1
|
Knoebel E, Brinck A, Nonet ML. Parameters that influence bipartite reporter system expression in Caenorhabditis elegans. Genetics 2025:iyaf076. [PMID: 40341369 DOI: 10.1093/genetics/iyaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
The development of bipartite reporter systems in Caenorhabditis elegans has lagged by more than a decade behind its adoption in Drosophila, the other invertebrate model commonly used to dissect biological mechanisms. Here, we characterize many parameters that influence expression in recently developed C. elegans bipartite systems. We examine how DNA binding site number and spacing influence expression and characterize how these expression parameters vary in distinct tissue types. Furthermore, we examine how both basal promoters and 3' UTR influence the specificity and level of expression. These studies provide both a framework for the rational design of driver and reporter transgenes and molecular and genetic tools for the creation, characterization, and optimization of bipartite system components for expression in other cell types.
Collapse
Affiliation(s)
- Emma Knoebel
- Department of Neuroscience, Washington University Medical School, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anna Brinck
- Department of Neuroscience, Washington University Medical School, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael L Nonet
- Department of Neuroscience, Washington University Medical School, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Kaur N, Chen W, Zheng Y, Hasegawa DK, Ling KS, Fei Z, Wintermantel WM. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes. BMC Genomics 2017; 18:370. [PMID: 28494755 PMCID: PMC5426028 DOI: 10.1186/s12864-017-3751-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. RESULTS To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. CONCLUSION Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Yi Zheng
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - Daniel K. Hasegawa
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Kai-Shu Ling
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853-1801 USA
| | - William M. Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA 93905 USA
| |
Collapse
|
3
|
Ramakrishnan K, Okkema PG. Regulation of C. elegans neuronal differentiation by the ZEB-family factor ZAG-1 and the NK-2 homeodomain factor CEH-28. PLoS One 2014; 9:e113893. [PMID: 25474681 PMCID: PMC4256384 DOI: 10.1371/journal.pone.0113893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
The C. elegans pharyngeal neuron M4 is a multi-functional cell that acts as a cholinergic motor neuron to stimulate peristaltic pharyngeal muscle contraction and as a neuroendocrine cell secreting neuropeptides and growth factors to affect other cells both inside and outside the pharynx. The conserved transcription factors ZAG-1 and CEH-28 are co-expressed in M4 through most of development, and here we examine how these factors contribute to M4 differentiation. We find ZAG-1 functions upstream of CEH-28 in a branched pathway to activate expression of different sets of M4 differentiation markers. CEH-28 activates expression of the growth factor genes dbl-1 and egl-17, and the neuropeptide genes flp-5 and flp-2, while ZAG-1 activates expression of the serotonin receptor ser-7, as well as expression of ceh-28 and its downstream targets. Other markers of M4 differentiation are expressed normally in both zag-1 and ceh-28 mutants, including the neuropeptide gene flp-21 and the acetylcholine biosynthetic gene unc-17. Unlike ceh-28 mutants, zag-1 mutants completely lack peristaltic muscle contractions resulting from broader defects in M4 differentiation. Despite these defects, neither ZAG-1 nor CEH-28 are terminal selectors of the M4 phenotype, and we suggest they function in a hierarchy to regulate different aspects of M4 differentiation.
Collapse
Affiliation(s)
- Kalpana Ramakrishnan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Peter G. Okkema
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
High- and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods 2014; 68:492-9. [PMID: 24784529 DOI: 10.1016/j.ymeth.2014.04.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 02/06/2023] Open
Abstract
Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding, activity, and reproductive output. Accordingly, the most informative screens for genes and compounds affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is a well-established and effective model organism, especially for biological processes that involve organ systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C. elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only fat mass but also body fat distribution could be assessed at a genome-wide scale. Here we present a radical improvement in oil red O worm staining together with high-throughput image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free, and inexpensive, and requires only 15min of hands-on time to process a 96-well plate. Together with our free and user-friendly automated image analysis package, this method enables C. elegans sample preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or chemical perturbations that lead to alterations in fat quantity and distribution in whole animals.
Collapse
|
5
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
6
|
Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 2011; 6:e26594. [PMID: 22073173 PMCID: PMC3206800 DOI: 10.1371/journal.pone.0026594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/29/2011] [Indexed: 01/30/2023] Open
Abstract
We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83 C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.
Collapse
|
7
|
Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 2010; 5:e14370. [PMID: 21179424 PMCID: PMC3003703 DOI: 10.1371/journal.pone.0014370] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022] Open
Abstract
A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science.
Collapse
Affiliation(s)
- Douglas Blackiston
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
- Department of Regenerative and Developmental Biology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Tal Shomrat
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Cindy L. Nicolas
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Christopher Granata
- Boston Engineering Corporation, Waltham, Massachusetts, United States of America
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
8
|
Raharjo WH, Logan BC, Wen S, Kalb JM, Gaudet J. In vitro and in vivo characterization of Caenorhabditis elegans PHA-4/FoxA response elements. Dev Dyn 2010; 239:2219-32. [PMID: 20623595 DOI: 10.1002/dvdy.22359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caenorhabditis elegans PHA-4 is a member of the FoxA group of transcription factors. PHA-4 is critical for development of the C. elegans pharynx and directly regulates most or all pharyngeal genes. The consensus binding site of PHA-4 has not been identified, with previous analysis of PHA-4 targets relying on the mammalian FoxA consensus. Here, we use in vitro and in vivo analyses to demonstrate three features of PHA-4 response elements. First, the PHA-4 consensus matches that of other FoxA proteins, but only a subset of possible sites is active in an in vivo assay. Second, sequence flanking the core PHA-4 site can influence the strength of reporter expression in vivo, as seen for other Fox proteins. Third, in the context of some pharyngeal promoters, PHA-4 response elements are flanked by distinct cis-regulatory elements that modulate response to PHA-4, generating gene expression in specific pharyngeal cell types.
Collapse
Affiliation(s)
- Wahyu Hendrati Raharjo
- Genes and Development Research Group, Department of Molecular Biology and Biochemistry, Department of Medical Genetics, Alberta Children's Hospital Research Institute, for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
9
|
Gaudet J, McGhee JD. Recent advances in understanding the molecular mechanisms regulating C. elegans transcription. Dev Dyn 2010; 239:1388-404. [PMID: 20175193 DOI: 10.1002/dvdy.22246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We review recent studies that have advanced our understanding of the molecular mechanisms regulating transcription in the nematode C. elegans. Topics covered include: (i) general properties of C. elegans promoters; (ii) transcription factors and transcription factor combinations involved in cell fate specification and cell differentiation; (iii) new roles for general transcription factors; (iv) nucleosome positioning in C. elegans "chromatin"; and (v) some characteristics of histone variants and histone modifications and their possible roles in controlling C. elegans transcription.
Collapse
Affiliation(s)
- Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
10
|
Fakhouri THI, Stevenson J, Chisholm AD, Mango SE. Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genet 2010; 6:e1001060. [PMID: 20714352 PMCID: PMC2920861 DOI: 10.1371/journal.pgen.1001060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023] Open
Abstract
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Collapse
Affiliation(s)
- Tala H. I. Fakhouri
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeff Stevenson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew D. Chisholm
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Maduro MF. Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:250-60. [PMID: 18778800 PMCID: PMC2688470 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Abstract
The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.
Collapse
Affiliation(s)
- Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
13
|
Ow MC, Martinez NJ, Olsen PH, Silverman HS, Barrasa MI, Conradt B, Walhout AJ, Ambros V. The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev 2008; 22:2520-34. [PMID: 18794349 PMCID: PMC2546698 DOI: 10.1101/gad.1678808] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/21/2008] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally via antisense base-pairing. Although miRNAs are involved in a variety of important biological functions, little is known about their transcriptional regulation. Using yeast one-hybrid assays, we identified transcription factors with a FLYWCH Zn-finger DNA-binding domain that bind to the promoters of several Caenorhabditis elegans miRNA genes. The products of the flh-1 and flh-2 genes function redundantly to repress embryonic expression of lin-4, mir-48, and mir-241, miRNA genes that are normally expressed only post-embryonically. Although single mutations in either flh-1 or flh-2 genes result in a viable phenotype, double mutation of flh-1 and flh-2 results in early larval lethality and an enhanced derepression of their target miRNAs in embryos. Double mutations in flh-2 and a third FLYWCH Zn-finger-containing transcription factor, flh-3, also result in enhanced precocious expression of target miRNAs. Mutations of lin-4 or mir-48&mir-241 do not rescue the lethal flh-1; flh-2 double-mutant phenotype, suggesting that the inviability is not solely the result of precocious expression of these miRNAs. Therefore, the FLH-1 and FLH-2 proteins likely play a more general role in regulating gene expression in embryos.
Collapse
Affiliation(s)
- Maria C. Ow
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Natalia J. Martinez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Philip H. Olsen
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - Howard S. Silverman
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - M. Inmaculada Barrasa
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Barbara Conradt
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | - Albertha J.M. Walhout
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
14
|
Ghai V, Gaudet J. The CSL transcription factor LAG-1 directly represses hlh-6 expression in C. elegans. Dev Biol 2008; 322:334-44. [PMID: 18706403 DOI: 10.1016/j.ydbio.2008.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans gene hlh-6 is expressed specifically in pharyngeal glands, one of five distinct pharyngeal cell types. Expression of hlh-6 is controlled by a discrete set of cis-regulatory elements, including a negative element called HRL1. Here we demonstrate that HRL1 is a functional binding site for LAG-1, the CSL transcriptional effector of Notch in C. elegans, and that regulation of hlh-6 by LAG-1 is direct. Regulation of hlh-6 by LAG-1 is strictly negative: removal of HRL1 or LAG-1 regulation results in ectopic expression of hlh-6, but does not affect expression in pharyngeal glands. Furthermore, direct regulation of hlh-6 expression does not appear to involve Notch signaling, contrary to the canonical mechanism by which CSL factors regulate target genes. We also identify an additional cis-regulatory element in the hlh-6 promoter that, together with previously identified elements, is sufficient to overcome repression by LAG-1 and activate hlh-6 expression in pharyngeal glands.
Collapse
Affiliation(s)
- Vikas Ghai
- Genes and Development Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
15
|
Abstract
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.
Collapse
|
16
|
Smith PA, Mango SE. Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans. Dev Biol 2007; 302:25-39. [PMID: 17005176 PMCID: PMC1852510 DOI: 10.1016/j.ydbio.2006.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 02/02/2023]
Abstract
During organogenesis, pluripotent precursor cells acquire a defined identity such as muscle or nerve. The transition from naïve precursor towards the differentiated state is characterized by sequential waves of gene expression that are determined by regulatory transcription factors. A key question is how transcriptional circuitry dictates the succession of events that accompanies developmental competence, cell fate specification and differentiation. To address this question, we have examined how anterior muscles are established within the Caenorhabditis elegans foregut (pharynx). We find that the T-box transcription factor tbx-2 is essential to form anterior pharyngeal muscles from the ABa blastomere. In the absence of tbx-2 function, ABa-derived cells initiate development normally: they receive glp-1/Notch signaling cues, activate the T-box gene TBX-38 and express the organ selector gene PHA-4/FoxA. However, these cells subsequently arrest development, extinguish PHA-4 and fail to activate PHA-4 target genes. tbx-2 mutant cells do not undergo apoptosis and there is no evidence for adoption of an alternative fate. TBX-2 is expressed in ABa descendants and depends on activation by pha-4 and repression by components of glp-1/Notch signaling. Our analysis suggests that a positive feedback loop between tbx-2 and pha-4 is required for ABa-derived precursors to commit to pharyngeal muscle fate.
Collapse
Affiliation(s)
- Pliny A Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
17
|
Babu MM, Iyer LM, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 2006; 34:6505-20. [PMID: 17130173 PMCID: PMC1702500 DOI: 10.1093/nar/gkl888] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/04/2006] [Accepted: 10/09/2006] [Indexed: 11/28/2022] Open
Abstract
WRKY and GCM1 are metal chelating DNA-binding domains (DBD) which share a four stranded fold. Using sensitive sequence searches, we show that this WRKY-GCM1 fold is also shared by the FLYWCH Zn-finger domain and the DBDs of two classes of Mutator-like element (MULE) transposases. We present evidence that they share a stabilizing core, which suggests a possible origin from a BED finger-like intermediate that was in turn ultimately derived from a C2H2 Zn-finger domain. Through a systematic study of the phyletic pattern, we show that this WRKY-GCM1 superfamily is a widespread eukaryote-specific group of transcription factors (TFs). We identified several new members across diverse eukaryotic lineages, including potential TFs in animals, fungi and Entamoeba. By integrating sequence, structure, gene expression and transcriptional network data, we present evidence that at least two major global regulators belonging to this superfamily in Saccharomyces cerevisiae (Rcs1p and Aft2p) have evolved from transposons, and attained the status of transcription regulatory hubs in recent course of ascomycete yeast evolution. In plants, we show that the lineage-specific expansion of WRKY-GCM1 domain proteins acquired functional diversity mainly through expression divergence rather than by protein sequence divergence. We also use the WRKY-GCM1 superfamily as an example to illustrate the importance of transposons in the emergence of new TFs in different lineages.
Collapse
Affiliation(s)
- M. Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 2QH, UK
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| | - S. Balaji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| |
Collapse
|
18
|
Fernandez AP, Gibbons J, Okkema PG. C. elegans peb-1 mutants exhibit pleiotropic defects in molting, feeding, and morphology. Dev Biol 2005; 276:352-66. [PMID: 15581870 DOI: 10.1016/j.ydbio.2004.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/16/2022]
Abstract
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.
Collapse
Affiliation(s)
- Anthony P Fernandez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
19
|
Dinkova TD, Keiper BD, Korneeva NL, Aamodt EJ, Rhoads RE. Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Mol Cell Biol 2005; 25:100-13. [PMID: 15601834 PMCID: PMC538781 DOI: 10.1128/mcb.25.1.100-113.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/19/2004] [Accepted: 09/20/2004] [Indexed: 11/20/2022] Open
Abstract
The mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) participates in protein synthesis initiation, translational repression of specific mRNAs, and nucleocytoplasmic shuttling. Multiple isoforms of eIF4E are expressed in a variety of organisms, but their specific roles are poorly understood. We investigated one Caenorhabditis elegans isoform, IFE-4, which has homologues in plants and mammals. IFE-4::green fluorescent protein (GFP) was expressed in pharyngeal and tail neurons, body wall muscle, spermatheca, and vulva. Knockout of ife-4 by RNA interference (RNAi) or a null mutation produced a pleiotropic phenotype that included egg-laying defects. Sedimentation analysis demonstrated that IFE-4, but not IFE-1, was present in 48S initiation complexes, indicating that it participates in protein synthesis initiation. mRNAs affected by ife-4 knockout were determined by DNA microarray analysis of polysomal distribution. Polysome shifts, in the absence of total mRNA changes, were observed for only 33 of the 18,967 C. elegans mRNAs tested, of which a disproportionate number were related to egg laying and were expressed in neurons and/or muscle. Translational regulation was confirmed by reduced levels of DAF-12, EGL-15, and KIN-29. The functions of these proteins can explain some phenotypes observed in ife-4 knockout mutants. These results indicate that translation of a limited subset of mRNAs is dependent on a specific isoform of eIF4E.
Collapse
Affiliation(s)
- Tzvetanka D Dinkova
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
20
|
Gaudet J, Muttumu S, Horner M, Mango SE. Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol 2004; 2:e352. [PMID: 15492775 PMCID: PMC523228 DOI: 10.1371/journal.pbio.0020352] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/13/2004] [Indexed: 12/05/2022] Open
Abstract
We have investigated the cis-regulatory network that mediates temporal gene expression during organogenesis. Previous studies demonstrated that the organ selector gene pha-4/FoxA is critical to establish the onset of transcription of Caenorhabditis elegans foregut (pharynx) genes. Here, we discover additional cis-regulatory elements that function in combination with PHA-4. We use a computational approach to identify candidate cis-regulatory sites for genes activated either early or late during pharyngeal development. Analysis of natural or synthetic promoters reveals that six of these sites function in vivo. The newly discovered temporal elements, together with predicted PHA-4 sites, account for the onset of expression of roughly half of the pharyngeal genes examined. Moreover, combinations of temporal elements and PHA-4 sites can be used in genome-wide searches to predict pharyngeal genes, with more than 85% accuracy for their onset of expression. These findings suggest a regulatory code for temporal gene expression during foregut development and provide a means to predict gene expression patterns based solely on genomic sequence.
Collapse
Affiliation(s)
- Jeb Gaudet
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Srikanth Muttumu
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Michael Horner
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| | - Susan E Mango
- 1Huntsman Cancer Institute, University of UtahSalt Lake City, UtahUnited States of America
| |
Collapse
|
21
|
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE. Environmentally Induced Foregut Remodeling by PHA-4/FoxA and DAF-12/NHR. Science 2004; 305:1743-6. [PMID: 15375261 DOI: 10.1126/science.1102216] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Growth and development of the Caenorhabditis elegans foregut (pharynx) depends on coordinated gene expression, mediated by pharynx defective (PHA)-4/FoxA in combination with additional, largely unidentified transcription factors. Here, we used whole genome analysis to establish clusters of genes expressed in different pharyngeal cell types. We created an expectation maximization algorithm to identify cis-regulatory elements that activate expression within the pharyngeal gene clusters. One of these elements mediates the response to environmental conditions within pharyngeal muscles and is recognized by the nuclear hormone receptor (NHR) DAF-12. Our data suggest that PHA-4 and DAF-12 endow the pharynx with transcriptional plasticity to respond to diverse developmental and physiological cues. Our combination of bioinformatics and in vivo analysis has provided a powerful means for genome-wide investigation of transcriptional control.
Collapse
Affiliation(s)
- Wanyuan Ao
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
22
|
Beaster-Jones L, Okkema PG. DNA binding and in vivo function of C.elegans PEB-1 require a conserved FLYWCH motif. J Mol Biol 2004; 339:695-706. [PMID: 15165844 DOI: 10.1016/j.jmb.2004.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/13/2004] [Accepted: 04/16/2004] [Indexed: 11/30/2022]
Abstract
Caenorhabditis elegans PEB-1 is a novel protein containing a DNA-binding domain in its N terminus, which includes a Cys/His-rich FLYWCH motif also found in Drosophila Mod(mdg4) proteins, and a large C-terminal domain of unknown function. PEB-1 is expressed in most pharyngeal cell types, but its molecular function remains unclear. Here we describe comparative and functional analyses of PEB-1. Characterization of the PEB-1 sequence from C.briggsae indicates highest conservation in the DNA-binding domain (including the FLYWCH motif) and the C terminus, suggesting two functional domains. The PEB-1 FLYWCH motif is essential for DNA-binding and in vivo function; however, it does not bind detectable metal. Likewise, the PEB-1 C terminus is necessary for full activity in vivo, although the DNA-binding domain alone is sufficient for partial function. Both the FLYWCH motif and the C-terminal domain are required for efficient nuclear localization, suggesting PEB-1 must bind DNA and other components to remain in the nucleus. Analysis of binding sites revealed a YDTGCCRW PEB-1 consensus-binding site, and matches to this consensus are widespread in the C.elegans genome.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Department of Biological Sciences and Laboratory for Molecular Biology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | |
Collapse
|
23
|
Vilimas T, Abraham A, Okkema PG. An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. Dev Biol 2004; 266:388-98. [PMID: 14738885 DOI: 10.1016/j.ydbio.2003.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans pharyngeal muscle development involves ceh-22, an NK-2 family homeobox gene related to genes controlling heart development in other species. ceh-22 is the earliest known gene expressed in the pharyngeal muscles and is likely regulated directly by factors specifying pharyngeal muscle fate. We have previously implicated the ceh-22 distal enhancer in initiating ceh-22 expression. Here we analyze the distal enhancer using functional and comparative assays. The distal enhancer contains three subelements contributing additively to its activity, and functionally important regulatory sequences are highly conserved in Caenorhabditis briggsae. One subelement, termed DE3, is strongly active in the pharyngeal muscles, and we identified two short oligonucleotides (de199 and de209) contributing to DE3 activity. Multimerized de209 enhances transcription similarly to DE3 specifically in the pharyngeal muscles, suggesting it may be an essential site regulating ceh-22. de209 binds the pan-pharyngeal Forkhead factor PHA-4 in vitro and responds to ectopic pha-4 expression in vivo, suggesting that PHA-4 directly initiates ceh-22 expression through de209. Because de209 enhancer activity is primarily limited to the pharyngeal muscles, we hypothesize that de209 also binds factors functioning with PHA-4 to specifically activate ceh-22 expression in pharyngeal muscle.
Collapse
Affiliation(s)
- Tomas Vilimas
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
24
|
Krauss V, Dorn R. Evolution of the trans-splicing Drosophila locus mod(mdg4) in several species of Diptera and Lepidoptera. Gene 2004; 331:165-76. [PMID: 15094203 DOI: 10.1016/j.gene.2004.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 02/03/2004] [Accepted: 02/09/2004] [Indexed: 11/30/2022]
Abstract
The modifier of mdg4 (mod[mdg4]) locus of Drosophila melanogaster (Dme) encodes chromatin proteins which are involved in position effect variegation, establishment of chromatin boundaries, nerve pathfinding, meiotic chromosome pairing and apoptosis. It was recently shown that mRNA trans-splicing is involved in the generation of at least 26 different mod(mdg4) transcripts. Here, we show that a similar complex mod(mdg4) locus exists in Drosophila pseudoobscura (Dps), Drosophila virilis (Dvi), Anopheles gambiae (Aga) and Bombyx mori (Bmo). As in D. melanogaster, most isoforms of these species contain a strongly conserved BTB/POZ domain (hereafter referred to as BTB domain) within the common N-terminal part and a Cys(2)His(2) motif containing FLYWCH domain within the isoform-specific C-terminal parts. By sequence comparison, we identified six novel isoforms in D. melanogaster and show that altogether 31 isoforms are perfectly conserved by sequence and position in the mod(mdg4) locus of the Drosophila species analyzed. We found significant differences in evolutionary speed of synonymous/nonsynonymous divergence between the various isoform specific exons. These results were extended by tree reconstruction analysis based on the evolved FLYWCH domains of predicted Mod(mdg4) proteins in Drosophila and Anopheles. Comparative analysis of mod(mdg4) gene structure in species of dipterans implicates that several internal inversions occurred making the mRNA trans-splicing mechanism indispensable for mod(mdg4) expression. Finally, we propose a model for the evolution of trans-splicing implementing effective regulation of many alternative gene products in a composite gene structure.
Collapse
Affiliation(s)
- Veiko Krauss
- Department of Genetics, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | |
Collapse
|
25
|
Lanjuin A, Sengupta P. Specification of chemosensory neuron subtype identities in Caenorhabditis elegans. Curr Opin Neurobiol 2004; 14:22-30. [PMID: 15018934 DOI: 10.1016/j.conb.2004.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular diversity in the nervous system arises from the presence of multiple neuronal subtypes, each of which is specialized to perform a unique function. Work in Caenorhabditis elegans has begun to reveal the pathways that are essential for the specification of identities of neuronal subtypes in its chemosensory system. The functions of each chemosensory neuron subtype are specified by distinct developmental cascades, using molecules from well-conserved transcription factor families. Additional cellular complexity is generated by novel mechanisms that further diversify the identities of the left and right members of a bilateral sensory neuron pair.
Collapse
Affiliation(s)
- Anne Lanjuin
- Department of Biology, Brandeis University, MS008, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|
26
|
Ryder SP, Frater LA, Abramovitz DL, Goodwin EB, Williamson JR. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 2003; 11:20-8. [PMID: 14718919 DOI: 10.1038/nsmb706] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 10/22/2003] [Indexed: 12/20/2022]
Abstract
The post-transcriptional regulation of gene expression underlies several critical developmental phenomena. In metazoa, gene products that are expressed, silenced and packaged during oogenesis govern early developmental processes prior to nascent transcription activation. Furthermore, tissue-specific alternative splicing of several transcription factors controls pattern formation and organ development. A highly conserved family of proteins containing a STAR/GSG RNA-binding domain is essential to both processes. Here, we identify the consensus STAR-binding element (SBE) required for specific mRNA recognition by GLD-1, a key regulator of Caenorhabditis elegans germline development. We have identified and verified new GLD-1 repression targets containing this sequence. The results suggest additional functions of GLD-1 in X-chromosome silencing and early embryogenesis. The SBE is present in Quaking and How mRNA targets, suggesting that STAR protein specificity is highly conserved. Similarities between the SBE and the branch-site signal indicate a possible competition mechanism for STAR/GSG regulation of splicing variants.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Mail Stop MB-33, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
27
|
An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 2003; 17:1882-93. [PMID: 12869585 PMCID: PMC196237 DOI: 10.1101/gad.1107803] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the earliest stages of Caenorhabditis elegans embryogenesis, the transcription factor SKN-1 initiates development of the digestive system and other mesendodermal tissues. Postembryonic SKN-1 functions have not been elucidated. SKN-1 binds to DNA through a unique mechanism, but is distantly related to basic leucine-zipper proteins that orchestrate the major oxidative stress response in vertebrates and yeast. Here we show that despite its distinct mode of target gene recognition, SKN-1 functions similarly to resist oxidative stress in C. elegans. During postembryonic stages, SKN-1 regulates a key Phase II detoxification gene through constitutive and stress-inducible mechanisms in the ASI chemosensory neurons and intestine, respectively. SKN-1 is present in ASI nuclei under normal conditions, and accumulates in intestinal nuclei in response to oxidative stress. skn-1 mutants are sensitive to oxidative stress and have shortened lifespans. SKN-1 represents a connection between developmental specification of the digestive system and one of its most basic functions, resistance to oxidative and xenobiotic stress. This oxidative stress response thus appears to be both widely conserved and ancient, suggesting that the mesendodermal specification role of SKN-1 was predated by its function in these detoxification mechanisms.
Collapse
Affiliation(s)
- Jae Hyung An
- Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Kalb JM, Beaster-Jones L, Fernandez AP, Okkema PG, Goszczynski B, McGhee JD. Interference between the PHA-4 and PEB-1 transcription factors in formation of the Caenorhabditis elegans pharynx. J Mol Biol 2002; 320:697-704. [PMID: 12095247 DOI: 10.1016/s0022-2836(02)00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PHA-4 is a forkhead/winged helix transcription factor that acts as an organ identity factor in the development of the Caenorhabditis elegans pharynx. PEB-1 is a novel DNA-binding protein also involved in pharyngeal morphogenesis. PHA-4 and PEB-1 bind at overlapping sites on the C183 sequence element that controls pharynx-specific expression of the C. elegans myo-2 gene. It has been suggested that PHA-4 and PEB-1 act cooperatively on the C183 sequence. In this study, we test this model and assess the C183-dependent transcriptional activity of PHA-4 and PEB-1, both individually and in combination. We show that PHA-4 and PEB-1 are both modest transcriptional activators in yeast but that co-expression of the two factors does not result in significantly increased expression of a C183-regulated reporter gene. Electrophoretic mobility-shift assays provide no evidence for the formation of a PHA-4/PEB-1 complex in vitro but rather show that PHA-4 and PEB-1 cannot bind C183 simultaneously. As we have reported previously, ectopic expression of PHA-4 in C. elegans causes ectopic expression of a C183-regulated reporter gene. We show that ectopic expression of PEB-1 cannot cause ectopic expression of the same reporter but rather ectopic PEB-1 inhibits reporter gene activation by PHA-4. Overall, our results do not support a model in which PHA-4 and PEB-1 synergize in vivo but rather support a model in which PEB-1 may negatively modulate PHA-4's ability to activate transcription through C183 during formation of the C. elegans pharynx.
Collapse
Affiliation(s)
- John M Kalb
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, Faculty of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The pha-4 locus encodes a forkhead box A (FoxA/HNF3) transcription factor homolog that specifies organ identity for Caenorhabditis elegans pharyngeal cells. We used microarrays to identify pharyngeal genes and analyzed those genes to determine which were direct PHA-4 targets. Our data suggest that PHA-4 directly activates most or all pharyngeal genes. Furthermore, the relative affinity of PHA-4 for different TRTTKRY (R = A/G, K = T/G, Y = T/C) elements modulates the onset of gene expression, providing a mechanism to activate pharyngeal genes at different developmental stages. We suggest that direct transcriptional regulation of entire gene networks may be a common feature of organ identity genes.
Collapse
Affiliation(s)
- J Gaudet
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
30
|
Kuchenthal CA, Chen W, Okkema PG. Multiple enhancers contribute to expression of the NK-2 homeobox gene ceh-22 in C. elegans pharyngeal muscle. Genesis 2001; 31:156-66. [PMID: 11783006 DOI: 10.1002/gene.10018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression in the pharyngeal muscles of C. elegans is regulated in part by the NK-2 family homeodomain factor CEH-22, which is structurally and functionally related to Drosophila Tinman and the vertebrate Nkx2-5 factors. ceh-22 is expressed exclusively in the pharyngeal muscles and is the earliest gene known to be expressed in this tissue. Here we characterize the ceh-22 promoter region in transgenic C. elegans. A 1.9-kb fragment upstream of ceh-22 is sufficient to regulate reporter gene expression in a pattern identical to the endogenous gene. Within this promoter we identified two transcriptional enhancers and characterized their cell type and temporal specificity. The distal enhancer becomes active in the pharynx near the time that ceh-22 expression initiates; however, it becomes active more broadly later in development. The proximal enhancer becomes active after the onset of ceh-22 expression, but it is active specifically in the ceh-22-expressing pharyngeal muscles. We suggest these enhancers respond to distinct signals that initiate and maintain ceh-22 gene expression. Proximal enhancer activity requires a short segment containing a CEH-22 responsive element, suggesting that CEH-22 autoregulates its own expression.
Collapse
Affiliation(s)
- C A Kuchenthal
- Department of Biological Sciences and the Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|