal region to the acrosomal ridge during the sperm transit from the distal corpus to the proximal cauda. This migration is accompanied by an important change in the extractability of a part of ADAM-1 from the sperm membrane. This suggests that the fertilin surface migration may be triggered by the biochemical changes induced by the epididymal post-translational processing of both ADAM1 and ADAM-2. Different patterns of fertilin immunolocalization then define several populations of spermatozoa in the cauda epididymis. Characterization of such fertilin complex maturation patterns is an important step to develop fertility markers based on epididymal maturation of surface membrane proteins in domestic mammals.
Collapse
Affiliation(s)
- Anna Fàbrega
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Benoît Guyonnet
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Louis Dacheux
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Luc Gatti
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
- ESIM, UMR 1301 IBSV INRA-CNRS-Université Nice Sophia Antipolis, 400 route des Chappes, 06903 Sophia Antipolis, France
| | - Marta Puigmulé
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| |
Collapse
|
19
|
Choi E, Cho C. Expression of a sperm flagellum component encoded by the Als2cr12 gene. Gene Expr Patterns 2011; 11:327-33. [PMID: 21402173 DOI: 10.1016/j.gep.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
Genes exclusively expressed in male germ cells encode proteins that play important roles in spermatogenesis and fertilization. In this study, we investigated the expression of a novel spermatogenic cell-specific gene known as amyotrophic lateral sclerosis 2 chromosome region candidate 12 (Als2cr12). Our in silico and in vitro analyses revealed that the mouse Als2cr12 gene produces two transcript isoforms by alternative splicing and that one of the isoforms is unique to spermatogenic cells. Using an antibody against the ALS2CR12 protein, we found that a protein from the germ cell-specific Als2cr12 transcript is present in mature sperm from the epididymis as well as germ cells in the testis. Further analysis of the ALS2CR12 protein in sperm disclosed the localization of the protein in the sperm tail. Specifically, our data suggest that the ALS2CR12 protein is associated with the fibrous sheath in the sperm flagellum. Thus, our study provides the first information regarding the expression of the Als2cr12 gene at the transcriptional, protein and cellular levels.
Collapse
Affiliation(s)
- Eunyoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | |
Collapse
|
20
|
Gadella BM, Evans JP. Membrane Fusions During Mammalian Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:65-80. [DOI: 10.1007/978-94-007-0763-4_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Desiderio UV, Zhu X, Evans JP. ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9) integrins: implications for integrin-based adhesion and fertilization. PLoS One 2010; 5:e13744. [PMID: 21060781 PMCID: PMC2966413 DOI: 10.1371/journal.pone.0013744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Integrins are heterodimeric cell adhesion molecules, with 18 α (ITGA) and eight β (ITGB) subunits forming 24 heterodimers classified into five families. Certain integrins, especially the α(4)/α(9) (ITGA4/ITGA9) family, interact with members of the ADAM (a disintegrin and metalloprotease) family. ADAM2 is among the better characterized and also of interest because of its role in sperm function. Having shown that ITGA9 on mouse eggs participates in mouse sperm-egg interactions, we sought to characterize ITGA4/ITGA9-ADAM2 interactions. METHODOLOGY/PRINCIPAL FINDINGS An anti-β(1)/ITGB1 function-blocking antibody that reduces sperm-egg binding significantly inhibited ADAM2 binding to mouse eggs. Analysis of integrin subunit expression indicates that mouse eggs could express at least ten different integrins, five in the RGD-binding family, two in the laminin-binding family, two in the collagen-binding family, and ITGA9-ITGB1. Adhesion assays to characterize ADAM2 interactions with ITGA4/ITGA9 family members produced the surprising result that RPMI 8866 cell adhesion to ADAM2 was inhibited by an anti-ITGA9 antibody, noteworthy because ITGA9 has only been reported to dimerize with ITGB1, and RPMI 8866 cells lack detectable ITGB1. Antibody and siRNA studies demonstrate that ITGB7 is the β subunit contributing to RPMI 8866 adhesion to ADAM2. CONCLUSIONS/SIGNIFICANCE These data indicate that a novel integrin α-β combination, ITGA9-ITGB7 (α(9)β(7)), in RPMI 8866 cells functions as a binding partner for ADAM2. ITGA9 had previously only been reported to dimerize with ITGB1. Although ITGA9-ITGB7 is unlikely to be a widely expressed integrin and appears to be the result of "compensatory dimerization" occurring in the context of little/no ITGB1 expression, the data indicate that ITGA9-ITGB7 functions as an ADAM binding partner in certain cellular contexts, with implications for mammalian fertilization and integrin function.
Collapse
Affiliation(s)
- Ulyana V. Desiderio
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiaoling Zhu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janice P. Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Finn S, Civetta A. Sexual selection and the molecular evolution of ADAM proteins. J Mol Evol 2010; 71:231-40. [PMID: 20730583 DOI: 10.1007/s00239-010-9382-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/09/2010] [Indexed: 12/12/2022]
Abstract
Rapid evolution has been identified for many reproductive genes and recent studies have combined phylogenetic tests and information on species mating systems to test sexual selection. Here we examined the molecular evolution of the ADAM gene family, a diverse group of 35 proteins capable of adhesion to and cleavage of other proteins, using sequence data from 25 mammalian genes. Out of the 25 genes analyzed, all those expressed in male reproductive tissue showed evidence of positive selection. Positively selected amino acids within the protein adhesion domain were only found in sperm surface ADAM proteins (ADAMs 1, 2, 3, 4, and 32) suggesting selection driven by male x female interactions. We tested heterogeneity in rates of evolution of the adhesion domain of ADAM proteins by using sequence data from Hominidae and macaques. The use of the branch and branch-site models (PAML) showed evidence of higher d (N)/d (S) and/or positive selection linked to branches experiencing high postmating selective pressures (chimpanzee and macaque) for Adams 2, 18, and 23. Moreover, we found consistent higher proportion of nonsynonymous relative to synonymous and noncoding sequence substitutions in chimpanzee and/or macaque only for Adams 2, 18, and 23. Our results suggest that lineage-specific sexual selection bouts might have driven the evolution of the adhesion sperm protein surface domains of ADAMs 2 and 18 in primates. Adams 2 and 18 are localized in chromosome 8 of primates and adjacent to each other, so their evolution might have also been influenced by their common genome localization.
Collapse
Affiliation(s)
- Scott Finn
- Department of Biology, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, R3B 2E9, Canada
| | | |
Collapse
|
23
|
Marcello MR, Evans JP. Multivariate analysis of male reproductive function in Inpp5b-/- mice reveals heterogeneity in defects in fertility, sperm-egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 2010; 16:492-505. [PMID: 20403911 DOI: 10.1093/molehr/gaq029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Past work indicated that sperm from mice deficient in the inositol polyphosphate 5-phosphatase Inpp5b have reduced ability to fertilize eggs in vitro and reduced epididymal proteolytic processing of the sperm protein A Disintegrin and A Metalloprotease 2 (ADAM2). On the basis of these data, our central working hypothesis was that reduced ADAM cleavage would correlate with reduced sperm-egg binding and fusion and in turn with reduced male fertility in Inpp5b(-/-) mice. Multiple endpoints of reproductive functions [mating trials, in vitro fertilization (IVF) assays and ADAM2 and ADAM3 cleavage] were investigated on a male-by-male basis, with pair-wise correlation analysis used to assess the relationships between these various parameters. Motile sperm from Inpp5b(-/-) mice showed significantly reduced fertilization of zona pellucida-free eggs due to reduced binding to the egg plasma membrane and subsequent fusion. Localization of a mouse sperm protein required for gamete fusion, IZUMO1, appears normal in Inpp5b-null sperm. To our surprise and differing from previous reports, we found that ADAM cleavage was only modestly impaired in numerous Inpp5b-null males and varied between individual animals. Performance in mating trials also differed from past reports. The pair-wise correlation analysis revealed that ADAM2 and ADAM3 cleavage was positively correlated, suggesting that processing of these proteins occurs by related/identical mechanisms, but otherwise, there were few correlations between the reproductive endpoints examined here. Nevertheless, this work provides detailed analysis of the Inpp5b(-/-) phenotype and also a blueprint for multivariate analysis to examine relationships between molecular characteristics and in vitro and in vivo physiological functions.
Collapse
Affiliation(s)
- Matthew R Marcello
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
24
|
Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 2010; 27:1235-46. [PMID: 20080865 DOI: 10.1093/molbev/msq007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermatozoa are a focal point for the impact of sexual selection due to sperm competition and sperm-female interactions in a wide range of sexually reproducing organisms. In-depth molecular investigation of the ramifications of these selective regimes has been limited due to a lack of information concerning the molecular composition of sperm. In this study, we utilize three previously published proteomic data sets in conjunction with our whole mouse sperm proteomic analysis to delineate cellular regions of sperm most impacted by positive selection. Interspecific analysis reveals robust evolutionary acceleration of sperm cell membrane genes (which include genes encoding acrosomal and sperm cell surface proteins) relative to other sperm genes, and evidence for positive selection in approximately 22% of sperm cell membrane components was obtained using maximum likelihood models. The selective forces driving the accelerated evolution of these membrane proteins may occur at a number of locations during sperm development, maturation, and transit through the female reproductive tract where the sperm cell membrane and eventually the acrosome are exposed to the extracellular milieu and available for direct cell-cell interactions.
Collapse
Affiliation(s)
- Steve Dorus
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Kim CS, Ryoo ZY, Kang HS, Chang KT. Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm. Anim Reprod Sci 2010; 117:155-9. [DOI: 10.1016/j.anireprosci.2009.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Accepted: 04/15/2009] [Indexed: 11/29/2022]
|
26
|
Brewis IA, Van Gestel RA, Gadella BM, Jones R, Publicover SJ, Roldan ERS, Frayne J, Barratt CLR. The spermatozoon at fertilisation: Current understanding and future research directions. HUM FERTIL 2009; 8:241-51. [PMID: 16393824 DOI: 10.1080/14647270500420160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ian A Brewis
- Biostatistics and Bioinformatics Unit & Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Han C, Choi E, Park I, Lee B, Jin S, Kim DH, Nishimura H, Cho C. Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol Reprod 2009; 80:1001-8. [PMID: 19129510 DOI: 10.1095/biolreprod.108.073700] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A Disintegrin And Metalloprotease (ADAM) family members expressed in male reproductive tissues are divided phylogenetically into three major groups. In the present study, we analyzed six ADAMs in one of the groups (ADAMs 4, 6, 24, 26, 29, and 30) of which function is largely unknown. Our results showed that most of the ADAMs undergo unique processing during sperm maturation and are located at the surface of sperm head. We found that the levels of ADAM4 and ADAM6 are dramatically reduced in Adam2 and Adam3 knockout sperm defective in various fertilization processes. We observed premature processing of ADAM4 in the Adam3-null mice. Furthermore, we obtained a result showing complex formation of ADAM6 with ADAM2 and ADAM3 in testis. Taken together, these results disclose involvement of ADAM4 and ADAM6 in a reproductive ADAM system that functions in fertilization.
Collapse
Affiliation(s)
- Cecil Han
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gyamera-Acheampong C, Mbikay M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum Reprod Update 2008; 15:237-47. [DOI: 10.1093/humupd/dmn060] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Hunnicutt GR, Koppel DE, Kwitny S, Cowan AE. Cyclic 3',5'-AMP causes ADAM1/ADAM2 to rapidly diffuse within the plasma membrane of guinea pig sperm. Biol Reprod 2008; 79:999-1007. [PMID: 18667756 DOI: 10.1095/biolreprod.107.067058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because sperm cannot synthesize new proteins as they journey to the egg, they use multiple mechanisms to modify the activity of existing proteins, including changes in the diffusion coefficient of some membrane proteins. Previously, we showed that during capacitation the guinea pig heterodimeric membrane protein ADAM1/ADAM2 (fertilin) transforms from a stationary state to one of rapid diffusion within the lipid bilayer. The cause for this biophysical change, however, was unknown. In this study we examined whether an increase in cAMP, such as occurs during capacitation, could trigger this change. We incubated guinea pig cauda sperm with the membrane-permeable cAMP analog dibutyryl cAMP (db-cAMP) and the phosphodiesterase inhibitor papaverine and first tested for indications of capacitation. We observed hypermotility and acrosome-reaction competence. We then used fluorescence redistribution after photobleaching (FRAP) to measure the lateral mobility of ADAM1/ADAM2 after the db-cAMP treatment. We observed that db-cAMP caused roughly a 12-fold increase in lateral mobility of ADAM1/ADAM2, yielding diffusion similar to that observed for sperm capacitated in vitro. When we repeated the FRAP on testicular sperm incubated in db-cAMP, we found only a modest increase in lateral mobility of ADAM1/ADAM2, which underwent little redistribution. Interestingly, testicular sperm also cannot be induced to undergo capacitation. Together, the data suggest that the release of ADAM1/ADAM2 from its diffusion constraints results from a cAMP-induced signaling pathway that, like others of capacitation, is established during epididymal sperm maturation.
Collapse
Affiliation(s)
- Gary R Hunnicutt
- population council, center for biomedical research, rockefeller university, new york, ny 10065, USA.
| | | | | | | |
Collapse
|
31
|
Baek N, Woo JM, Han C, Choi E, Park I, Kim DH, Eddy EM, Cho C. Characterization of eight novel proteins with male germ cell-specific expression in mouse. Reprod Biol Endocrinol 2008; 6:32. [PMID: 18652659 PMCID: PMC2500023 DOI: 10.1186/1477-7827-6-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/24/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Spermatogenesis and fertilization are highly unique processes. Discovery and characterization of germ cell-specific genes are important for the understanding of these reproductive processes. We investigated eight proteins encoded by novel spermatogenic cell-specific genes previously identified from the mouse round spermatid UniGene library. METHODS Polyclonal antibodies were generated against the novel proteins and western blot analysis was performed with various protein samples. Germ cell specificity was investigated using testes from germ cell-less mutant mice. Developmental expression pattern was examined in testicular germ cells, testicular sperm and mature sperm. Subcellular localization was assessed by cell surface biotin labeling and trypsinization. Protein localization and properties in sperm were investigated by separation of head and tail fractions, and extractabilities by a non-ionic detergent and urea. RESULTS The authenticity of the eight novel proteins and their specificity to spermatogenic cells were confirmed. In examining the developmental expression patterns, we found the presence of four proteins only in testicular germ cells, a single protein in testicular germ cells and testicular sperm, and three proteins in the testicular stages and mature sperm from the epididymis. Further analysis of the three proteins present in sperm disclosed that one is located at the surface of the acrosomal region and the other two are associated with cytoskeletal structures in the sperm flagellum. We name the genes for these sperm proteins Shsp1 (Sperm head surface protein 1), Sfap1 (Sperm flagellum associated protein 1) and Sfap2 (Sperm flagellum associated protein 2). CONCLUSION We analyzed eight novel germ cell-specific proteins, providing new and inclusive information about their developmental and cellular characteristics. Our findings will facilitate future investigation into the biological roles of these novel proteins in spermatogenesis and sperm functions.
Collapse
Affiliation(s)
- Namhoe Baek
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Jong-Min Woo
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Cecil Han
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Eunyoung Choi
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Inju Park
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Do Han Kim
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Edward M Eddy
- Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Chunghee Cho
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
32
|
Biellmann F, Henion TR, Bürki K, Hennet T. Impaired sexual behavior in male mice deficient for the beta1-3 N-acetylglucosaminyltransferase-I gene. Mol Reprod Dev 2008; 75:699-706. [PMID: 18008318 DOI: 10.1002/mrd.20828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The beta1-3 N-acetylglucosaminyltransferase-1 (B3gnt1) gene encodes a poly-N-acetyllactosamine synthase which can initiate and extend poly-N-acetyllactosamine chains [Gal(beta1-4)GlcNAc (beta1-3)(n)]. Previous investigations with heterozygous and homozygous null mice for this gene have revealed the importance of poly-N-acetyllactosamine chains for the formation of olfactory axon connections with the olfactory bulb and the migration of gonadotropin releasing hormone neurons to the hypothalamus. The possible long-term effects of these developmental defects, however, has not yet been studied. Here we have examined a reproductive phenotype observed in B3gnt1-null mice. Whereas the B3gnt1 null females were fertile, the B3gnt1 null males were not able to sire litters at the expected rate when mated to either wildtype or B3gnt1-null females. We assessed male sexual behavior as well as male reproduction parameters such as testes size, spermatogenesis, sperm number, morphology, and the development of early embryos in order to identify the source of a reduced rate of reproduction. Our findings show that the B3gnt1 null male reproductive organs were functional and could not account for the lower rate at which they produced offspring with wildtype conspecifics. Hence, we propose that the phenotype observed resulted from an impaired sexual response to female mating partners.
Collapse
Affiliation(s)
- Franziska Biellmann
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
33
|
Pastén-Hidalgo K, Hernández-Rivas R, Roa-Espitia AL, Sánchez-Gutiérrez M, Martínez-Pérez F, Monrroy AO, Hernández-González EO, Mújica A. Presence, processing, and localization of mouse ADAM15 during sperm maturation and the role of its disintegrin domain during sperm–egg binding. Reproduction 2008; 136:41-51. [DOI: 10.1530/rep-07-0300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful fertilization requires gametes to complete several stages, beginning with maturation and transport along the male and female reproductive tracts and ending with the interaction between the sperm and the egg. This last step involves sperm–egg adhesion and membrane fusion. ADAMs (disintegrin and metalloprotease domain proteins) are a family of membrane-anchored glycoproteins that are thought to play diverse roles in cell–cell adhesion through their interaction with integrins. This study analyzes the presence, location, processing, and possible role of ADAM15 in mouse sperm. The presence of ADAM15 in mouse spermatozoa was detected by Western blotting, which revealed that ADAM15 is post-translationally processed, during epididymal sperm maturation and the acrosome reaction. The 35 kDa antigen present in the acrosome-reacted sperm is the last proteolytic product of the 110/75 kDa ADAM15 found in non-capacitated sperm. This 35 kDa protein contains the disintegrin domain. By indirect immunofluorescence, ADAM15 was identified in the acrosomal region and along the flagellum of mouse spermatozoa. In acrosome-reacted sperm, ADAM15 was lost from the acrosomal region, but remained diffusely distributed throughout the head and flagellum. Furthermore, the ADAM15 disintegrin domain (RPPTDDCDLPEF) partially inhibited fusion and almost completely inhibited sperm–oolemma adhesion. In conclusion, our data indicate that ADAM15 is present in the testis and in spermatozoa from the caput, corpus, and cauda epididymis, as well as in non-capacitated and acrosome-reacted gametes. Results also indicate that ADAM15 is processed during epididymal maturation and acrosome reaction and that it may play a role during sperm–egg binding.
Collapse
|
34
|
Dyczynska E, Syta E, Sun D, Zolkiewska A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int J Cancer 2008; 122:2634-40. [PMID: 18241035 PMCID: PMC2636846 DOI: 10.1002/ijc.23405] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ADAM12 has recently emerged as a Candidate Cancer Gene in a comprehensive genetic analysis of human breast cancers. Three somatic mutations in ADAM12 were observed at significant frequencies in breast cancers: D301H, G479E and L792F. The first 2 of these mutations involve highly conserved residues in ADAM12, and our computational sequence analysis confirms that they may be cancer-related. We show that the corresponding mutations in mouse ADAM12 inhibit the proteolytic processing and activation of ADAM12 in NIH3T3, COS-7, CHO-K1 cells and in MCF-7 breast cancer cells. The D/H and G/E ADAM12 mutants exert a dominant-negative effect on the processing of the wild-type ADAM12. Immunofluorescence analysis and cell surface biotinylation experiments demonstrate that the D/H and G/E mutants are retained inside the cell and are not transported to the cell surface. Consequently, the D/H and G/E mutants, unlike the wild-type ADAM12, are not capable of shedding Delta-like l, a ligand for Notch receptor, at the cell surface, or of stimulating cell migration. Our results suggest that the breast cancer-associated mutations interfere with the intracellular trafficking of ADAM12 and result in loss of the functional ADAM12 at the cell surface.
Collapse
Affiliation(s)
- Emilia Dyczynska
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
35
|
Wassarman PM, Litscher ES. Mammalian fertilization is dependent on multiple membrane fusion events. Methods Mol Biol 2008; 475:99-113. [PMID: 18979240 DOI: 10.1007/978-1-59745-250-2_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Successful completion of fertilization in mammals is dependent on three membrane fusion events. These are (1) the acrosome reaction of sperm, (2) the fusion of sperm and egg plasma membranes to form a zygote, and (3) the cortical reaction of fertilized eggs. Extensive research into the molecular basis of each of these events has identified candidate proteins and factors involved in fusion of membranes during the mammalian fertilization process. Some of this information is provided here.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
36
|
Braundmeier AG, Breed WG, Miller DJ. Spermatozoa from a marsupial, the brushtail possum, contain β1,4-galactosyltransferase. Reprod Fertil Dev 2008; 20:402-7. [DOI: 10.1071/rd07128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/20/2007] [Indexed: 11/23/2022] Open
Abstract
β1,4-Galactosyltransferase-I (GalTase-I) is one of the key molecules on the sperm surface of eutherian mammals that is likely to be involved in binding to the egg coat, the zona pellucida, to mediate sperm–egg interaction. In laboratory mice, the species for which most data are available, this protein functions as a receptor for the zona pellucida protein ZP3 of the oocyte and, upon binding, triggers the sperm acrosome reaction. In the present study, we investigated the presence and abundance of GalTase-I in epididymal sperm extracts of a marsupial, the brushtail possum, Trichosurus vulpecula. For this, spermatozoa were collected from cauda epididymides and the amount of β1,4-galactosyltransferase activity in washed sperm extracts was compared with that of porcine spermatozoa. Overall β1,4-galactosyltransferase enzyme activity was found to be more abundant in possum sperm extracts than those from porcine spermatozoa (P < 0.05). Immunoblots with an antibody to mouse GalTase-I revealed that the molecular weight of possum spermatozoa GalTase-I was 66 kDa, which is similar to the molecular weight of GalTase-I in spermatozoa from eutherian mammals. The molecular weight of GalTase-I was the same in sperm extracts collected from the caput and cauda epididymides. These results demonstrate that GalTase-I is indeed present in possum spermatozoa and thus it may be a gamete receptor molecule on the sperm surface of marsupials as well as those of eutherian mammals.
Collapse
|
37
|
Wolkowicz MJ, Digilio L, Klotz K, Shetty J, Flickinger CJ, Herr JC. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion. ACTA ACUST UNITED AC 2007; 29:272-82. [PMID: 17978344 DOI: 10.2164/jandrol.106.000604] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.
Collapse
Affiliation(s)
- M J Wolkowicz
- Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
38
|
van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. ACTA ACUST UNITED AC 2007; 13:445-54. [PMID: 17483085 DOI: 10.1093/molehr/gam030] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
An important step in fertilization is the recognition and primary binding of the sperm cell to the zona pellucida (ZP). Primary ZP binding proteins are located at the apical plasma membrane of the sperm head. In order to exclusively study primary zona binding proteins, plasma membranes of sperm heads were isolated, highly purified and subsequently solubilized with a mild or a strong solubilization procedure. Native, highly purified ZP ghosts were used as the binding substrate for solubilized sperm plasma membrane proteins, and a proteomic approach was employed to identify ZP binding proteins. Two-dimensional gel electrophoresis of ZP fragments with bound sperm proteins showed very reproducibly 24 sperm protein spots to be associated to the zona ghosts after mild plasma membrane solubilization whereas only three protein spots were detected after strong plasma membrane solubilization. This indicates the involvement of multiple sperm proteins in ZP binding. The three persistently bound proteins were identified by a tandem mass spectrometry as isoforms of AQN-3 and probably represent the main sperm protein involved in ZP binding. P47, fertilin beta and peroxiredoxin 5 were also conclusively identified. None of the identified proteins has a known acrosomal origin, which further indicated that there was no sample contamination with secondary ZP binding proteins from the acrosomal matrix. In this study, we showed and identified multiple zona binding proteins involved in primary sperm-zona binding. Although we were not able to identify all of the proteins involved, this is a first step in understanding the event of primary sperm-zona interactions and the relevance of this for fertilization is discussed.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Nishimura H, Myles DG, Primakoff P. Identification of an ADAM2-ADAM3 complex on the surface of mouse testicular germ cells and cauda epididymal sperm. J Biol Chem 2007; 282:17900-7. [PMID: 17439939 DOI: 10.1074/jbc.m702268200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Male mice lacking ADAM2 (fertilin beta) or ADAM3 (cyritestin) are infertile; cauda epididymal sperm (mature sperm) from these mutant mice cannot bind to the egg zona pellucida. ADAM3 is barely present in Adam2-null sperm, despite normal levels of this protein in Adam2-null testicular germ cells (TGCs; sperm precursor cells). Here, we have explored the molecular basis for the loss of ADAM3 in Adam2-null TGCs to clarify the biosynthetic and functional linkage of ADAM2 and ADAM3. A small portion of total ADAM3 was found present on the surface of wild-type and Adam2(-/-) TGCs at similar levels. In the Adam2-null TGCs, however, surface-localized ADAM3 exhibited an increased amount of an endoglycosidase H-resistant form that may be related to instability of ADAM3. Moreover, we found a complex between ADAM2 and ADAM3 on the surface of TGCs and sperm. The intracellular chaperone calnexin was a component of the testicular ADAM2-ADAM3 complex. Our findings suggest that the association with ADAM2 is a key element for stability of ADAM3 in epididymal sperm. The presence of the ADAM2-ADAM3 complex in sperm also suggests a potential role of ADAM2 with ADAM3 in sperm binding to the egg zona pellucida.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95618, USA
| | | | | |
Collapse
|
40
|
Heiman MG, Engel A, Walter P. The Golgi-resident protease Kex2 acts in conjunction with Prm1 to facilitate cell fusion during yeast mating. ACTA ACUST UNITED AC 2007; 176:209-22. [PMID: 17210951 PMCID: PMC2063940 DOI: 10.1083/jcb.200609182] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular machines that mediate cell fusion are unknown. Previously, we identified a multispanning transmembrane protein, Prm1 (pheromone-regulated membrane protein 1), that acts during yeast mating (Heiman, M.G., and P. Walter. 2000. J. Cell Biol. 151:719-730). Without Prm1, a substantial fraction of mating pairs arrest with their plasma membranes tightly apposed yet unfused. In this study, we show that lack of the Golgi-resident protease Kex2 strongly enhances the cell fusion defect of Prm1-deficient mating pairs and causes a mild fusion defect in otherwise wild-type mating pairs. Lack of the Kex1 protease but not the Ste13 protease results in similar defects. Deltakex2 and Deltakex1 fusion defects were suppressed by osmotic support, a trait shared with mutants defective in cell wall remodeling. In contrast, other cell wall mutants do not enhance the Deltaprm1 fusion defect. Electron microscopy of Deltakex2-derived mating pairs revealed novel extracellular blebs at presumptive sites of fusion. Kex2 and Kex1 may promote cell fusion by proteolytically processing substrates that act in parallel to Prm1 as an alternative fusion machine, as cell wall components, or both.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
41
|
Abstract
Fertilin is a transmembrane protein heterodimer formed by the two subunits fertilin alpha and fertilin beta that plays an important role in sperm-egg fusion. Fertilin alpha and beta are members of the ADAM family, and contain each one transmembrane alpha-helix, and are termed ADAM 1 and ADAM 2, respectively. ADAM 1 is the subunit that contains a putative fusion peptide, and we have explored the possibility that the transmembrane alpha-helical domain of ADAM 1 forms homotrimers, in common with other viral fusion proteins. Although this peptide was found to form various homooligomers in SDS, the infrared dichroic data obtained with the isotopically labeled peptide at specific positions is consistent with the presence of only one species in DMPC or POPC lipid bilayers. Comparison of the experimental orientational data with molecular dynamics simulations performed with sequence homologues of ADAM 1 show that the species present in lipid bilayers is only consistent with an evolutionarily conserved homotrimeric model for which we provide a backbone structure. These results support a model where ADAM 1 forms homotrimers as a step to create a fusion active intermediate.
Collapse
Affiliation(s)
- Siok Wan Gan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | |
Collapse
|
42
|
Cui XS, Li XY, Yin XJ, Kong IK, Kang JJ, Kim NH. Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. J Reprod Dev 2006; 53:405-18. [PMID: 17179655 DOI: 10.1262/jrd.18113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal gene expression is an important biological process in oocyte maturation and early cleavage. To gain insights into oocyte maturation and early embryo development, we used microarray analysis to compare the gene expression profiles of germinal vesicle (GV)- and metaphase II (MII)-stage oocytes. The differences in spot intensities were normalized and grouped using the Avadis Prophetic software platform. Of the 12164 genes examined, we found 1682 genes with more highly expression in GV-stage oocytes than in MII-stage oocytes, while 1936 genes were more highly expressed in MII-stage oocytes (P<0.05). The genes were grouped on the basis of the Panther classification system according to their involvement in particular biological processes. The genes that were up-regulated in GV oocytes were more likely to be involved in protein metabolism and modification, the mitotic cell cycle, electron transport, or fertilization or belong to the microtubule/cytoskeletal protein family. The genes specifically upregulated in the MII oocytes were more likely to be involved in DNA replication, amino acid metabolism, or expression of G protein-coupled receptors and signaling molecules. Identification of genes that are preferentially expressed at particular oocyte maturation stages provides insights into the complex gene regulatory networks that drive oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Xiang-Shun Cui
- National Research Laboratory of Molecular Embryology, Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Yang P, Baker KA, Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 2006; 79:73-94. [PMID: 16824663 DOI: 10.1016/j.pneurobio.2006.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A disintegrin and metalloprotease (ADAM) transmembrane proteins have metalloprotease, integrin-binding, intracellular signaling and cell adhesion activities. In contrast to other metalloproteases, ADAMs are particularly important for cleavage-dependent activation of proteins such as Notch, amyloid precursor protein (APP) and transforming growth factor alpha (TGFalpha), and can bind integrins. Not surprisingly, ADAMs have been shown or suggested to play important roles in the development of the nervous system, where they regulate proliferation, migration, differentiation and survival of various cells, as well as axonal growth and myelination. On the eleventh anniversary of the naming of this family of proteins, the relatively unknown ADAMs are emerging as potential therapeutic targets for neural repair. For example, over-expression of ADAM10, one of the alpha-secretases for APP, can prevent amyloid formation and hippocampal defects in an Alzheimer mouse model. Another example of this potential neural repair role is the finding that ADAM21 is uniquely associated with neurogenesis and growing axons of the adult brain. This comprehensive review will discuss the growing literature about the roles of ADAMs in the developing and adult nervous system, and their potential roles in neurological disorders. Most excitingly, the expanding understanding of their normal roles suggests that they can be manipulated to promote neural repair in the degenerating and injured adult nervous system.
Collapse
Affiliation(s)
- Peng Yang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
44
|
Tousseyn T, Jorissen E, Reiss K, Hartmann D. (Make) stick and cut loose--disintegrin metalloproteases in development and disease. ACTA ACUST UNITED AC 2006; 78:24-46. [PMID: 16622847 DOI: 10.1002/bdrc.20066] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
"A disintegrin and metalloprotease" (ADAM) proteases form a still growing family of about 40 type 1 transmembrane proteins. They are defined by a common modular ectodomain architecture that combines cell deadhesion/adhesion and fusion motifs (disintegrin and cysteine-rich domains), with a Zn-protease domain capped by a large prodomain. Their ectodomain thus strikingly resembles snake venom disintegrin proteases, which by combined integrin blocking and extracellular proteolysis, can cause extensive tissue damage after snake bites. A surprisingly large proportion (13 ADAMs) is exclusively expressed in the male gonads, and only a minority can be found throughout all tissues. As predicted by their amino acid sequence, a major proportion of this family has not maintained a functional protease domain, most probably rendering them into pure adhesion and/or fusion proteins. For most ADAMs, the respective key function has remained elusive. Despite their overall conserved ectodomain structure, ADAMs appear to be subdivided into those with a predominant role in direct adhesion (e.g., ADAMs 1, 2, and 3) and those mainly acting as proteases (e.g., ADAMs 10 and 17). Only for a few of them are functions of more than one domain documented (e.g., ADAM9 in cell fusion and proteolysis). Several ADAMs exist in both membrane-resident and secreted isoforms; the functional significance of this dichotomy is in most cases still unclear. Knockout phenotypes have been informative only in a few cases (ADAMs 1, 2, 10, 12, 15, 17, and 19) and are mainly related to their protease function. A common denominator of ADAM-mediated proteolysis is the ectodomain shedding of a broad spectrum of substrates, including paracrine growth factors like epidermal growth factor receptor (EGFR) ligands, cell adhesion molecules like CD44 or cadherins, and the initiation of regulated intramembrane proteolysis (RIP), whereby the transmembrane fragment of the respective substrate is further cleaved by an intramembrane cleaving protease to release an intracellular domain acting as a nuclear transcription regulator. Most ADAMs feature a significant overlap of substrate specificities, explaining why an inactivation of individual ADAMs only rarely causes major phenotypes.
Collapse
Affiliation(s)
- Thomas Tousseyn
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department for Human Genetics, K.U. Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven/Flanders, Belgium
| | | | | | | |
Collapse
|
45
|
Kim T, Oh J, Woo JM, Choi E, Im SH, Yoo YJ, Kim DH, Nishimura H, Cho C. Expression and relationship of male reproductive ADAMs in mouse. Biol Reprod 2006; 74:744-50. [PMID: 16407499 DOI: 10.1095/biolreprod.105.048892] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A number of a disintegrin and metalloprotease (ADAM) family members are expressed in mammalian male reproductive organs such as testis and epididymis. These reproductive ADAMs are divided phylogenically into three major groups: ADAMs 1, 4, 6, 20, 21, 24, 25, 26, 29, 30, and 34 (the first group); ADAMs 2, 3, 5, 27, and 32 (the second group); and ADAMs 7 and 28 (the third group). Previous mouse knockout studies indicate that ADAM1, ADAM2, and ADAM3 have intricate expressional relationships, playing critical roles in fertilization. In the present study, we analyzed processing, biochemical characteristics, localization, and expressional relationship of the previously-unexplored, second-group ADAMs (ADAM5, ADAM27, and ADAM32). We found that all of the three ADAMs are made as precursors in the testis and processed during epididymal maturation, and that ADAM5 and ADAM32, but not ADAM27, are located on the sperm surface. Using sperm from Adam2(-/-) and Adam3(-/-) mice, we found that, among the three ADAMs, the level of ADAM5 is modestly and severely reduced in Adam3 and Adam2 knockout sperm, respectively. Further, we analyzed ADAM7, an epididymis-derived sperm surface ADAM from the separate phylogenetic group, in the knockout sperm. We found that the level of ADAM7 is also significantly reduced in both Adam2 and Adam3-null sperm. Taken together, our results suggest a novel expressional relationship of ADAM5 and ADAM7 with ADAM2 and ADAM3, which play critical roles in fertilization.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oh J, Woo JM, Choi E, Kim T, Cho BN, Park ZY, Kim YC, Kim DH, Cho C. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun 2005; 331:1374-83. [PMID: 15883027 DOI: 10.1016/j.bbrc.2005.04.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The mammalian epididymis is critical for sperm to acquire motility and fertilizing capacity. This maturation process involves the interaction of epididymal secretory proteins with sperm. We analyzed mouse a disintegrin and metalloprotease (ADAMs) 7 and 28 expressed specifically or predominantly in the epididymis. We found that these ADAM genes are expressed in an epididymal region-specific manner and their gene expression is regulated by both androgen and testicular factors (ADAM7) or only testicular factors (ADAM28). We identified an ADAM28 transcript isoform that lacks the transmembrane domain. Protein analysis revealed that ADAM7, but not ADAM28, is transferred from the epididymis to the sperm surface and redistributed in the sperm head during acrosome reaction. These processes were shown to occur without processing of the protein. Taken together, our results indicate that the two epididymal ADAMs closely related in phylogeny are differential in various characteristics and ADAM7 has unique secretory feature and interactive relationship with sperm.
Collapse
Affiliation(s)
- Jungsu Oh
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stein KK, Go JC, Primakoff P, Myles DG. Defects in secretory pathway trafficking during sperm development in Adam2 knockout mice. Biol Reprod 2005; 73:1032-8. [PMID: 16014818 DOI: 10.1095/biolreprod.105.040972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adam2-null and Adam3-null male mice exhibit reduced levels of one or more ADAM proteins on mature sperm, in addition to the loss of the genetically targeted protein. ADAM protein loss was believed to occur posttranslationally, although the timing of loss and the mechanism by which the loss occurred were not explored. In this study we have found that in Adam3-null mice, fertilin beta (also known as ADAM2) is lost during the formation of testicular sperm. In Adam2-null males, most cyritestin (ADAM3) protein is also lost at this stage, but 25% of cyritestin is lost later, during sperm passage through the epididymis. Although normal levels of cyritestin are synthesized and acquire Endoglycosidase H resistance, indicating transit through the Golgi, the protein does not reach the cell surface. We also discovered that the majority of both fertilin beta and cyritestin are found in a Triton X-100 insoluble compartment on testicular sperm, when most of the cyritestin was observed on the cell surface. This insoluble compartment may represent a sorting platform, because in Adam2-knockout cells, only a small fraction of the cyritestin becomes Triton X-100 insoluble. Thus, it appears that cyritestin loss in Adam2-knockout mice may result, at least in part, from a disruption in protein trafficking.
Collapse
Affiliation(s)
- Kathryn K Stein
- Section of Molecular and Cellular Biology, University of California, Davis, 95616, USA
| | | | | | | |
Collapse
|
48
|
Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A. TheCaenorhabditis elegans spe-38gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 2005; 132:2795-808. [PMID: 15930110 DOI: 10.1242/dev.01868] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutation in the Caenorhabditis elegans spe-38 gene results in a sperm-specific fertility defect. spe-38 sperm are indistinguishable from wild-type sperm with regards to their morphology, motility and migratory behavior. spe-38 sperm make close contact with oocytes but fail to fertilize them. spe-38 sperm can also stimulate ovulation and engage in sperm competition. The spe-38 gene is predicted to encode a novel four-pass (tetraspan) integral membrane protein. Structurally similar tetraspan molecules have been implicated in processes such as gamete adhesion/fusion in mammals, membrane adhesion/fusion during yeast mating, and the formation/function of tight-junctions in metazoa. In antibody localization experiments, SPE-38 was found to concentrate on the pseudopod of mature sperm,consistent with it playing a direct role in gamete interactions.
Collapse
Affiliation(s)
- Indrani Chatterjee
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
49
|
Wassarman PM, Jovine L, Qi H, Williams Z, Darie C, Litscher ES. Recent aspects of mammalian fertilization research. Mol Cell Endocrinol 2005; 234:95-103. [PMID: 15836958 DOI: 10.1016/j.mce.2004.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Accepted: 08/17/2004] [Indexed: 11/29/2022]
Abstract
Mammalian fertilization has been the subject of intensified research in recent times. Application of recombinant DNA, transgenic and gene targeting technology, in particular, to issues in mammalian fertilization has revolutionized the field. Here, we present some of the latest results coming from application of these and other technologies to four aspects of mammalian fertilization: 1. formation of the egg zona pellucida (ZP) during oocyte growth; 2. species-specific binding of sperm to the egg zona pellucida; 3. induction of the sperm acrosome reaction (AR) by the egg zona pellucida 4. binding of sperm to and fusion with egg plasma membrane. In virtually every instance, new information and new insights have come from relatively recent investigations.
Collapse
Affiliation(s)
- Paul M Wassarman
- Brookdale Department of Molecular, Cell & Developmental Biology, Mount Sinai School of Medicine, Annenberg 25-22, Box 1020, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cell-cell fusion is fundamental to the development and physiology of multicellular organisms, but little is known of its mechanistic underpinnings. Recent studies have revealed that many proteins involved in cell-cell fusion are also required for seemingly unrelated cellular processes such as phagocytosis, cell migration, axon growth, and synaptogenesis. We review advances in understanding cell-cell fusion by contrasting it with virus-cell and intracellular vesicle fusion. We also consider how proteins involved in general aspects of membrane dynamics have been co-opted to control fusion of diverse cell types by coupling with specialized proteins involved in cell-cell recognition, adhesion, and signaling.
Collapse
Affiliation(s)
- Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|